1
|
Fukazawa H, Okada-Shudo Y. Photosynthetic Protein-Based Retinal Ganglion Cell Receptive Fields for Detecting Edges and Brightness Illusions. NANO LETTERS 2023; 23:10983-10990. [PMID: 38048176 PMCID: PMC10723062 DOI: 10.1021/acs.nanolett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Bacteriorhodopsin, isolated from a halophilic bacterium, is a photosynthetic protein with a structure and function similar to those of the visual pigment rhodopsin. A voltaic cell with bacteriorhodopsin sandwiched between two transparent electrodes exhibits a time-differential response akin to that observed in retinal ganglion cells. It is intriguing as a means to emulate excitation and inhibition in the neural response. Here, we present a neuromorphic device emulating the retinal ganglion cell receptive field fabricated by patterning bacteriorhodopsin onto two transparent electrodes and encapsulating them with an electrolyte solution. This protein-based artificial ganglion cell receptive field is characterized as a bandpass filter that simultaneously replicates excitatory and inhibitory responses within a single element, successfully detecting image edges and phenomena of brightness illusions. The device naturally emulates the highly interacting ganglion cell receptive fields by exploiting the inherent properties of proteins without the need for electronic components, bias power supply, or an external operating circuit.
Collapse
Affiliation(s)
- Hikaru Fukazawa
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yoshiko Okada-Shudo
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
2
|
Espinoza-Araya C, Starbird R, Prasad ES, Renugopalakrishnan V, Mulchandani A, Bruce BD, Villarreal CC. A bacteriorhodopsin-based biohybrid solar cell using carbon-based electrolyte and cathode components. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148985. [PMID: 37236292 DOI: 10.1016/j.bbabio.2023.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
There is currently a high demand for energy production worldwide, mainly producing renewable and sustainable energy. Bio-sensitized solar cells (BSCs) are an excellent option in this field due to their optical and photoelectrical properties developed in recent years. One of the biosensitizers that shows promise in simplicity, stability and quantum efficiency is bacteriorhodopsin (bR), a photoactive, retinal-containing membrane protein. In the present work, we have utilized a mutant of bR, D96N, in a photoanode-sensitized TiO2 solar cell, integrating low-cost, carbon-based components, including a cathode composed of PEDOT (poly(3,4-ethylenedioxythiophene) functionalized with multi-walled carbon nanotubes (CNT) and a hydroquinone/benzoquinone (HQ/BQ) redox electrolyte. The photoanode and cathode were characterized morphologically and chemically (SEM, TEM, and Raman). The electrochemical performance of the bR-BSCs was investigated using linear sweep voltammetry (LSV), open circuit potential decay (VOC), and impedance spectroscopic analysis (EIS). The champion device yielded a current density (JSC) of 1.0 mA/cm2, VOC of -669 mV, a fill factor of ~24 %, and a power conversion efficiency (PCE) of 0.16 %. This bR device is one of the first bio-based solar cells utilizing carbon-based alternatives for the photoanode, cathode, and electrolyte. This may decrease the cost and significantly improve the device's sustainability.
Collapse
Affiliation(s)
- Christopher Espinoza-Araya
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Maestría en Ingeniería de Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - E Senthil Prasad
- Council of Scientific & Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | - Venkatesan Renugopalakrishnan
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; MGB Center for COVID Innovation, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, Boston, MA 02138, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, USA; Center for Environmental Research & Technology (CE-CERT), University of California Riverside, Riverside, CA 92507, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, USA; Program in Genome Science and Technology, University of Tennessee at Knoxville, TN 37830, USA.
| | - Claudia C Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica.
| |
Collapse
|
3
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Chiu UT, Lee BF, Ko LN, Yang CS, Chao L. Non-Electroneutrality Generated by Bacteriorhodopsin-Incorporated Membranes Enhances the Conductivity of a Gelatin Memory Device. Gels 2023; 9:635. [PMID: 37623090 PMCID: PMC10453721 DOI: 10.3390/gels9080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)-lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state.
Collapse
Affiliation(s)
- U-Ting Chiu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Fan Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Ning Ko
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Temperini ME, Polito R, Intze A, Gillibert R, Berkmann F, Baldassarre L, Giliberti V, Ortolani M. A mid-infrared laser microscope for the time-resolved study of light-induced protein conformational changes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:064102. [PMID: 37862502 DOI: 10.1063/5.0136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 10/22/2023]
Abstract
We have developed a confocal laser microscope operating in the mid-infrared range for the study of light-sensitive proteins, such as rhodopsins. The microscope features a co-aligned infrared and visible illumination path for the selective excitation and probing of proteins located in the IR focus only. An external-cavity tunable quantum cascade laser provides a wavelength tuning range (5.80-6.35 µm or 1570-1724 cm-1) suitable for studying protein conformational changes as a function of time delay after visible light excitation with a pulsed LED. Using cryogen-free detectors, the relative changes in the infrared absorption of rhodopsin thin films around 10-4 have been observed with a time resolution down to 30 ms. The measured full-width at half maximum of the Airy disk at λ = 6.08 µm in transmission mode with a confocal arrangement of apertures is 6.6 µm or 1.1λ. Dark-adapted sample replacement at the beginning of each photocycle is then enabled by exchanging the illuminated thin-film location with the microscope mapping stage synchronized to data acquisition and LED excitation and by averaging hundreds of time traces acquired in different nearby locations within a homogeneous film area. We demonstrate that this instrument provides crucial advantages for time-resolved IR studies of rhodopsin thin films with a slow photocycle. Time-resolved studies of inhomogeneous samples may also be possible with the presented instrument.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Raffaella Polito
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Antonia Intze
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Raymond Gillibert
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Fritz Berkmann
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Leonetta Baldassarre
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Valeria Giliberti
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
- Center for Life Nano & Neuro Science CL2NS, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| |
Collapse
|
6
|
Teodor AH, Monge S, Aguilar D, Tames A, Nunez R, Gonzalez E, Rodríguez JJM, Bergkamp JJ, Starbird R, Renugopalakrishnan V, Bruce BD, Villarreal C. PEDOT-Carbon Nanotube Counter Electrodes and Bipyridine Cobalt (II/III) Mediators as Universally Compatible Components in Bio-Sensitized Solar Cells Using Photosystem I and Bacteriorhodopsin. Int J Mol Sci 2022; 23:3865. [PMID: 35409224 PMCID: PMC8998335 DOI: 10.3390/ijms23073865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, solar energy is captured by different types of light harvesting protein-pigment complexes. Two of these photoactivatable proteins are bacteriorhodopsin (bR), which utilizes a retinal moiety to function as a proton pump, and photosystem I (PSI), which uses a chlorophyll antenna to catalyze unidirectional electron transfer. Both PSI and bR are well characterized biochemically and have been integrated into solar photovoltaic (PV) devices built from sustainable materials. Both PSI and bR are some of the best performing photosensitizers in the bio-sensitized PV field, yet relatively little attention has been devoted to the development of more sustainable, biocompatible alternative counter electrodes and electrolytes for bio-sensitized solar cells. Careful selection of the electrolyte and counter electrode components is critical to designing bio-sensitized solar cells with more sustainable materials and improved device performance. This work explores the use of poly (3,4-ethylenedioxythiophene) (PEDOT) modified with multi-walled carbon nanotubes (PEDOT/CNT) as counter electrodes and aqueous-soluble bipyridine cobaltII/III complexes as direct redox mediators for both PSI and bR devices. We report a unique counter electrode and redox mediator system that can perform remarkably well for both bio-photosensitizers that have independently evolved over millions of years. The compatibility of disparate proteins with common mediators and counter electrodes may further the improvement of bio-sensitized PV design in a way that is more universally biocompatible for device outputs and longevity.
Collapse
Affiliation(s)
- Alexandra H. Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA;
| | - Stephanie Monge
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Maestría Ingeniería en Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Dariana Aguilar
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Alexandra Tames
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Roger Nunez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Elaine Gonzalez
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | | | - Jesse J. Bergkamp
- Department of Chemistry and Biochemistry, California State University Bakersfield, Bakersfield, CA 93311, USA; (R.N.); (E.G.); (J.J.B.)
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
- Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Venkatesan Renugopalakrishnan
- Children’s Hospital, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA;
- Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, 317 Egan Center, Boston, MA 02138, USA
| | - Barry D. Bruce
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
- Chemical and Biomolecular Engineering Department, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Claudia Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (S.M.); (D.A.); (A.T.)
- Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| |
Collapse
|
7
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
8
|
Wang D, Wang Y, Li H, Han Y, Hu P, Ma K, Sheves M, Jin Y. Photoactivated Bacteriorhodopsin/SiN x Nanopore-Based Biological Nanofluidic Generator with Single-Protein Sensitivity. ACS NANO 2022; 16:1589-1599. [PMID: 34989239 DOI: 10.1021/acsnano.1c10255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanofluidics is an emerging hot field that explores the unusual behaviors of ions/molecules transporting through nanoscale channels, which possesses a broad application prospect. However, in situ probing bioactivity of functional proteins on a single-molecule level by a nanofluidic device has not been reported, and it is still a big challenge in the field. Herein, we reported a biological nanofluidic device with a single-protein sensitivity, based on natural proton-pumping protein, bacteriorhodopsin (bR), and a single SiNx nanopore. Nanofluidic single-molecule probing of bR proton-pumping activity and its light response were achieved under applied voltage of 0 V, by biologically self-powered steady-state ionic current nanopore sensing. Green-light irradiation of the device led to the monitoring of a steady-state proton current of ∼3.51 pA/per bR trimer, corresponding to charge density of 815 μC/cm2 generated by each bR monomer, which far exceeded the previously reported value of 1.4 μC/cm2. This finding and method would promote the development of artificial biological and hybrid nanofluidic devices in biosensing and energy conversion applications.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanchao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Berselli G, Gimenez A, O’Connor A, Keyes TE. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29158-29169. [PMID: 34121400 PMCID: PMC8289237 DOI: 10.1021/acsami.1c06798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 05/08/2023]
Abstract
Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion coefficient that was dependent on the bR concentration and consistent with the Saffman-Delbrück model. The photoelectrical properties of bR-MSLBs were evaluated from the photocurrent signal generated by bR under continuous and transient light illumination. The optimal conditions for a self-sustaining photoelectrical switch were determined in terms of protein concentration, pH, and light switch frequency of activation. Overall, a significant increase in the transient current was observed for lipid bilayers containing approximately 0.3 mol % bR with a measured photo-current of 250 nA/cm2. These results demonstrate that the platforms provide an appropriate lipid environment to support the proton pump, enabling its efficient operation. The bR-reconstituted MSLB model serves both as a platform to study the protein in a highly addressable biomimetic environment and as a demonstration of reconstitution of seven-helix receptors into MSLBs, opening the prospect of reconstitution of related membrane proteins including G-protein-coupled receptors on these versatile biomimetic substrates.
Collapse
Affiliation(s)
- Guilherme
B. Berselli
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Aurélien
V. Gimenez
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Alexandra O’Connor
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences, National
Centre for Sensor Research, Dublin City
University, Dublin D09 FW22, Ireland
| |
Collapse
|
11
|
Roy S, Xie O, Dorval Courchesne N. Challenges in engineering conductive protein fibres: Disentangling the knowledge. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sophia Roy
- Department of Chemical Engineering McGill University Montréal Québec Canada
| | - Oliver Xie
- Department of Chemical Engineering McGill University Montréal Québec Canada
| | | |
Collapse
|
12
|
Mukhopadhyay S, Karuppannan SK, Guo C, Fereiro JA, Bergren A, Mukundan V, Qiu X, Castañeda Ocampo OE, Chen X, Chiechi RC, McCreery R, Pecht I, Sheves M, Pasula RR, Lim S, Nijhuis CA, Vilan A, Cahen D. Solid-State Protein Junctions: Cross- Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. iScience 2020; 23:101099. [PMID: 32438319 PMCID: PMC7235645 DOI: 10.1016/j.isci.2020.101099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.
Collapse
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502, India
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Cunlan Guo
- Weizmann Institute of Science, Rehovot 76100, Israel
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | | | - Adam Bergren
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Vineetha Mukundan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Olga E. Castañeda Ocampo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Xiaoping Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Richard McCreery
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Israel Pecht
- Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Rupali Reddy Pasula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian A. Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Ayelet Vilan
- Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Bakaraju V, Prasad ES, Meena B, Chaturvedi H. An Electronic and Optically Controlled Bifunctional Transistor Based on a Bio-Nano Hybrid Complex. ACS OMEGA 2020; 5:9702-9706. [PMID: 32391456 PMCID: PMC7203707 DOI: 10.1021/acsomega.9b03904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
We report an electronically and optically controlled bioelectronic field-effect transistor (FET) based on the hybrid film of photoactive bacteriorhodopsin and electronically conducting single-walled carbon nanotubes (SWNTs). Two-dimensional (2D) crystals of bacteriorhodopsin form the photoactive center of the bio-nano complex, whereas one-dimensional (1D) pure SWNTs provide the required electronic support. The redshift in the Raman spectra indicates the electronic doping with an estimated charge density of 3 × 106 cm-2. The hybrid structure shows a conductivity of 19 μS/m and semiconducting characteristics due to preferential binding with selective diameters of semiconducting SWNTs. The bioelectronic transistor fabricated using direct laser lithography shows both optical and electronic gating with a significant on/off switch ratio of 8.5 and a photoconductivity of 13.15 μS/m. An n-type FET shows complementary p-type characteristics under light due to optically controlled, electronic doping by the "proton-pumping" bacteriorhodopsin. The fabricated bioelectronic transistor exhibits both electronically and optically well-controlled bifunctionality based on the functionalized hybrid electronic material.
Collapse
Affiliation(s)
- Vikram Bakaraju
- Department
of Physics, University of Antwerp, Antwerp 2000, Belgium
- G
Lab Innovations Pvt. Ltd., Kolkata West Bengal 700001 India
| | | | - Brijesh Meena
- Center
for Energy, Indian Institute of Technology
(IIT), Guwahati Assam 781039, India
- G
Lab Innovations Pvt. Ltd., Kolkata West Bengal 700001 India
| | - Harsh Chaturvedi
- Center
for Energy, Indian Institute of Technology
(IIT), Guwahati Assam 781039, India
| |
Collapse
|
14
|
Tong J, Zhang P, Zhang L, Zhang D, Beratan DN, Song H, Wang Y, Li T. A Robust Bioderived Wavelength-Specific Photosensor Based on BLUF Proteins. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 310:127838. [PMID: 32296265 PMCID: PMC7157799 DOI: 10.1016/j.snb.2020.127838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosensitive proteins are naturally evolved photosensors that often respond to light signals of specific wavelengths. However, their poor stability under ambient conditions hinders their applications in non-biological settings. In this proof-of-principle study, we grafted the blue light using flavin (BLUF) protein reconstructed with flavin adenine dinucleotide (FAD) or roseoflavin (RoF) onto pristine graphene, and achieved selective sensitivity at 450 nm or 500 nm, respectively. We improved the thermal and operational stability substantially via structure-guided cross-linking, achieving 6-month stability under ambient condition and normal operation at temperatures up to 200 °C. Furthermore, the device exhibited rare negative photoconductivity behavior. The origins of this negative photoconductivity behavior were elucidated via a combination of experimental and theoretical analysis. In the photoelectric conversion studies, holes from photoexcited flavin migrated to graphene and recombined with electrons. The device allows facile modulation and detection of charge transfer, and provides a versatile platform for future studies of photoinduced charge transfer in biosensors as well as the development of stable wavelength-selective biophotosensors.
Collapse
Affiliation(s)
- Jing Tong
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Lei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Dongwei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haifeng Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Tie Li
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
15
|
Oleinikov VA, Solovyeva DO, Zaitsev SY. Nanohybrid Structures Based on Plasmonic or Fluorescent Nanoparticles and Retinal-Containing Proteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S196-S212. [PMID: 32087060 DOI: 10.1134/s0006297920140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhodopsins are light-sensitive membrane proteins enabling transmembrane charge separation (proton pump) on absorption of a light quantum. Bacteriorhodopsin (BR) is a transmembrane protein from halophilic bacteria that belongs to the rhodopsin family. Potential applications of BR are considered so promising that the number of studies devoted to the use of BR itself, its mutant variants, as well as hybrid materials containing BR in various areas grows steadily. Formation of hybrid structures combining BR with nanoparticles is an essential step in promotion of BR-based devices. However, rapid progress, continuous emergence of new data, as well as challenges of analyzing the entire data require regular reviews of the achievements in this area. This review is devoted to the issues of formation of materials based on hybrids of BR with fluorescent semiconductor nanocrystals (quantum dots) and with noble metal (silver, gold) plasmonic nanoparticles. Recent data on formation of thin (mono-) and thick (multi-) layers from materials containing BR and BR/nanoparticle hybrids are presented.
Collapse
Affiliation(s)
- V A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, Moscow, 115409, Russia
| | - D O Solovyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, Moscow, 115409, Russia
| | - S Yu Zaitsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,L. K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, Moscow Region, 142132, Russia
| |
Collapse
|
16
|
Garg K, Raichlin S, Bendikov T, Pecht I, Sheves M, Cahen D. Interface Electrostatics Dictates the Electron Transport via Bioelectronic Junctions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41599-41607. [PMID: 30376633 DOI: 10.1021/acsami.8b16312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Different batches of Si wafers with nominally the same specifications were found to respond differently to identical chemical surface treatments aimed at regrowing Si oxide on them. We found that the oxides produced on different batches of wafer differ electrically, thereby affecting solid-state electron transport (ETp) via protein films assembled on them. These results led to the another set of experiments, where we studied this phenomenon using two distinct chemical methods to regrow oxides on the same batch of Si wafers. We have characterized the surfaces of the regrown oxides and of monolayers of linker molecules that connect proteins with the oxides and examined ETp via ultrathin layers of the protein bacteriorhodopsin, assembled on them. Our results illustrate the crucial role of (near) surface charges on the substrate in defining the ETp characteristics across the proteins. This is expressed most strikingly in the observed current's temperature dependences, and we propose that these are governed by the electrostatic landscape at the electrode-protein interface rather than by intrinsic protein properties. This study's major finding, relevant to protein bioelectronics, is that protein-electrode coupling in junctions is a decisive factor in ETp across them. Hence,surface electrostatics can create a barrier that dominates charge transport and controls the transport mode across the junction. Our findings' wider importance lies in their relevance to hybrid junctions of Si with (polyelectrolyte) biomolecules, a likely direction for future bioelectronics. A remarkable corollary of presented results is that once an electron is injected into the protein, transport within the proteins is so efficient that it does not encounter a measurable barrier down to 160 K.
Collapse
|
17
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
Ji L, Ma B, Meng Q, Li L, Liu K, Chen D. Detergent-resistant oligomeric Leptosphaeria rhodopsin is a promising bio-nanomaterial and an alternative to bacteriorhodopsin. Biochem Biophys Res Commun 2017; 493:352-357. [PMID: 28887035 DOI: 10.1016/j.bbrc.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Bacteriorhodopsin has attracted remarkable attention as a photoactive bio-nanomaterial in the last decades. However, its instability in the presence of detergents has restricted the extent to which bacteriorhodopsin may be applied. In this study, we investigated the oligomerization of a eukaryotic light-driven H+-pump, Leptosphaeria rhodopsin, using circular dichroism spectroscopy and other biophysical and biochemical methods. Our findings revealed that Leptosphaeria rhodopsin assembled into oligomers in the cell membrane and also in 0.05% DDM detergent micelles. Moreover, unlike bacteriorhodopsin in purple membrane, Leptosphaeria rhodopsin retained its oligomeric structure in 1% Triton X-100 and demonstrated strong resistance to other common detergents. A maximal photocurrent density of ∼85 nA/cm2 was consistently generated, which was substantially larger than that of solubilized bacteriorhodopsin (∼10 nA/cm2). Therefore, oligomeric Leptosphaeria rhodopsin may be a promising bio-nanomaterial, and an alternative to bacteriorhodopsin, especially with the use of detergents.
Collapse
Affiliation(s)
- Liangliang Ji
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Meng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Nakamaru S, Scholz F, Ford WE, Goto Y, von Wrochem F. Photoswitchable Sn-Cyt c Solid-State Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605924. [PMID: 28401734 DOI: 10.1002/adma.201605924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents are observed both in the Soret band (λ = 405 nm) and in the Q band (λ = 535 nm), with current on/off ratios reaching values of up to 25. The underlying modulation in charge-transfer rate is attributed to a hole-transport channel created by the photoexcitation of the Sn-porphyrin.
Collapse
Affiliation(s)
- Satoshi Nakamaru
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Frank Scholz
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - William E Ford
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - Yoshio Goto
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Florian von Wrochem
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| |
Collapse
|
20
|
Mathews AS, Abraham S, Kumaran SK, Fan J, Montemagno C. Bio nano ink for 4D printing membrane proteins. RSC Adv 2017. [DOI: 10.1039/c7ra07650a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photo curable bio-nano ink was designed, developed and printed using a stereolithographic printer.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Ingenuity Lab
- Edmonton
- Canada
- Department of Chemical and Materials Engineering
- University of Alberta
| | - Sinoj Abraham
- Ingenuity Lab
- Edmonton
- Canada
- Department of Chemical and Materials Engineering
- University of Alberta
| | - Surjith Kumar Kumaran
- Ingenuity Lab
- Edmonton
- Canada
- Department of Chemical and Materials Engineering
- University of Alberta
| | - Jiaxin Fan
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
- Department of Electrical and Computer Engineering
| | - Carlo Montemagno
- Ingenuity Lab
- Edmonton
- Canada
- Department of Chemical and Materials Engineering
- University of Alberta
| |
Collapse
|
21
|
Li D, Wang Y, Du H, Xu S, Li Z, Yang Y, Wang C. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy. NANOMATERIALS 2016; 6:nano6110197. [PMID: 28335325 PMCID: PMC5245739 DOI: 10.3390/nano6110197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM) at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC) sides were more negative than the cytoplasmic (CP) side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.
Collapse
Affiliation(s)
- Denghua Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yibing Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Huiwen Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Shiwei Xu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Zhemin Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
22
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|
23
|
Kumar S, Bagchi S, Prasad S, Sharma A, Kumar R, Kaur R, Singh J, Bhondekar AP. Bacteriorhodopsin-ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:501-10. [PMID: 27335741 PMCID: PMC4901555 DOI: 10.3762/bjnano.7.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
Zinc oxide (ZnO) and bacteriorhodopsin (bR) hybrid nanostructures were fabricated by immobilizing bR on ZnO thin films and ZnO nanorods. The morphological and spectroscopic analysis of the hybrid structures confirmed the ZnO thin film/nanorod growth and functional properties of bR. The photoactivity results of the bR protein further corroborated the sustainability of its charge transport property and biological activity. When exposed to ethanol vapour (reducing gas) at low temperature (70 °C), the fabricated sensing elements showed a significant increase in resistivity, as opposed to the conventional n-type behaviour of bare ZnO nanostructures. This work opens up avenues towards the fabrication of low temperature, photoactivated, nanomaterial-biomolecule hybrid gas sensors.
Collapse
Affiliation(s)
- Saurav Kumar
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| | - Sudeshna Bagchi
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| | - Senthil Prasad
- CSIR- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Anupma Sharma
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| | - Jagvir Singh
- Research Services, University of Alberta, Edmonton, AB, Canada T6G2E1
| | - Amol P Bhondekar
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi 110011, India
| |
Collapse
|
24
|
Lee C, Mertz B. Theoretical Evidence for Multiple Charge Transfer Pathways in Bacteriorhodopsin. J Chem Theory Comput 2016; 12:1639-46. [PMID: 26950405 DOI: 10.1021/acs.jctc.6b00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
25
|
Construction and application of photoresponsive smart nanochannels. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Mukhopadhyay S, Gärtner W, Cahen D, Pecht I, Sheves M. Electron transport via a soluble photochromic photoreceptor. Phys Chem Chem Phys 2016; 18:25671-25675. [DOI: 10.1039/c6cp05011e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transport properties via a photochromic biological photoreceptor have been studied in junctions of monolayer assemblies in solid-state configurations.
Collapse
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Israel
- Department of Organic Chemistry
- Weizmann Institute of Science
| | - Wolfgang Gärtner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim a.d. Ruhr
- Germany
| | - David Cahen
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Israel
| | - Israel Pecht
- Department of Immunology
- Weizmann Institute of Science
- Israel
| | - Mordechai Sheves
- Department of Organic Chemistry
- Weizmann Institute of Science
- Israel
| |
Collapse
|
27
|
Yu X, Lovrincic R, Sepunaru L, Li W, Vilan A, Pecht I, Sheves M, Cahen D. Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. ACS NANO 2015; 9:9955-63. [PMID: 26381112 DOI: 10.1021/acsnano.5b03950] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.
Collapse
Affiliation(s)
| | - Robert Lovrincic
- Institute for High Frequency Technology, TU Braunschweig, and Innovationlab , Speyerer Str. 4, 69115 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Kanekar PP, Kulkarni SO, Kanekar SP, Shouche Y, Jani K, Sharma A. Exploration of a haloarchaeon, Halostagnicola larsenii, isolated from rock pit sea water, West Coast of Maharashtra, India, for the production of bacteriorhodopsin. J Appl Microbiol 2015; 118:1345-56. [PMID: 25727916 DOI: 10.1111/jam.12784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023]
Abstract
AIMS The aim of the present investigation was to isolate haloarchaea from rock pit sea water, West Coast of India and to explore their potential in the production of bacteriorhodopsin (BR) which converts light energy into electrical energy. METHODS AND RESULTS Haloarchaeal strains were isolated from rock pit sea water samples collected from Rock garden, Malvan, West Coast of India. Based on morphological, physiological and biochemical characteristics, and 16S rRNA gene sequencing, all the 11 strains were identified as Halostagnicola larsenii. All the strains require at least 1·5 mol l(-1) NaCl for growth; grow optimally in the range of 3·5-5·2 mol l(-1) NaCl. BR was detected in all the strains ranging from 0·035 to 0·258 g l(-1) . All 11 strains showed conversion of light energy into electrical energy in the range of 0·7-44·2 mV, when exposed to sunlight. CONCLUSIONS A haloarchaeon, Hst. larsenii is isolated from rock pit sea water and demonstrated to have BR that converted light energy into electrical energy. SIGNIFICANCE AND IMPACT OF THE STUDY The present investigation is presumably the first report of the isolation of Hst. larsenii from low salinity environment and its potential in production of BR. The haloarchaeon could be explored for the generation of electrical energy.
Collapse
Affiliation(s)
- P P Kanekar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - S O Kulkarni
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - S P Kanekar
- Microbial Sciences Divison, MACS-Agharkar Research Institute, Pune, India
| | - Y Shouche
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| | - K Jani
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| | - A Sharma
- Microbial Culture Collection (MCC), National Centre for Cell Science (NCCS), Pune, India
| |
Collapse
|
29
|
Zhao Z, Wang P, Xu X, Sheves M, Jin Y. Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H2 Evolution from Water. J Am Chem Soc 2015; 137:2840-3. [DOI: 10.1021/jacs.5b00200] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenlu Zhao
- State
Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, No. 5625 Renming Street, Changchun 130022, Jilin China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- State
Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, No. 5625 Renming Street, Changchun 130022, Jilin China
| | - Xiaolong Xu
- State
Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, No. 5625 Renming Street, Changchun 130022, Jilin China
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yongdong Jin
- State
Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, No. 5625 Renming Street, Changchun 130022, Jilin China
| |
Collapse
|
30
|
Einati H, Mishra D, Friedman N, Sheves M, Naaman R. Light-controlled spin filtering in bacteriorhodopsin. NANO LETTERS 2015; 15:1052-6. [PMID: 25621438 PMCID: PMC4330096 DOI: 10.1021/nl503961p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Indexed: 05/21/2023]
Abstract
The role of the electron spin in chemistry and biology has received much attention recently owing to to the possible electromagnetic field effects on living organisms and the prospect of using molecules in the emerging field of spintronics. Recently the chiral-induced spin selectivity effect was observed by electron transmission through organic molecules. In the present study, we demonstrated the ability to control the spin filtering of electrons by light transmitted through purple membranes containing bacteriorhodopsin (bR) and its D96N mutant. The spin-dependent electrochemical cyclic voltammetry (CV) and chronoamperometric measurements were performed with the membranes deposited on nickel substrates. High spin-dependent electron transmission through the membranes was observed; however, after the samples were illuminated by 532 nm light, the spin filtering in the D96N mutant was dramatically reduced whereas the light did not have any effect on the wild-type bR. Beyond demonstrating spin-dependent electron transmission, this work also provides an interesting insight into the relationship between the structure of proteins and spin filtering by conducting electrons.
Collapse
Affiliation(s)
- Hila Einati
- Department of Chemical Physics and ‡Department of Organic Chemistry, Weizmann Institute , Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
31
|
Yamada T, Haruyama Y, Kasai K, Kaji T, Tominari Y, Tanaka S, Otomo A. Transparent conductive oxide electrode dependence of photocurrent characteristics in bacteriorhodopsin photocells. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Palazzo G, Magliulo M, Mallardi A, Angione MD, Gobeljic D, Scamarcio G, Fratini E, Ridi F, Torsi L. Electronic transduction of proton translocations in nanoassembled lamellae of bacteriorhodopsin. ACS NANO 2014; 8:7834-45. [PMID: 25077939 DOI: 10.1021/nn503135y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An organic field-effect transistor (OFET) integrating bacteriorhodopsin (bR) nanoassembled lamellae is proposed for an in-depth study of the proton translocation processes occurring as the bioelectronic device is exposed either to light or to low concentrations of general anesthetic vapors. The study involves the morphological, structural, electrical, and spectroscopic characterizations necessary to assess the functional properties of the device as well as the bR biological activity once integrated into the functional biointerlayer (FBI)-OFET structure. The electronic transduction of the protons phototranslocation is shown as a current increase in the p-type channel only when the device is irradiated with photons known to trigger the bR photocycle, while Raman spectroscopy reveals an associated C═C isomer switch. Notably, higher energy photons bring the cis isomer back to its trans form, switching the proton pumping process off. The investigation is extended also to the study of a PM FBI-OFET exposed to volatile general anesthetics such as halothane. In this case an electronic current increase is seen upon exposure to low, clinically relevant, concentrations of anesthetics, while no evidence of isomer-switching is observed. The study of the direct electronic detection of the two different externally triggered proton translocation effects allows gathering insights into the underpinning of different bR molecular switching processes.
Collapse
Affiliation(s)
- Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "A. Moro" , Via Orabona, 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mukhopadhyay S, Cohen SR, Marchak D, Friedman N, Pecht I, Sheves M, Cahen D. Nanoscale electron transport and photodynamics enhancement in lipid-depleted bacteriorhodopsin monomers. ACS NANO 2014; 8:7714-7722. [PMID: 25003581 DOI: 10.1021/nn500202k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Potential future use of bacteriorhodopsin (bR) as a solid-state electron transport (ETp) material requires the highest possible active protein concentration. To that end we prepared stable monolayers of protein-enriched bR on a conducting HOPG substrate by lipid depletion of the native bR. The ETp properties of this construct were then investigated using conducting probe atomic force microscopy at low bias, both in the ground dark state and in the M-like intermediate configuration, formed upon excitation by green light. Photoconductance modulation was observed upon green and blue light excitation, demonstrating the potential of these monolayers as optoelectronic building blocks. To correlate protein structural changes with the observed behavior, measurements were made as a function of pressure under the AFM tip, as well as humidity. The junction conductance is reversible under pressure changes up to ∼300 MPa, but above this pressure the conductance drops irreversibly. ETp efficiency is enhanced significantly at >60% relative humidity, without changing the relative photoactivity significantly. These observations are ascribed to changes in protein conformation and flexibility and suggest that improved electron transport pathways can be generated through formation of a hydrogen-bonding network.
Collapse
|
34
|
Zaitsev SY, Solovyeva DO, Nabiev IR. Nanobiohybrid structures based on the organized films of photosensitive membrane proteins. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n01abeh004372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Huang W, Besar K, LeCover R, Dulloor P, Sinha J, Martínez Hardigree JF, Pick C, Swavola J, Everett AD, Frechette J, Bevan M, Katz HE. Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem Sci 2014. [DOI: 10.1039/c3sc52638k] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
36
|
Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, Mehrvand J. Efficient Bio-Nano Hybrid Solar Cells via Purple Membrane as Sensitizer. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-013-0118-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
38
|
Tomaselli S, Giovanella U, Pagano K, Leone G, Zanzoni S, Assfalg M, Meinardi F, Molinari H, Botta C, Ragona L. Encapsulation of a Rhodamine Dye within a Bile Acid Binding Protein: Toward Water Processable Functional Bio Host–Guest Materials. Biomacromolecules 2013; 14:3549-56. [DOI: 10.1021/bm400904s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Simona Tomaselli
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Umberto Giovanella
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Katiuscia Pagano
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Giuseppe Leone
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento
di Biotecnologie, Università degli Studi di Verona, Strada
Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento
di Biotecnologie, Università degli Studi di Verona, Strada
Le Grazie 15, 37134, Verona, Italy
| | - Francesco Meinardi
- Università degli Studi Milano Bicocca, Via Cozzi 53, 20125, Milano, Italy
| | - Henriette Molinari
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Chiara Botta
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
39
|
Atanassov A, Hendler Z, Berkovich I, Ashkenasy G, Ashkenasy N. Force modulated conductance of artificial coiled-coil protein monolayers. Biopolymers 2013; 100:93-9. [DOI: 10.1002/bip.22181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 11/07/2022]
|
40
|
Rao S, Guo Z, Liang D, Chen D, Wei Y, Xiang Y. A proteorhodopsin-based biohybrid light-powering pH sensor. Phys Chem Chem Phys 2013; 15:15821-4. [DOI: 10.1039/c3cp52894d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Crawford MA, Broadhurst CL, Guest M, Nagar A, Wang Y, Ghebremeskel K, Schmidt WF. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins Leukot Essent Fatty Acids 2013. [PMID: 23206328 DOI: 10.1016/j.plefa.2012.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence.
Collapse
Affiliation(s)
- Michael A Crawford
- Imperial College, Department of Cancer and Surgery, Division of Reproductive Physiology, Obstetrics and Gynaecology, Room 334, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Prasad M, Roy S. Optoelectronic Logic Gates Based on Photovoltaic Response of Bacteriorhodopsin Polymer Composite Thin Films. IEEE Trans Nanobioscience 2012; 11:410-20. [DOI: 10.1109/tnb.2012.2213840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Dimonte A, Frache S, Erokhin V, Piccinini G, Demarchi D, Milano F, Micheli GD, Carrara S. Nanosized optoelectronic devices based on photoactivated proteins. Biomacromolecules 2012; 13:3503-9. [PMID: 23046154 DOI: 10.1021/bm301063m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular nanoelectronics is attracting much attention, because of the possibility to add functionalities to silicon-based electronics by means of intrinsically nanoscale biological or organic materials. The contact point between active molecules and electrodes must present, besides nanoscale size, a very low resistance. To realize Metal-Molecule-Metal junctions it is, thus, mandatory to be able to control the formation of useful nanometric contacts. The distance between the electrodes has to be of the same size of the molecule being put in between. Nanogaps technology is a perfect fit to fulfill this requirement. In this work, nanogaps between gold electrodes have been used to develop optoelectronic devices based on photoactive proteins. Reaction Centers (RC) and Bacteriorhodopsin (BR) have been inserted in nanogaps by drop casting. Electrical characterizations of the obtained structures were performed. It has been demonstrated that these nanodevices working principle is based on charge separation and photovoltage response. The former is induced by the application of a proper voltage on the RC, while the latter comes from the activation of BR by light of appropriate wavelengths.
Collapse
Affiliation(s)
- Alice Dimonte
- Fondazione Istituto Italiano di Tecnologia, IIT@Polito Center, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sasaki N, Takemura A, Sato K. Alternating current cloud point extraction on a microchip: a comprehensive study. Electrophoresis 2012; 33:3159-65. [PMID: 23027025 DOI: 10.1002/elps.201200229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022]
Abstract
We present a comprehensive study of alternating current cloud point extraction (ACPE) on a microchip. ACPE is an extraction technique for preconcentration of membrane-associated biomolecules. To characterize and optimize ACPE, we carried out ACPE experiments under various experimental conditions including amplitude and frequency of applied voltages, flow velocity, and concentration of surfactant, analyte, and salt. We found that ACPE has an amplitude threshold (15 V(p-p)), above which the extraction was more efficient. The dependence of the extraction on frequency (>5 MHz) was insignificant. Efficient extraction was achieved when the velocity of the test solution was 0.10∼0.67 mm s⁻¹ and the concentration of surfactant was 0.10∼1.0%. In contrast, the extraction was independent of the concentration of analytes (0.20∼20 μmol dm⁻³). The technique was applicable to solutions with a salt concentration of 0.050∼0.15 mol dm⁻³ under temperature control of the devices. Solution temperature in ACPE was also studied. These results provide guidelines for use of the ACPE technique in microfluidic chemical and biochemical analyses.
Collapse
Affiliation(s)
- Naoki Sasaki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo, Tokyo, Japan.
| | | | | |
Collapse
|
45
|
|
46
|
Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proc Natl Acad Sci U S A 2012; 109:6429-34. [PMID: 22493224 DOI: 10.1073/pnas.1200549109] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1-5% anesthetic doses that reveal drug-induced changes in the lipid membrane. This result challenges the current anesthetic action model relying on the so far provided evidence that doses much higher than clinically relevant ones (2.4%) do not alter lipid bilayers' structure significantly. Furthermore, a streptavidin embedding OFET shows label-free biotin electronic detection at 10 parts-per-trillion concentration level, reaching state-of-the-art fluorescent assay performances. These examples show how the proposed bioelectronic platform, besides resulting in extremely performing biosensors, can open insights into biologically relevant phenomena involving membrane weak interfacial modifications.
Collapse
|
47
|
Baumann RP, Busch AP, Heidel B, Hampp N. A new class of purple membrane variants for the construction of highly oriented membrane assemblies on the basis of noncovalent interactions. J Phys Chem B 2012; 116:4134-40. [PMID: 22420766 DOI: 10.1021/jp210825x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Purple membranes (PM) from Halobacterium salinarum have been discussed for several technical applications. These ideas started just several years after its discovery. The biological function of bacteriorhodopsin (BR), the only protein in PM, is the light-driven proton translocation across the membrane thereby converting light energy into chemical energy. The astonishing physicochemical robustness of this molecular assembly and the ease of its isolation triggered ideas for technical uses. All basic molecular functions of BR, that is, photochromism, photoelectrism, and proton pumping, are key elements for technical applications like optical data processing and data storage, ultrafast light detection and processing, and direct utilization of sunlight in adenosine 5'-triphospate (ATP) generation or seawater desalination. In spite of the efforts of several research groups worldwide, which confirmed the proof-of-principle for all these potential applications, only the photochromism-based applications have reached a technical level. The physical reason for this is that no fixation or orientation of the PMs is required. The situation is quite different for photoelectrism and proton pumping where the macroscopic orientation of PMs is a prerequisite. For proton pumping, in addition, the formation of artificial membranes which prevent passive proton leakage is necessary. In this manuscript, we describe a new class of PM variants with oppositely charged membrane sides which enable an almost 100% orientation on a surface, which is the key element for photoelectric applications of BR. As an example, the mutated BR, BR-E234R7, was prepared and analyzed. A nearly 100% self-orientation on mica was obtained.
Collapse
Affiliation(s)
- Roelf-Peter Baumann
- Philipps University of Marburg, Department of Chemistry, Hans-Meerwein-Str., Bldg. H, D-35032, Germany
| | | | | | | |
Collapse
|
48
|
Patil AV, Premaraban T, Berthoumieu O, Watts A, Davis JJ. Engineered Bacteriorhodopsin: A Molecular Scale Potential Switch. Chemistry 2012; 18:5632-6. [DOI: 10.1002/chem.201103597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Indexed: 11/10/2022]
|
49
|
Orientation of a bacteriorhodopsin thin film deposited by dip coating technique and its chiral SHG as studied by SHG interference technique. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.01.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Berthoumieu O, Patil AV, Xi W, Aslimovska L, Davis JJ, Watts A. Molecular scale conductance photoswitching in engineered bacteriorhodopsin. NANO LETTERS 2012; 12:899-903. [PMID: 22148875 DOI: 10.1021/nl203965w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteriorhodopsin (BR) is a robust light-driven proton pump embedded in the purple membrane of the extremophilic archae Halobacterium salinarium . Its photoactivity remains in the dry state, making BR of significant interest for nanotechnological use. Here, in a novel configuration, BR was depleted from most of its endogenous lipids and covalently and asymmetrically anchored onto a gold electrode through a strategically located and highly responsive cysteine mutation; BR has no indigenous cysteines. Chemisorption on gold was characterized by surface plasmon resonance, reductive striping voltammetry, ellipsometry, and atomic force microscopy (AFM). For the first time, the conductance of isolated protein trimers, intimately probed by conducting AFM, was reproducibly and reversibly switched under wavelength-specific conditions (mean resistance of 39 ± 12 MΩ under illumination, 137 ± 18 MΩ in the dark), demonstrating a surface stability that is relevant to potential nanodevice applications.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|