1
|
Dai Q, Du Z, Jing L, Zhang R, Tang W. Enzyme-Responsive Modular Peptides Enhance Tumor Penetration of Quantum Dots via Charge Reversal Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6208-6220. [PMID: 38279946 DOI: 10.1021/acsami.3c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.
Collapse
Affiliation(s)
- Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Yang H, Wu Y, Ruan H, Guo F, Liang Y, Qin G, Liu X, Zhang Z, Yuan J, Fang X. Surface-Engineered Gold Nanoclusters for Stimulated Emission Depletion and Correlated Light and Electron Microscopy Imaging. Anal Chem 2022; 94:3056-3064. [PMID: 35142221 DOI: 10.1021/acs.analchem.1c03935] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulated emission depletion (STED) nanoscopy is an emerging super-resolution imaging platform for the study of the cellular structure. Developing suitable fluorescent probes of small size, good photostability, and easy functionalization is still in demand. Herein, we introduce a new type of surface-engineered gold nanoclusters (Au NCs) that are ultrasmall (1.7 nm) and ultrabright (QY = 60%) for STED bioimaging. A rigid shell formed by l-arginine (l-Arg) and 6-aza-2-thiothymine (ATT) on the Au NC surface enables not only its strong fluorescence in aqueous solution but also its easy chemical modification for specific biomolecule labeling. Au NCs show remarkable performance as STED nanoprobes, including high depletion efficiency, good photobleaching resistance, and low saturation intensity. Super-resolution imaging has been achieved with these Au NCs, and targeted nanoscopic imaging of cellular tubulin has been demonstrated. Moreover, the circular structure of lysosomes in live cells has been revealed. As a Au NC is also an ideal probe for electron microscopy, dual imaging of Aβ42 aggregates with the single labeling probe of Au NCs has been realized in correlative light and electron microscopy (CLEM). This work reports, for the first time, the application of Au NCs as a novel probe in STED and CLEM imaging. With their excellent properties, Au NCs show promising potential for nanoscale bioimaging.
Collapse
Affiliation(s)
- Hongwei Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefei Ruan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Guo
- Analysis and Testing Center, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Preparation of blue luminescence gold quantum dots using laser ablation in aromatic solvents. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
The Emission Mechanism of Gold Nanoclusters Capped with 11-Mercaptoundecanoic Acid, and the Detection of Methanol in Adulterated Wine Model. MATERIALS 2021; 14:ma14216342. [PMID: 34771871 PMCID: PMC8585185 DOI: 10.3390/ma14216342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
The absorption and emission mechanisms of gold nanoclusters (AuNCs) have yet to be understood. In this article, 11-Mercaptoundecanoic acid (MUA) capped AuNCs (AuNC@MUA) were synthesized using the chemical etching method. Compared with MUA, AuNC@MUA had three obvious absorption peaks at 280 nm, 360 nm, and 390 nm; its photoluminescence excitation (PLE) peak and photoluminescence (PL) peak were located at 285 nm and 600 nm, respectively. The AuNC@MUA was hardly emissive when 360 nm and 390 nm were chosen as excitation wavelengths. The extremely large stokes-shift (>300 nm), and the mismatch between the excitation peaks and absorption peaks of AuNC@MUA, make it a particularly suitable model for studying the emission mechanism. When the ligands were partially removed by a small amount of sodium hypochlorite (NaClO) solution, the absorption peak showed a remarkable rise at 288 nm and declines at 360 nm and 390 nm. These experimental results illustrated that the absorption peak at 288 nm was mainly from metal-to-metal charge transfer (MMCT), while the absorption peaks at 360 nm and 390 nm were mainly from ligand-to-metal charge transfer (LMCT). The PLE peak coincided with the former absorption peak, which implied that the emission of the AuNC@MUA was originally from MMCT. It was also interesting that the emission mechanism could be switched to LMCT from MMCT by decreasing the size of the nanoclusters using 16-mercaptohexadecanoic acid (MHA), which possesses a stronger etching ability. Moreover, due to the different PL intensities of AuNC@MUA in methanol, ethanol, and water, it has been successfully applied in detecting methanol in adulterated wine models (methanol-ethanol-water mixtures).
Collapse
|
5
|
|
6
|
Nonappa. Luminescent gold nanoclusters for bioimaging applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:533-546. [PMID: 32280577 PMCID: PMC7136552 DOI: 10.3762/bjnano.11.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
Luminescent nanomaterials have emerged as attractive candidates for sensing, catalysis and bioimaging applications in recent years. For practical use in bioimaging, nanomaterials with high photoluminescence, quantum yield, photostability and large Stokes shifts are needed. While offering high photoluminescence and quantum yield, semiconductor quantum dots suffer from toxicity and are susceptible to oxidation. In this context, atomically precise gold nanoclusters protected by thiol monolayers have emerged as a new class of luminescent nanomaterials. Low toxicity, bioavailability, photostability as well as tunable size, composition, and optoelectronic properties make them suitable for bioimaging and biosensing applications. In this review, an overview of the sensing of pathogens, and of in vitro and in vivo bioimaging using luminescent gold nanoclusters along with the limitations with selected examples are discussed.
Collapse
Affiliation(s)
- Nonappa
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
- Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Kemistintie 1, FI-02150, Espoo, Finland
| |
Collapse
|
7
|
Zhang S, Zhang X, Su Z. Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. J Mater Chem B 2020; 8:4176-4194. [DOI: 10.1039/c9tb02936b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To help those suffering from viral infections and cancers, scientists are exploring enhanced therapeutic methods via metal nanoclusters (MNCs).
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Xiaoyuan Zhang
- Faculty of Physics and Astronomy
- Friedrich-Schiller University Jena
- 07743 Jena
- Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|
8
|
Guan H, Zhang A, Li P, Xia L, Guo F. ESIPT Fluorescence Probe Based on Double-Switch Recognition Mechanism for Selective and Rapid Detection of Hydrogen Sulfide in Living Cells. ACS OMEGA 2019; 4:9113-9119. [PMID: 31459999 PMCID: PMC6648457 DOI: 10.1021/acsomega.9b00934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 05/11/2023]
Abstract
A novel fluorescence probe, HBTSeSe, was designed and synthesized for the detection of H2S with a double-switch mechanism of a broken diselenide bond followed by thiolysis of ether. Then, 2-(2'-hydroxyphenyl)benzothiazole (HBT) was released as fluorophore, which has large Stokes shift based on the excited state intramolecular proton transfer process. The probe responded selectively and rapidly to H2S, with the fluorescence increased by 47-fold immediately after the addition of H2S. HBTSeSe was able to detect H2S in the cytoplasm, specifically in cell imaging experiments. The results also showed that H2S was produced in the immune response of RAW264.7 cells activated by phorbol-12-myristate-13-acetate.
Collapse
Affiliation(s)
- Hongwei Guan
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Food and Environment, Dalian University of Technology, Panjin 124000, P. R. China
| | - Aixia Zhang
- Department
of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Peng Li
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences
(CAS), Dalian 116023, P. R. China
| | - Lixin Xia
- Department
of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Feng Guo
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Food and Environment, Dalian University of Technology, Panjin 124000, P. R. China
| |
Collapse
|
9
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
10
|
Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018; 47:3490-3529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathological changes in a diseased site are often accompanied by abnormal activities of various biomolecules in and around the involved cells. Identifying the location and expression levels of these biomolecules could enable early-stage diagnosis of the related disease, the design of an appropriate treatment strategy, and the accurate assessment of the treatment outcomes. Over the past two decades, a great diversity of peptide-based nanoprobes (PBNs) have been developed, aiming to improve the in vitro and in vivo performances of water-soluble molecular probes through engineering of their primary chemical structures as well as the physicochemical properties of their resultant assemblies. In this review, we introduce strategies and approaches adopted for the identification of functional peptides in the context of molecular imaging and disease diagnostics, and then focus our discussion on the design and construction of PBNs capable of navigating through physiological barriers for targeted delivery and improved specificity and sensitivity in recognizing target biomolecules. We highlight the biological and structural roles that low-molecular-weight peptides play in PBN design and provide our perspectives on the future development of PBNs for clinical translation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Niihori Y, Shima D, Yoshida K, Hamada K, Nair LV, Hossain S, Kurashige W, Negishi Y. High-performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates. NANOSCALE 2018; 10:1641-1649. [PMID: 29192295 DOI: 10.1039/c7nr07840d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we found two hydrophilic interaction liquid chromatography (HILIC) columns for high-performance liquid chromatography (HPLC) suitable for the high-resolution separation of hydrophilic metal clusters. The mass distributions of the product mixtures of hydrophilic metal clusters were evaluated via HPLC mass spectrometry (LC/MS) using these HILIC columns. Consequently, we observed multiple clusters that had not been previously reported for glutathionate (SG)-protected gold clusters (Aun(SG)m). Additionally, we demonstrated that Aun-xMx(SG)m alloy clusters (M = Ag, Cu, or Pd) in which part of the Au in the Aun(SG)m cluster is replaced by a heteroelement can be synthesized, similar to the case of hydrophobic alloy clusters. It is easy to evaluate the mass distributions of hydrophilic metal clusters using this method. Thus, remarkable progress in the synthesis techniques of hydrophilic metal clusters through the use of this method is anticipated, as is the situation for hydrophobic metal clusters.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li X, Kang P, Chen Z, Lal S, Zhang L, Gassensmith JJ, Qin Z. Rock the nucleus: significantly enhanced nuclear membrane permeability and gene transfection by plasmonic nanobubble induced nanomechanical transduction. Chem Commun (Camb) 2018; 54:2479-2482. [DOI: 10.1039/c7cc09613e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomechanical transduction increases permeability of the nuclear membrane and facilitates nuclear uptake of macromolecules that would otherwise not enter the nucleus.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
| | - Peiyuan Kang
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
| | - Zhuo Chen
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Sneha Lal
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Li Zhang
- Department of Biological Sciences
- University of Texas at Dallas
- Richardson
- USA
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
- Department of Bioengineering, University of Texas at Dallas
| | - Zhenpeng Qin
- Department of Mechanical Engineering
- University of Texas at Dallas
- Richardson
- USA
- Department of Bioengineering, University of Texas at Dallas
| |
Collapse
|
13
|
Wang Y, Hu L, Li L, Zhu JJ. Fluorescent Gold Nanoclusters: Promising Fluorescent Probes for Sensors and Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0015-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zheng Y, Lai L, Liu W, Jiang H, Wang X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interface Sci 2017; 242:1-16. [PMID: 28223074 DOI: 10.1016/j.cis.2017.02.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
Abstract
Fluorescent gold nanoclusters (AuNCs) are emerging as novel fluorescent materials and have attracted more and more attention in the field of biolabeling, biosensing, bioimaging and targeted cancer treatment because of their unusual physicochemical properties, such as long fluorescence lifetime, ultrasmall size, large Stokes shift, strong photoluminescence, as well as excellent biocompatibility and photostability. Recently, significant efforts have been committed to the preparation, functionalization and biomedical application studies of fluorescent AuNCs. In this review, we have summarized the strategies for preparation and surface functionalization of fluorescent AuNCs in the past several years, and highlighted recent advances in the biomedical applications of the relevant fluorescent AuNCs. Based on these observations, we also give a discussion on the current problems and future developments of the fluorescent AuNCs for biomedical applications.
Collapse
|
15
|
Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B 2017; 5:9055-9084. [DOI: 10.1039/c7tb02320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A brief history of metal quantum clusters, their synthesis methods, physical properties, and an updated overview of their applications is provided.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| |
Collapse
|
16
|
Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, de la Fuente JM, Mangoni ML. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH 2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 2017; 47:170-181. [PMID: 27693686 DOI: 10.1016/j.actbio.2016.09.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) hold promise as future therapeutics against multidrug resistant microorganisms. Recently, we have discovered that a derivative of the frog skin AMP esculentin-1a, Esc(1-21), is highly potent against both free living and biofilm forms of the bacterial pathogen Pseudomonas aeruginosa. However, bringing AMPs into clinics requires to overcome their low stability, high toxicity and inefficient delivery to the target site at high concentrations. Importantly, peptide conjugation to gold nanoparticles (AuNPs), which are among the most applied inorganic nanocarriers in biomedical sciences, represents a valuable strategy to solve these problems. Here we report that covalent conjugation of Esc(1-21) to soluble AuNPs [AuNPs@Esc(1-21)] via a poly(ethylene glycol) linker increased by ∼15-fold the activity of the free peptide against the motile and sessile forms of P. aeruginosa without being toxic to human keratinocytes. Furthermore, AuNPs@Esc(1-21) resulted to be significantly more resistant to proteolytic digestion and to disintegrate the bacterial membrane at very low concentration (5nM). Finally, we demonstrated for the first time the capability of peptide-coated AuNPs to display a wound healing activity on a keratinocytes monolayer. Overall, these findings suggest that our engineered AuNPs can serve as attractive novel biological-derived material for topical treatment of epithelial infections and healing of the injured tissue. STATEMENT OF SIGNIFICANCE Despite conjugation of AMPs to AuNPs represents a worthwhile solution to face some limitations for their development as new therapeutics, only a very limited number of studies is available on peptide-coated AuNPs. Importantly, this is the first report showing that a covalent binding of a linear AMP via a poly(ethylene glycol) linker to AuNPs highly enhances antipseudomonal activity, preserving the same mode of action of the free peptide, without being harmful. Furthermore, AuNPs@Esc(1-21) are expected to accelerate recovery of an injured skin layer. All together, these findings suggest our peptide-coated AuNPs as attractive novel nanoscale formulation to treat bacterial infections and to heal the injured tissue.
Collapse
|
17
|
Shim HS, Kim JM, Sohn SH, Han NS, Park SM, Kim J, Song JK. UV Luminescence of Dendrimer-encapsulated Gold Nanoclusters. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyeong Seop Shim
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - Jun Myung Kim
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - So Hyeong Sohn
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - Noh Soo Han
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - Seung Min Park
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - Joohoon Kim
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| | - Jae Kyu Song
- Department of Chemistry; Kyung Hee University; Seoul 130-701 Korea
| |
Collapse
|
18
|
Black DM, Bhattarai N, Bach SBH, Whetten RL. Selection and Identification of Molecular Gold Clusters at the Nano(gram) Scale: Reversed Phase HPLC-ESI-MS of a Mixture of Au-Peth MPCs. J Phys Chem Lett 2016; 7:3199-3205. [PMID: 27476322 DOI: 10.1021/acs.jpclett.6b01403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent advances in cluster synthesis make it possible to produce an enormous variety molecule-like MPCs of size, composition, shape, and surface-chemical combinations. In contrast to the significant growth in the synthetic capability to generate these materials, progress in establishing the physicochemical basis for their observed properties has remained limited. The main reason for this has been the lack of the analytical capability to generate and measure samples of suitably high (molecular) purity; such capability is also essential to support therapeutic and diagnostic MPC development. In order for MPC products to get to market, especially those products that are medical-field related, characterization is required to identify and quantify all components present in a material mixture. Here, we show results from analysis of several synthetic mixtures of gold MPCs by nonaqueous reversed-phase chromatography coupled with mass spectrometry detection. The additional or hidden components, revealed to be present in these mixtures, provide novel insights into their comparative stability and interactions.
Collapse
Affiliation(s)
- David M Black
- Department of Physics and Astronomy, University of Texas , San Antonio, Texas 78249, United States
| | - Nabraj Bhattarai
- Department of Physics and Astronomy, University of Texas , San Antonio, Texas 78249, United States
| | - Stephan B H Bach
- Department of Chemistry, University of Texas , San Antonio, Texas 78249, United States
| | - Robert L Whetten
- Department of Physics and Astronomy, University of Texas , San Antonio, Texas 78249, United States
| |
Collapse
|
19
|
|
20
|
Yuan Q, Wang Y, Zhao L, Liu R, Gao F, Gao L, Gao X. Peptide protected gold clusters: chemical synthesis and biomedical applications. NANOSCALE 2016; 8:12095-104. [PMID: 27271005 DOI: 10.1039/c6nr02750d] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Liu
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Peng H, Tang H, Jiang J. Recent progress in gold nanoparticle-based biosensing and cellular imaging. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5570-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Song XR, Goswami N, Yang HH, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016; 141:3126-40. [DOI: 10.1039/c6an00773b] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal nanoclusters (NCs) are emerging as a new class of functional nanomaterials in the area of biological sensing, labelling, imaging and therapy due to their unique physical and chemical properties, such as ultrasmall size, HOMO–LUMO transition, strong luminescence together with good photostability and biocompatibility.
Collapse
Affiliation(s)
- Xiao-Rong Song
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE
- State Key Laboratory of Photocatalysis on Energy and Environment
| | - Nirmal Goswami
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Huang-Hao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
23
|
Pandya A, Lad AN, Singh SP, Shanker R. DNA assembled metal nanoclusters: synthesis to novel applications. RSC Adv 2016. [DOI: 10.1039/c6ra24098d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we have discussed the emergence of promising environmental-benign DNA assembled fluorescent metal nanoclusters and their unique electronic structures, unusual physical and chemical properties.
Collapse
Affiliation(s)
- Alok Pandya
- Division of Biological & Life Sciences
- School of Arts & Sciences
- Ahmedabad University
- Ahmedabad
- India
| | - Amitkumar N. Lad
- Gujarat Forensic Sciences University
- Institute of Research and Development
- Gandhinagar
- India
| | | | - Rishi Shanker
- Division of Biological & Life Sciences
- School of Arts & Sciences
- Ahmedabad University
- Ahmedabad
- India
| |
Collapse
|
24
|
Affiliation(s)
- Xuan Yang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Bo Pang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Zhang X, Shastry S, Bradforth SE, Nadeau JL. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy. NANOSCALE 2015; 7:240-51. [PMID: 25407725 DOI: 10.1039/c4nr04707a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada.
| | | | | | | |
Collapse
|
26
|
Xu H, Zhu H, Sun M, Yu H, Li H, Ma F, Wang S. Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions. Analyst 2015; 140:1678-85. [DOI: 10.1039/c4an02181a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrite selectively reacts to red fluorescent gold nanoclusters supported on blue fluorescent graphene oxide sheet and leads to a ratiometric fluorescence color change.
Collapse
Affiliation(s)
- Hongda Xu
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
- Institute of Intelligent Machines
| | - Houjuan Zhu
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
- Institute of Intelligent Machines
| | - Mingtai Sun
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Huan Yu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Huihui Li
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
- Institute of Intelligent Machines
| | - Fang Ma
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
- Institute of Intelligent Machines
| | - Suhua Wang
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
- Institute of Intelligent Machines
| |
Collapse
|
27
|
Goswami N, Zheng K, Xie J. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules. NANOSCALE 2014; 6:13328-47. [PMID: 25266043 DOI: 10.1039/c4nr04561k] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.
Collapse
Affiliation(s)
- Nirmal Goswami
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
28
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
29
|
|
30
|
|
31
|
Chang HC, Chang YF, Fan NC, Ho JAA. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18824-31. [PMID: 25323388 DOI: 10.1021/am504546f] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper describes an eco-friendly, one-pot strategy for the synthesis of water-soluble, high-quantum-yield gold nanoclusters (AuNCs) stabilized with 11-mercaptoundecanoic acid (MUA) on their surfaces. The as-prepared ultrasmall MUA-AuNCs (1.9 nm) exhibited a quantum yield (QY) of 13%, higher than those of most previously described thiol-protected AuNCs. We applied these MUA-AuNCs as a versatile probe to develop a fluorescence "turn-off" assay for sensing Hg(2+) ions as well as a fluorescence "turn-on" assay for sensing biothiols. The former assay operated through aggregation-induced fluorescence quenching upon interaction of the MUA-AuNCs with Hg(2+) ions in a buffer containing 2,6-pyridinedicarboxylic acid (PDCA); this probe provided high sensitivity and remarkable selectivity over other selected metal ions with a limit of detection (LOD) for Hg(2+) ions of 450 pM and linearity from 2 to 50 nM. In the latter assay for biothiols [i.e., cysteine (Cys), homocysteine (Hcy), glutathione (GSH)], the fluorescence of the Hg(2+)-MUA-AuNCs complexes was turned on because the affinity of Hg(2+) ions toward the SH group of the biothiols was greater than that toward the COOH groups of the MUA units on the surface of the AuNCs. This assay provided good linearity for the tested biothiols, ranging from 10 to 100 nM for Cys, from 10 to 100 nM for Hcy, and from 5 to 75 nM for GSH, with LODs of 5.4, 4.2, and 2.1 nM, respectively. In addition, these environmentally and biologically friendly AuNC probes tested satisfactorily against interference from a range of amino acids.
Collapse
Affiliation(s)
- Heng-Chia Chang
- Department of Chemistry, National Tsing Hua University , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
32
|
Zhou C, Yang S, Liu J, Yu M, Zheng J. Luminescent gold nanoparticles: A new class of nanoprobes for biomedical imaging. Exp Biol Med (Maywood) 2013; 238:1199-209. [DOI: 10.1177/1535370213505825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our fundamental understanding of cell biology and early diagnosis of human diseases have been greatly benefited from the development of fluorescent probes. Over the past decade, luminescent gold nanoparticles (AuNPs) with diverse structural parameters including particle size, surface ligands, valence state and grain size have been synthesized and have begun to emerge as a new class of fluorescent probes for bioimaging because of their great biocompatibility, robust photophysical properties and tunable emissions from the visible range to the near infrared region. In this minireview, we summarize the recent progress in applications of different-sized luminescent AuNPs as imaging probes for both in vitro and in vivo levels.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shengyang Yang
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jinbin Liu
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mengxiao Yu
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
33
|
Ladj R, Bitar A, Eissa MM, Fessi H, Mugnier Y, Le Dantec R, Elaissari A. Polymer encapsulation of inorganic nanoparticles for biomedical applications. Int J Pharm 2013; 458:230-41. [PMID: 24036010 DOI: 10.1016/j.ijpharm.2013.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 01/01/2023]
Abstract
Hybrid inorganic colloidal particles have attracted a great attention in the last years, and they have been largely used in various applications and more particularly in biomedical nanotechnology. Recently, they are used as carriers for biomolecules, and exploited for use in microsystems, microfluidics and in lab-on-a chip based bionanotechnology. Various kinds of hybrid particles can be listed starting from classical inorganic nanoparticles such as silica, gold, silver, iron oxide and those exhibiting intrinsic properties such as semiconducting nanoparticles (e.g. quantum dots). As a general tendency, to be conveniently used in biomedical applications, the encapsulation of the inorganic nanoparticles in a polymer matrix is incontestably needed. Consequently, various chemistry-based encapsulation processes have been developed and showed promising results as compared to the encapsulation using preformed polymers.
Collapse
Affiliation(s)
- Rachid Ladj
- University of Lyon, F-69622, Lyon; University of Lyon-1, Villeurbanne, CNRS, UMR 5007, LAGEP, CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France; SYMME, Université de Savoie, BP 80439, 74944 Annecy Le Vieux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Palmal S, Jana NR. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:102-10. [PMID: 24027168 DOI: 10.1002/wnan.1245] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 11/10/2022]
Abstract
Development of unique bioimaging probes offering essential information's about bio environments are an important step forward in biomedical science. Nanotechnology offers variety of novel imaging nanoprobes having high-photo stability as compared to conventional molecular probes which often experience rapid photo bleaching problem. Although great advances have been made on the development of semiconductor nanocrystals-based fluorescent imaging probes, potential toxicity issue by heavy metal component limits their in vivo therapeutic and clinical application. Recent works show that fluorescent gold clusters (FGCs) can be a promising nontoxic alternative of semiconductor nanocrystals. FGCs derived imaging nanoprobes offer stable and tunable visible emission, small hydrodynamic size, high biocompatibility and have been exploited in variety in vitro and in vivo imaging applications. In this review, we will focus on the synthetic advances and bioimaging application potentials of FGCs. In particular, we will emphasize on functional FGCs that are bright and stable enough to be useful as bioimaging probes.
Collapse
Affiliation(s)
- Sharbari Palmal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata, India
| | | |
Collapse
|
35
|
Tan X, Jin R. Ultrasmall metal nanoclusters for bio‐related applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:569-81. [DOI: 10.1002/wnan.1237] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/09/2013] [Accepted: 06/19/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaohong Tan
- Department of Chemistry Carnegie Mellon University Pittsburgh PA USA
- Center for Nucleic Acids Science and Technology Carnegie Mellon University Pittsburgh PA USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
36
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. NANOSCALE 2013; 5:1537-43. [PMID: 23322237 DOI: 10.1039/c2nr33147k] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ∼700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.
Collapse
Affiliation(s)
- Linxiao Yang
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Chen H, Li B, Wang C, Zhang X, Cheng Z, Dai X, Zhu R, Gu Y. Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging. NANOTECHNOLOGY 2013; 24:055704. [PMID: 23307109 DOI: 10.1088/0957-4484/24/5/055704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A facile approach to synthesize gold nanoclusters (Au NCs) with bluish green fluorescence using histidine as both reductant and capping agent was reported. The UV-visible absorption and photoluminescence spectra measurement was performed to explore its optical properties under different circumstances (preparing condition, temperature, pH, storing time). Then, MPA, a NIR organic dye, was conjugated to Au NCs (Au-MPA) for in vivo fluorescence imaging application. Low cytotoxicity and high affinity to tumor of this nanoprobe was proved at the cellular level, and its bio-distribution in normal nude mice and MCF-7 tumor-bearing mice was also investigated. Consequently, the results demonstrated the promising potential of the green Au NCs conjugated with NIR dye as nanoprobes in bioimaging and related fields.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Z, Xu L, Li H, Kong J. Wavelength-tunable luminescent gold nanoparticles generated by cooperation ligand exchange and their potential application in cellular imaging. RSC Adv 2013. [DOI: 10.1039/c2ra21785f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Liu H, Yang G, Abdel-Halim E, Zhu JJ. Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta 2013; 104:135-9. [DOI: 10.1016/j.talanta.2012.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/28/2012] [Accepted: 11/08/2012] [Indexed: 12/01/2022]
|
41
|
Shang L, Nienhaus GU. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys Rev 2012; 4:313-322. [PMID: 28510207 DOI: 10.1007/s12551-012-0076-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/21/2012] [Indexed: 12/22/2022] Open
Abstract
Fluorescent probes play an important role in the development of fluorescence-based imaging techniques for life sciences research. Gold nanoclusters (AuNCs) are a novel type of fluorescent nanomaterials which have attracted great interest in recent years. Composed of only a few atoms, these ultrasmall AuNCs exhibit quantum confinement effects and molecule-like properties. Fluorescent AuNCs have an attractive set of features including ultrasmall size, good biocompatibility and photostability, and tunable emission in the red to near-infrared spectral region, which make them promising as fluorescent labels for biological imaging. Examples of their application include live cell labeling, cancer cell targeting, cellular apoptosis monitoring, and in vivo tumor imaging. Here, we present a brief overview of recent advances in utilizing these emissive ultrasmall AuNCs as optical probes for in vitro and in vivo fluorescence imaging.
Collapse
Affiliation(s)
- Li Shang
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede Strasse 1, 76131, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang Gaede Strasse 1, 76131, Karlsruhe, Germany. .,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA.
| |
Collapse
|
42
|
Annie Ho JA, Chang HC, Su WT. DOPA-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions. Anal Chem 2012; 84:3246-53. [DOI: 10.1021/ac203362g] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ja-an Annie Ho
- BioAnalytical and Nanobiomedicinal
Laboratory, Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt
Road, Taipei, 10617 Taiwan
| | - Heng-Chia Chang
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu
Road, Hsinchu, 30013 Taiwan
| | - Wen-Ta Su
- BioAnalytical and Nanobiomedicinal
Laboratory, Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt
Road, Taipei, 10617 Taiwan
| |
Collapse
|
43
|
Wang M, Mei Q, Zhang K, Zhang Z. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence. Analyst 2012; 137:1618-23. [DOI: 10.1039/c2an16302k] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Guo Y, Wang Z, Shao H, Jiang X. Stable fluorescent gold nanoparticles for detection of Cu2+with good sensitivity and selectivity. Analyst 2012; 137:301-4. [DOI: 10.1039/c1an15877e] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Shiang YC, Huang CC, Chen WY, Chen PC, Chang HT. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30563a] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Wang Y, Cui Y, Zhao Y, Liu R, Sun Z, Li W, Gao X. Bifunctional peptides that precisely biomineralize Au clusters and specifically stain cell nuclei. Chem Commun (Camb) 2012; 48:871-3. [DOI: 10.1039/c1cc15926g] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Zhang Z, Zhang P, Guo K, Liang G, Chen H, Liu B, Kong J. Facile synthesis of fluorescent Au@SiO2 nanocomposites for application in cellular imaging. Talanta 2011; 85:2695-9. [DOI: 10.1016/j.talanta.2011.06.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
|
48
|
Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2614-2620. [PMID: 21809441 DOI: 10.1002/smll.201100746] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/30/2011] [Indexed: 05/27/2023]
Abstract
A facile strategy to synthesize water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with the bidentate ligand dihydrolipoic acid (DHLA) is reported. The DHLA-capped Au NCs are characterized by UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The Au NCs possess many attractive features including ultrasmall size, bright near-infrared luminescence, high colloidal stability, and good biocompatibility, making them promising imaging agents for biomedical and cellular imaging applications. Moreover, their long fluorescence lifetime (>100 ns) makes them attractive as labels in fluorescence lifetime imaging (FLIM) applications. As an example, the internalization of Au NCs by live HeLa cells is visualized using the FLIM technique.
Collapse
Affiliation(s)
- Li Shang
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lan GY, Chen WY, Chang HT. Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Analyst 2011; 136:3623-8. [PMID: 21776493 DOI: 10.1039/c1an15258k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple strategy for the preparation of strongly fluorescent and stable DNA-Cu/Ag NCs from reduction of AgNO(3) and Cu(NO(3))(2) by NaBH(4) in the presence of DNA having a sequence 5'-CCCTTAATCCCC-3' has been demonstrated. Fluorescence, absorption, X-ray photoelectron spectroscopy (XPS), and electrospray ionization-mass spectrometry (ESI-MS) measurements have been applied to the characterization of the DNA-Cu/Ag NCs. The ESI-MS data reveal that each DNA-Cu/Ag NC contained 2 Ag and 1 Cu atoms. The interactions among DNA with the Ag and Cu atoms are further supported by the data of low-temperature fluorescence. In the presence of Cu(2+) ions, the reaction time is 1.5 h, which is much shorter than that (120 h) for the preparation of Ag-DNA NCs that are prepared in a mixture of AgNO(3), NaBH(4) and DNA without containing Cu(2+) ions. Relative to the DNA-Ag NCs, the DNA-Cu/Ag NCs have greater fluorescence (quantum yield 51.2% vs. 11.5%). The DNA-Cu/Ag NCs are highly sensitive and selective for the detection of single-stranded DNA binding protein (SSB), with a linear range 1-50 nM and a limit of detection 0.2 nM at a signal-to-ratio of 3.
Collapse
Affiliation(s)
- Guo-Yu Lan
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | |
Collapse
|
50
|
Lin S, Wu T, Jao Y, Liu C, Lin H, Lo L, Yang C. Unraveling the Photoluminescence Puzzle of PAMAM Dendrimers. Chemistry 2011; 17:7158-61. [DOI: 10.1002/chem.201100620] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Shu‐Yi Lin
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, 35053 Miaoli (Taiwan), Fax: (+886) 37‐586‐447
| | - Te‐Haw Wu
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, 35053 Miaoli (Taiwan), Fax: (+886) 37‐586‐447
| | - Yu‐Chen Jao
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, 35053 Miaoli (Taiwan), Fax: (+886) 37‐586‐447
| | - Ching‐Ping Liu
- Division of Medical Engineering Research, National Health Research Institutes (Taiwan)
| | - Hong‐Yi Lin
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, 35053 Miaoli (Taiwan), Fax: (+886) 37‐586‐447
| | - Leu‐Wei Lo
- Division of Medical Engineering Research, National Health Research Institutes (Taiwan)
| | - Chung‐Shi Yang
- Center for Nanomedicine Research, National Health Research Institutes, 35 Keyan Road Zhunan, 35053 Miaoli (Taiwan), Fax: (+886) 37‐586‐447
| |
Collapse
|