1
|
Pach A, Szot A, Fitzner K, Luty-Błocho M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. MICROMACHINES 2024; 15:1119. [PMID: 39337779 PMCID: PMC11434062 DOI: 10.3390/mi15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The process of noble metal nanoparticle synthesis is complex and consists of at least two steps: slow nucleation and fast autocatalytic growth. The kinetics of these two processes depends on the reductant "power" and the addition of stabilizers, as well as other factors (e.g., temperature, pH, ionic strength). Knowing these parameters, it is possible to synthesize materials with appropriate physicochemical properties, which can be simply adjusted by the type of the used metal, particle morphology and surface property. This, in turn, affects the possibility of their applications in various areas of life, including medicine, catalysis, engineering, fuel cells, etc. However, in some cases, the standard route, i.e., the chemical reduction of a metal precursor carried out in the batch reactor, is not sufficient due to problems with temperature control, properties of reagents, unstable or dangerous intermediates and products, etc. Therefore, in this review, we focused on an alternative approach to their chemical synthesis provided by microreactor systems. The use of microreactors for the synthesis of noble metal nanomaterials (e.g., Ag, Au, Pt, Pd), obtained by chemical reduction, is analyzed, taking into account investigations carried out in recent years. A particular emphasis is placed on the processes in which the use of microreactors removed the limitations associated with synthesis in a batch reactor. Moreover, the opportunities and challenges related to the synthesis of noble nanomaterials in the microreactor system are underlined. This review discusses the advantages as well as the problems of nanoparticle synthesis in microreactors.
Collapse
Affiliation(s)
| | | | | | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; (A.P.); (A.S.); (K.F.)
| |
Collapse
|
2
|
Groeneveld I, Jaspars A, Akca IB, Somsen GW, Ariese F, van Bommel MR. Use of liquid-core waveguides as photochemical reactors and/or for chemical analysis – An overview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
3
|
Feng H, Zhang Y, Liu J, Liu D. Towards Heterogeneous Catalysis: A Review on Recent Advances of Depositing Nanocatalysts in Continuous-Flow Microreactors. Molecules 2022; 27:8052. [PMID: 36432155 PMCID: PMC9696314 DOI: 10.3390/molecules27228052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
As a promising technology, microreactors have been regarded as a potential candidate for heterogeneous catalytic reactions as they inherently allow the superior advantages of precise flow control, efficient reactant transfer, flexible operation, etc. However, the wide market penetration of microreactors is still facing severe challenges. One of the most important reasons is the preparation of a high-performance catalytic layer in the microreactor because it can directly influence the catalytic activity and stability the reactor and thus the deployment the microreactor technology. Hence, significant progress in depositing nanocatalysts in microreactors has been made in the past decades. Herein, the methods, principles, recent advances, and challenges in the preparation of the catalyst layer in microreactors were presented. A general description of the physicochemical processes of heterogeneous catalytic reactions in microreactors were first introduced. Then, recent advances in catalyst layer preparation in microreactors were systematically summarized. Particular attention was focused on the most common sol-gel method and its latest developments. Some new strategies proposed recently, including bio-inspired electroless deposition and layer-by-layer self-assembly, were also comprehensively discussed. The remaining challenges and future directions of preparing the catalytic layer in microreactors with high performance and low cost were highlighted.
Collapse
Affiliation(s)
- Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jian Liu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Continuous flow nitration of 3-[2-chloro-4-(trifluoromethyl) phenoxy] benzoic acid and its chemical kinetics within droplet-based microreactors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Kumar A, Hasija V, Sudhaik A, Raizada P, Nguyen VH, Le QV, Singh P, Nguyen DC, Thakur S, Hussain CM. The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. ENVIRONMENTAL RESEARCH 2022; 209:112814. [PMID: 35090874 PMCID: PMC8789448 DOI: 10.1016/j.envres.2022.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
The prevalence of global health implications from the COVID-19 pandemic necessitates the innovation and large-scale application of disinfection technologies for contaminated surfaces, air, and wastewater as the significant transmission media of disease. To date, primarily recommended disinfection practices are energy exhausting, chemical driven, and cause severe impact on the environment. The research on advanced oxidation processes has been recognized as promising strategies for disinfection purposes. In particular, semiconductor-based photocatalysis is an effective renewable solar-driven technology that relies on the reactive oxidative species, mainly hydroxyl (•OH) and superoxide (•O2-) radicals, for rupturing the capsid shell of the virus and loss of pathogenicity. However, the limited understanding of critical aspects such as viral photo-inactivation mechanism, rapid virus mutagenicity, and virus viability for a prolonged time restricts the large-scale application of photocatalytic disinfection technology. In this work, fundamentals of photocatalysis disinfection phenomena are addressed with a reviewed remark on the reported literature of semiconductor photocatalysts efficacies against SARS-CoV-2. Furthermore, to validate the photocatalysis process on an industrial scale, we provide updated data on available commercial modalities for an effective virus photo-inactivation process. An elaborative discussion on the long-term challenges and sustainable solutions is suggested to fill in the existing knowledge gaps. We anticipate this review will ignite interest among researchers to pave the way to the photocatalysis process for disinfecting virus-contaminated environments and surfaces for current and future pandemics.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - D C Nguyen
- Department of Chemistry, The University of Danang, University of Science and Education, Danang, 550000, Viet Nam
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA.
| |
Collapse
|
6
|
Wang L, Huang Z, Yang X, Rogée L, Huang X, Zhang X, Lau SP. Review on optofluidic microreactors for photocatalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Collapse
Affiliation(s)
- Lei Wang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Ziyu Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaohui Yang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Lukas Rogée
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Xiaowen Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xuming Zhang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Shu Ping Lau
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| |
Collapse
|
7
|
Sierra S, Gomez MV, Jiménez AI, Pop A, Silvestru C, Marín ML, Boscá F, Sastre G, Gómez-Bengoa E, Urriolabeitia EP. Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4 H)-oxazolones. J Org Chem 2022; 87:3529-3545. [PMID: 35143202 PMCID: PMC8902759 DOI: 10.1021/acs.joc.1c03092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
The irradiation of
(Z)-2-phenyl-4-aryliden-5(4H)-oxazolones 1 in deoxygenated CH2Cl2 at 25 °C
with blue light (465 nm) in
the presence of [Ru(bpy)3](BF4)2 (5%
mole ratio) as a triplet photocatalyst promotes
the [2+2] photocycloaddition of the C=C bonds of the 4-arylidene
moiety, thus allowing the completely regio- and stereoselective formation
of cyclobutane-bis(oxazolone)s 2 as single stereoisomers.
Cyclobutanes 2 have been unambiguously characterized
as the μ-isomers and contain two E-oxazolones
coupled in an anti-head-to-head form. The use of
continuous-flow techniques in microreactors allows the synthesis of
cyclobutanes 2 in only 60 min, compared with the 24–48
h required in batch mode. Ring opening of the oxazolone heterocycle
in 2 with a base affords the corresponding 1,2-diaminotruxinic
bis-amino esters 3, which are also obtained selectively
as μ-isomers. The ruthenium complex behaves as a triplet photocatalyst,
generating the reactive excited state of the oxazolone via an energy-transfer
process. This reactive excited state has been characterized as a triplet
diradical 3(E/Z)-1* by laser flash photolysis (transient absorption spectroscopy).
This technique also shows that this excited state is the same when
starting from either (Z)- or (E)-oxazolones.
Density functional theory calculations show that the first step of
the [2+2] cycloaddition between 3(E/Z)-1* and (Z)-1 is formation of
the C(H)–C(H) bond and that (Z) to (E) isomerization takes place at the 1,4-diradical thus formed.
Collapse
Affiliation(s)
- Sonia Sierra
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Ana I Jiménez
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Alexandra Pop
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Cristian Silvestru
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Maria Luisa Marín
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Francisco Boscá
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Germán Sastre
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco, UPV-EHU, Apdo. 1072, CP-20080 Donostia-San Sebastián, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Improved efficiency of photo-induced synthetic reactions enabled by advanced photo flow technologies. Photochem Photobiol Sci 2022; 21:761-775. [DOI: 10.1007/s43630-021-00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
9
|
de Oliveira GX, Lira JODB, Riella HG, Soares C, Padoin N. Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.788653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From the pharmaceutical industry’s point of view, photoredox catalysis has emerged as a powerful tool in the field of the synthesis of added-value compounds. With this method, it is possible to excite the catalyst by the action of light, allowing electron transfer processes to occur and, consequently, oxidation and reduction reactions. Thus, in association with photoredox catalysis, microreactor technology and continuous flow chemistry also play an important role in the development of organic synthesis processes, as this technology offers high yields, high selectivity and reduced side reactions. However, there is a lack of a more detailed understanding of the photoredox catalysis process, and computational tools based on computational fluid dynamics (CFD) can be used to deal with this and boost to reach higher levels of accuracy to continue innovating in this area. In this review, a comprehensive overview of the fundamentals of photoredox catalysis is provided, including the application of this technology for the synthesis of added-value chemicals in microreactors. Moreover, the advantages of the continuous flow system in comparison with batch systems are pointed out. It was also demonstrated how modeling and simulation using computational fluid dynamics (CFD) can be critical for the design and optimization of microreactors applied to photoredox catalysis, so as to better understand the reagent interactions and the influence of light in the reaction medium. Finally, a discussion about the future prospects of photoredox reactions considering the complexity of the process is presented.
Collapse
|
10
|
Wu L, Wan Q, Nie W, Hao Y, Feng G, Chen M, Chen S. High-Throughput Nano-Electrostatic-Spray Ionization/Photoreaction Mass Spectrometric Platform for the Discovery of Visible-Light-Activated Photocatalytic Reactions in the Picomole Scale. Anal Chem 2021; 93:14560-14567. [PMID: 34652146 DOI: 10.1021/acs.analchem.1c03639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-activated photocatalysis has emerged as a green and powerful tool for the synthesis of various organic compounds under mild conditions. However, the expeditious discovery of novel photocatalysts and synthetic pathways remains challenging. Here, we developed a bifunctional platform that enabled the high-throughput discovery and optimization of new photochemical reactions down to the picomole scale. This platform was designed based on a contactless nano-electrostatic-spray ionization technique, which allows synchronized photoreactions and high-throughput in situ mass spectrometric analysis with a near-100% duty cycle. Using this platform, we realized the rapid screening of photocatalytic reactions in ambient conditions with a high speed of less than 1.5 min/reaction using picomolar materials. The versatility was validated by multiple visible-light-induced photocatalytic reactions, especially the discovery of aerobic C-H thiolation with low-cost organic photocatalysts without any other additives. This study provided a new paradigm for the integration of ambient ionization techniques and new insights into photocatalytic reaction screening, which will have broad applications in the development of new visible-light-promoted reactions.
Collapse
Affiliation(s)
- Liang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjing Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Yanhong Hao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guifang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Moran Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Hyodo M, Iwano H, Kasakado T, Fukuyama T, Ryu I. Using High-Power UV-LED to Accelerate a Decatungstate-Anion-Catalyzed Reaction: A Model Study for the Quick Oxidation of Benzyl Alcohol to Benzoic Acid Using Molecular Oxygen. MICROMACHINES 2021; 12:mi12111307. [PMID: 34832719 PMCID: PMC8623277 DOI: 10.3390/mi12111307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
High-power UV-LED irradiation (365 nm) effectively accelerated the decatungstate-anion-catalyzed oxidation of benzyl alcohol 1 to benzoic acid 3 via benzaldehyde 2. As the power of the UV-LED light increased, both the selectivity and yield of benzoic acid also increased. The reaction was finished within 1 h to give 3 in a 93% yield using 2 mol% of decatungstate anion catalyst. The combination of a flow photoreactor and high-power irradiation accelerated the oxidation reaction to an interval of only a few minutes.
Collapse
Affiliation(s)
- Mamoru Hyodo
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
- Correspondence: (M.H.); (I.R.)
| | - Hitomi Iwano
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
| | - Takayoshi Kasakado
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan;
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
- Correspondence: (M.H.); (I.R.)
| |
Collapse
|
12
|
Radjagobalou R, Freitas VDDS, Blanco JF, Gros F, Dauchet J, Cornet JF, Loubiere K. A revised 1D equivalent model for the determination of incident photon flux density in a continuous-flow LED-driven spiral-shaped microreactor using the actinometry method with Reinecke’s salt. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Albini A. Norrish’ type I and II reactions and their role in the building of photochemical science. Photochem Photobiol Sci 2021; 20:161-181. [DOI: 10.1007/s43630-020-00003-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
|
14
|
Dutta A, Patra SK, Khatua S, Nongkhlaw R. Visible-light-mediated synthesis of 3,4,5-trisubstituted furan-2-one derivatives via a bifunctional organo photocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj03238k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This protocol demonstrates sustainable synthesis of furan-2-one derivatives using organo photocatalyst under visible-light irradiation and DFT studies of the compound.
Collapse
Affiliation(s)
- Arup Dutta
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry, Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| |
Collapse
|
15
|
Shahbazali E, Billaud EMF, Fard AS, Meuldijk J, Bormans G, Noel T, Hessel V. Photo isomerization of cis-cyclooctene to trans-cyclooctene: Integration of a micro-flow reactor and separation by specific adsorption. AIChE J 2021; 67:e17067. [PMID: 33380744 PMCID: PMC7757390 DOI: 10.1002/aic.17067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Liquid-phase adsorption has hardly been established in micro-flow, although this constitutes an industrially vital method for product separation. A micro-flow UV-photo isomerization process converts cis-cyclooctene partly into trans-cyclooctene, leaving an isomeric mixture. Trans-cyclooctene adsorption and thus separation was achieved in a fixed-bed micro-flow reactor, packed with AgNO3/SiO2 powder, while the cis-isomer stays in the flow. The closed-loop recycling-flow has been presented as systemic approach to enrich the trans-cyclooctene from its cis-isomer. In-flow adsorption in recycling-mode has hardly been reported so that a full theoretical study has been conducted. This insight is used to evaluate three process design options to reach an optimum yield of trans-cyclooctene. These differ firstly in the variation of the individual residence times in the reactor and separator, the additional process option of refreshing the adsorption column under use, and the periodicity of the recycle flow.
Collapse
Affiliation(s)
- Elnaz Shahbazali
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Emilie M. F. Billaud
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Arash Sarhangi Fard
- Materials Technology InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jan Meuldijk
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Timothy Noel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
16
|
Thomson CG, Lee AL, Vilela F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J Org Chem 2020; 16:1495-1549. [PMID: 32647551 PMCID: PMC7323633 DOI: 10.3762/bjoc.16.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
The synergy between photocatalysis and continuous flow chemical reactors has shifted the paradigms of photochemistry, opening new avenues of research with safer and scalable processes that can be readily implemented in academia and industry. Current state-of-the-art photocatalysts are homogeneous transition metal complexes that have favourable photophysical properties, wide electrochemical redox potentials, and photostability. However, these photocatalysts present serious drawbacks, such as toxicity, limited availability, and the overall cost of rare transition metal elements. This reduces their long-term viability, especially at an industrial scale. Heterogeneous photocatalysts (HPCats) are an attractive alternative, as the requirement for the separation and purification is largely removed, but typically at the cost of efficiency. Flow chemical reactors can, to a large extent, mitigate the loss in efficiency through reactor designs that enhance mass transport and irradiation. Herein, we review some important developments of heterogeneous photocatalytic materials and their application in flow reactors for sustainable organic synthesis. Further, the application of continuous flow heterogeneous photocatalysis in environmental remediation is briefly discussed to present some interesting reactor designs that could be implemented to enhance organic synthesis.
Collapse
Affiliation(s)
- Christopher G Thomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Filipe Vilela
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| |
Collapse
|
17
|
Chen Y, Zhang J, Tang Z, Sun Y. Visible light catalyzed anti-markovnikov hydration of styrene to 2-phenylethanol: From batch to continuous. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Bajada MA, Vijeta A, Savateev A, Zhang G, Howe D, Reisner E. Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8176-8182. [PMID: 31962048 DOI: 10.1021/acsami.9b19718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A triphasic photocatalytic reactor employing a mesoporous carbon nitride photocatalyst and aerobic O2 was assembled to operate under continuous flow conditions. This reactor design allows for facile downstream processing and reusability in multiple flow cycles. The selective aerobic oxidation of alcohols and amines was chosen to demonstrate the applicability and performance advantage of this flow approach compared to that of conventional batch photochemistry. This precious-metal-free photocatalytic flow system operates under benign reaction conditions (visible light, low pressure, and mild temperature) and will stimulate the exploration of other oxidative reactions in a sustainable, scalable, and affordable manner.
Collapse
Affiliation(s)
- Mark A Bajada
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Arjun Vijeta
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Aleksandr Savateev
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Guigang Zhang
- Department of Colloid Chemistry , Max Planck Institute of Colloids and Interfaces , Potsdam 14476 , Germany
| | - Duncan Howe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Erwin Reisner
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
19
|
Lefebvre Q, Porta R, Millet A, Jia J, Rueping M. One Amine-3 Tasks: Reductive Coupling of Imines with Olefins in Batch and Flow. Chemistry 2020; 26:1363-1367. [PMID: 31777987 PMCID: PMC7027816 DOI: 10.1002/chem.201904483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/05/2022]
Abstract
Owing to their wide range of biological properties, γ-aminobutyric acid derivatives (GABA) have been extensively studied and found noteworthy industrial applications. However, atom-economical and efficient processes for their production are scarce and would greatly benefit from further investigations. Herein, we demonstrate that an iridium-based photocatalyst promotes the direct reductive cross-coupling of imines with olefins upon irradiation with visible light to give GABA derivatives in good yields and selectivities. We also stress the enabling triple role of tributylamine additive in this process, discuss the advantages of strategies based on proton-coupled electron transfer (PCET) and demonstrate the scale-up of this reaction in continuous flow.
Collapse
Affiliation(s)
- Quentin Lefebvre
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Riccardo Porta
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi 1920133MilanoItaly
| | - Anthony Millet
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Jiaqi Jia
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Magnus Rueping
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
- King Abdullah University of Science and Technology (KAUST)KAUST Catalysis Center (KCC)Thuwal23955-6900Saudi Arabia
| |
Collapse
|
20
|
Zhan X, Yan C, Zhang Y, Rinke G, Rabsch G, Klumpp M, Schäfer AI, Dittmeyer R. Investigation of the reaction kinetics of photocatalytic pollutant degradation under defined conditions with inkjet-printed TiO2 films – from batch to a novel continuous-flow microreactor. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00238k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reaction kinetics was studied for photocatalytic pollutant degradation with inkjet-printed TiO2 in a batch and a continuous-flow microreactor.
Collapse
Affiliation(s)
- Xiang Zhan
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Chenhui Yan
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Yilin Zhang
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Günter Rinke
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Georg Rabsch
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Michael Klumpp
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| | - Andrea Iris Schäfer
- Institute for Advanced Membrane Technology (IAMT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| |
Collapse
|
21
|
Kaur N, Devi M, Verma Y, Grewal P, Bhardwaj P, Ahlawat N, Jangid NK. Photochemical Synthesis of Fused Five-membered O-heterocycles. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190904145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some transformations are not possible with ground-state reactions even in the presence of a
catalyst, hence they are performed under photochemical conditions. Electron transfer occurs even with
the photochemical excitement of one molecule where redox reaction is not possible at the ground
state. The side products are obtained from ground-state reactions. For C-C bond formation during photochemical
reactions, there is no requirement of any chemical activation of the substrates. Therefore,
these reactions are presented here for the synthesis of fused five-membered O-heterocycles in the context
of sustainable processes from 1964 to 2019.
Collapse
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | - Meenu Devi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | - Neha Ahlawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022 (Rajasthan), India
| | | |
Collapse
|
22
|
Continuous Flow Photochemical and Thermal Multi-Step Synthesis of Bioactive 3-Arylmethylene-2,3-Dihydro-1 H-Isoindolin-1-Ones. Molecules 2019; 24:molecules24244527. [PMID: 31835663 PMCID: PMC6943768 DOI: 10.3390/molecules24244527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
An effective multi-step continuous flow approach towards N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones, including the local anesthetic compound AL-12, has been realized. Compared to the traditional decoupled batch processes, the combined photochemical–thermal–thermal flow setup rapidly provides the desired target compounds in superior yields and significantly shorter reaction times.
Collapse
|
23
|
Jayaraj S, Badu-Tawiah AK. N-Substituted Auxiliaries for Aerobic Dehydrogenation of Tetrahydro-isoquinoline: A Theory-Guided Photo-Catalytic Design. Sci Rep 2019; 9:11280. [PMID: 31375731 PMCID: PMC6677888 DOI: 10.1038/s41598-019-47735-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Visible-light mediated aerobic dehydrogenation of N-heterocyclic compounds is a reaction with enormous potential for application. Herein, we report the first complete aerobic dehydrogenation pathway to large-scale production of isoquinolines. The discovery of this visible light photoredox reaction was enabled through the combination of mathematical simulations and real-time quantitative mass spectrometry screening. The theoretical calculations showed that hyper-conjugation, the main underlying factor hindering the aerobic oxidation of tetrahydroisoquinolines, is relieved both by π- and σ-donating substituents. This mechanistic insight provided a novel photocatalytic route based on N-substituted auxiliaries that facilitated the conversion of tetrahydroisoquinolines into the corresponding isoquinolines in just three simple steps (yield 71.7% in bulk-solution phase), using unmodified Ru(bpy)3Cl2 photocatalyst, sun energy, atmospheric O2, and at ambient temperature.
Collapse
Affiliation(s)
- Savithra Jayaraj
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Top Curr Chem (Cham) 2018; 376:44. [DOI: 10.1007/s41061-018-0224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|
25
|
Özbakır Y, Jonáš A, Kiraz A, Erkey C. A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180802. [PMID: 30564391 PMCID: PMC6281902 DOI: 10.1098/rsos.180802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
In this study, we developed a new type of microphotoreactor based on an optofluidic waveguide with aqueous liquid core fabricated inside a nanoporous aerogel. To this end, we synthesized a hydrophobic silica aerogel monolith with a density of 0.22 g cm-3 and a low refractive index of 1.06 that-from the optical point of view-effectively behaves like solid air. Subsequently, we drilled an L-shaped channel within the monolith that confined both the aqueous core liquid and the guided light, the latter property arising due to total internal reflection of light from the liquid-aerogel interface. We characterized the efficiency of light guiding in liquid-filled channel and-using the light delivered by waveguiding-we carried out photochemical reactions in the channel filled with aqueous solutions of methylene blue dye. We demonstrated that methylene blue could be efficiently degraded in the optofluidic photoreactor, with conversion increasing with increasing power of the incident light. The presented optofluidic microphotoreactor represents a versatile platform employing light guiding concept of conventional optical fibres for performing photochemical reactions.
Collapse
Affiliation(s)
- Yaprak Özbakır
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| | - Alexandr Jonáš
- The Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alper Kiraz
- Department of Physics, Koc University, 34450 Sarıyer, Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| | - Can Erkey
- Department of Chemical and Biological Engineering, Koc University, 34450 Sarıyer, Istanbul, Turkey
| |
Collapse
|
26
|
Janssens P, Debrouwer W, Van Aken K, Huvaere K. Thiol−Ene Coupling in a Continuous Photo‐Flow Regime. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
da Silva Júnior PE, Amin HIM, Nauth AM, da Silva Emery F, Protti S, Opatz T. Flow Photochemistry of Azosulfones: Application of “Sunflow” Reactors. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paulo Eliandro da Silva Júnior
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, Department of Pharmaceutical Sciences University of Sao Paulo Ribeirão Preto 14040-903 Brazil
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Hawraz I. M. Amin
- Department of Chemistry, PhotoGreen Lab University of Pavia Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department, College of Science Salahaddin University-Erbil Iraq
| | - Alexander M. Nauth
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Flavio da Silva Emery
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, Department of Pharmaceutical Sciences University of Sao Paulo Ribeirão Preto 14040-903 Brazil
| | - Stefano Protti
- Department of Chemistry, PhotoGreen Lab University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
28
|
Escribà‐Gelonch M, Halpin A, Noël T, Hessel V. Laser‐Mediated Photo‐High‐p,T Intensification of Vitamin D
3
Synthesis in Continuous Flow. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marc Escribà‐Gelonch
- Micro Flow Chemistry and Process Technology Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven Netherlands
| | - Alexei Halpin
- Photonics for Energy DIFFER – Dutch Institute for Fundamental Energy Research De Zaale 20 5600 HH Eindhoven Netherlands
| | - Timothy Noël
- Micro Flow Chemistry and Process Technology Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven Netherlands
| | - Volker Hessel
- Micro Flow Chemistry and Process Technology Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven Netherlands
| |
Collapse
|
29
|
Bonfield HE, Williams JD, Ooi WX, Leach SG, Kerr WJ, Edwards LJ. A Detailed Study of Irradiation Requirements Towards an Efficient Photochemical Wohl‐Ziegler Procedure in Flow. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Holly E. Bonfield
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - Jason D. Williams
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow, Scotland G1 1XL UK
| | - Wei Xiang Ooi
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - Stuart G. Leach
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - William J. Kerr
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow, Scotland G1 1XL UK
| | - Lee J. Edwards
- API Chemistry GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| |
Collapse
|
30
|
Shvydkiv O, Jähnisch K, Steinfeldt N, Yavorskyy A, Oelgemöller M. Visible-light photooxygenation of α-terpinene in a falling film microreactor. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Wang X, Liu M, Yang Z. Coupled model based on radiation transfer and reaction kinetics of gas–liquid–solid photocatalytic mini-fluidized bed. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Ponce S, Munoz M, Cubillas AM, Euser TG, Zhang G, Russell PSJ, Wasserscheid P, Etzold BJM. Stable Immobilization of Size‐Controlled Bimetallic Nanoparticles in Photonic Crystal Fiber Microreactor. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201700131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sebastian Ponce
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Macarena Munoz
- University of Erlangen-NurembergFaculty of EngineeringDepartment of Chemical and Biological Engineering Egerlandstraße 3 91058 Erlangen Germany
| | - Ana M. Cubillas
- Max-Planck Institute for the Science of Light Guenther-Scharowsky-Straße 1 91058 Erlangen Germany
| | - Tijmen G. Euser
- Max-Planck Institute for the Science of Light Guenther-Scharowsky-Straße 1 91058 Erlangen Germany
- University of CambridgeNanoPhotonics CentreCavendish Laboratory J. J. Thomson Avenue CB3 0HE Cambridge UK
| | - Gui‐Rong Zhang
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Philip St. J. Russell
- Max-Planck Institute for the Science of Light Guenther-Scharowsky-Straße 1 91058 Erlangen Germany
| | - Peter Wasserscheid
- University of Erlangen-NurembergFaculty of EngineeringDepartment of Chemical and Biological Engineering Egerlandstraße 3 91058 Erlangen Germany
| | - Bastian J. M. Etzold
- Technische Universität DarmstadtErnst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
33
|
Gomez MV, Juan A, Jiménez-Márquez F, de la Hoz A, Velders AH. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring. Anal Chem 2018; 90:1542-1546. [PMID: 29280614 DOI: 10.1021/acs.analchem.7b04114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet toward the 25 nL detection volume and placed right above the microfluidic channel, irradiating the transparent back of the NMR chip. The setup presented here overcomes the limitations of conventional NMR systems for in situ UV-vis illumination, with the microchannel permitting efficient light penetration even in highly concentrated solutions, requiring lower-power light intensities, and enabling high photon flux. The efficacy of the setup is illustrated with two model reactions activated at different wavelengths.
Collapse
Affiliation(s)
- M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto Juan
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Francisco Jiménez-Márquez
- Escuela Técnica Superior de Ingenieros (ETSI) Industriales, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University , P.O. Box 8038, 6700 EK Wageningen, The Netherlands
| |
Collapse
|
34
|
Huang X, Wang J, Li T, Wang J, Xu M, Yu W, El Abed A, Zhang X. Review on optofluidic microreactors for artificial photosynthesis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:30-41. [PMID: 29379698 PMCID: PMC5769083 DOI: 10.3762/bjnano.9.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/06/2017] [Indexed: 05/23/2023]
Abstract
Artificial photosynthesis (APS) mimics natural photosynthesis (NPS) to store solar energy in chemical compounds for applications such as water splitting, CO2 fixation and coenzyme regeneration. NPS is naturally an optofluidic system since the cells (typical size 10 to 100 µm) of green plants, algae, and cyanobacteria enable light capture, biochemical and enzymatic reactions and the related material transport in a microscale, aqueous environment. The long history of evolution has equipped NPS with the remarkable merits of a large surface-area-to-volume ratio, fast small molecule diffusion and precise control of mass transfer. APS is expected to share many of the same advantages of NPS and could even provide more functionality if optofluidic technology is introduced. Recently, many studies have reported on optofluidic APS systems, but there is still a lack of an in-depth review. This article will start with a brief introduction of the physical mechanisms and will then review recent progresses in water splitting, CO2 fixation and coenzyme regeneration in optofluidic APS systems, followed by discussions on pending problems for real applications.
Collapse
Affiliation(s)
- Xiaowen Huang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianchun Wang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Tenghao Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianmei Wang
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Min Xu
- Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China
| | - Weixing Yu
- Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 710119, China
| | - Abdel El Abed
- Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure de Cachan, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan, France
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
35
|
Mumtaz S, Robertson MJ, Oelgemöller M. Recent Advances in Photodecarboxylations Involving Phthalimides. Aust J Chem 2018. [DOI: 10.1071/ch18220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Owing to their favourable photophysical and electrochemical properties, phthalimides undergo a variety of highly efficient photodecarboxylation reactions. These transformations have been applied to the synthesis of macrocyclic compounds as well as bioactive addition adducts. N-Acetoxyphthalimides are versatile precursors to imidyl and alkyl radicals through photodecarboxylation and have subsequently been used for a variety of coupling reactions. The generally mild reaction conditions make these reactions attractive for green chemical applications. The process protocols were successfully transferred to novel photoreactor devices, among these falling film or continuous flow reactors.
Collapse
|
36
|
Marinho BA, Martín de Vidales MJ, Mazur LP, Paulista L, Cristóvão RO, Mayer DA, Loureiro JM, Boaventura RAR, Dias MM, Lopes JCB, Vilar VJP. Application of a micro-meso-structured reactor (NETmix) to promote photochemical UVC/H2O2 processes – oxidation of As(iii) to As(v). Photochem Photobiol Sci 2018; 17:1179-1188. [DOI: 10.1039/c8pp00006a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A micro-meso-structured reactor (NETmix) was used for the first time to promote UVC/H2O2 processes.
Collapse
|
37
|
Qiu JK, Shan C, Wang DC, Wei P, Jiang B, Tu SJ, Li G, Guo K. Metal-Free Radical-Triggered Selenosulfonation of 1,7-Enynes for the Rapid Synthesis of 3,4-Dihydroquinolin-2(1H)-ones in Batch and Flow. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiang-Kai Qiu
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 211816 Nanjing People's Republic of China
| | - Cheng Shan
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 211816 Nanjing People's Republic of China
| | - De-Cai Wang
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 211816 Nanjing People's Republic of China
| | - Ping Wei
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 211816 Nanjing People's Republic of China
| | - Bo Jiang
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Shu-Jiang Tu
- School of Chemistry and Materials Science; Jiangsu Normal University; Xuzhou 221116 People's Republic of China
| | - Guigen Li
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX 79409-1061 USA
- Institute of Chemistry & BioMedical Sciences; Nanjing University; Nanjing 210093 People's Republic of China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; 211816 Nanjing People's Republic of China
| |
Collapse
|
38
|
Gaupp DR, Oppenländer T. Oxidation von Wasserinhaltsstoffen im Photoreaktor. CHEM UNSERER ZEIT 2017. [DOI: 10.1002/ciuz.201700773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Thomas Oppenländer
- Hochschule Furtwangen; Campus Villingen-Schwenningen; Jakob-Kienzle-Str. 17 78054 Villingen-Schwenningen
| |
Collapse
|
39
|
Okawa A, Yoshida R, Isozaki T, Shigesato Y, Matsushita Y, Suzuki T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
40
|
Kärkäs MD. Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01385] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
41
|
Novel Palladium-Catalyzed Oxidative Intramolecular Cyclization of β-Citronellol with H2O2: A Green and Selective Process to Synthesize Oxocine. Catal Letters 2017. [DOI: 10.1007/s10562-017-2063-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Murase T, Suto T, Suzuki H. Azahelicenes from the Oxidative Photocyclization of Boron Hydroxamate Complexes. Chem Asian J 2017; 12:726-729. [PMID: 28244263 DOI: 10.1002/asia.201700096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Aromatic hydroxamic acids (Ar-CO-NOH-Ar') were used as bidentate chelating ligands to generate the corresponding boron hydroxamate complexes, which were subsequently transformed into nitrogen-containing helicenes (azahelicenes) using an oxidative photocyclization method that is frequently used for stilbene-type (Ar-CH=CH-Ar') precursors of carbohelicenes. The nitrogen atom of the hydroxamate linker was thus directly embedded into the helicene core without using nitrogen-containing aromatic rings in the stilbene-type precursors. In a batch photoreaction, aza[4]helicenes were readily and efficiently prepared, but aza[6]helicenes underwent severe decomposition upon irradiation. Alternatively, a continuous flow photoreactor was employed to furnish an amide-type aza[6]helicene.
Collapse
Affiliation(s)
- Takashi Murase
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata, 990-8560, Japan
| | - Toru Suto
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata, 990-8560, Japan
| | - Honoka Suzuki
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata, 990-8560, Japan
| |
Collapse
|
43
|
Lummiss JA, Morse PD, Beingessner RL, Jamison TF. Towards More Efficient, Greener Syntheses through Flow Chemistry. CHEM REC 2017; 17:667-680. [DOI: 10.1002/tcr.201600139] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Justin A.M. Lummiss
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA, 02139 USA
| | - Peter D. Morse
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA, 02139 USA
| | - Rachel L. Beingessner
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA, 02139 USA
| | - Timothy F. Jamison
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA, 02139 USA
| |
Collapse
|
44
|
Hölz K, Lietard J, Somoza MM. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2017; 5:828-834. [PMID: 28066690 PMCID: PMC5209756 DOI: 10.1021/acssuschemeng.6b02175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Indexed: 05/12/2023]
Abstract
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
Collapse
Affiliation(s)
| | | | - M. M. Somoza
- Institute of Inorganic Chemistry,
Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), A-1090 Vienna, Austria
| |
Collapse
|
45
|
El Achi N, Bakkour Y, Chausset-Boissarie L, Penhoat M, Rolando C. Rapid and facile chemical actinometric protocol for photo-microfluidic systems using azobenzene and NMR spectroscopy. RSC Adv 2017. [DOI: 10.1039/c7ra01237c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new protocol for determining the photon flux inside a photomicroreactor is described using (E)-azobenzene and NMR spectroscopy which does not require the determination of the quantum yield of the unstableZisomer.
Collapse
Affiliation(s)
- Nassim El Achi
- USR 3290
- MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique
- FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Youssef Bakkour
- Laboratory of Applied Chemistry
- Lebanese University
- Tripoli
- Lebanon
| | - Laëtitia Chausset-Boissarie
- USR 3290
- MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique
- FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Maël Penhoat
- USR 3290
- MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique
- FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| | - Christian Rolando
- USR 3290
- MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique
- FR 2638
- Institut Eugène-Michel Chevreul
- Université de Lille
| |
Collapse
|
46
|
Jadhav AS, Anand RV. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor. Org Biomol Chem 2017; 15:56-60. [DOI: 10.1039/c6ob02277d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient protocol has been developed for the 1,6-conjugate addition of zinc alkyls to p-quinone methides under continuous-flow using a microreactor.
Collapse
Affiliation(s)
- Abhijeet S. Jadhav
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli (PO)
- India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- Manauli (PO)
- India
| |
Collapse
|
47
|
Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K. Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Affiliation(s)
- Peter D. Morse
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Rachel L. Beingessner
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Timothy F. Jamison
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
49
|
Clark CA, Lee DS, Pickering SJ, Poliakoff M, George MW. A Simple and Versatile Reactor for Photochemistry. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Michael W. George
- Department
of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| |
Collapse
|
50
|
Castedo A, Mendoza E, Angurell I, Llorca J. Silicone microreactors for the photocatalytic generation of hydrogen. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|