1
|
Wu T, Mu X, Xue Y, Xu Y, Nie Y. Structure-guided steric hindrance engineering of Bacillus badius phenylalanine dehydrogenase for efficient L-homophenylalanine synthesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:207. [PMID: 34689801 PMCID: PMC8543943 DOI: 10.1186/s13068-021-02055-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block L-homophenylalanine (L-HPA) given that its sole expense is ammonia and that water is the only byproduct. Current issues in this field include a poor catalytic efficiency and a low substrate loading. RESULTS In this study, we report a structure-guided steric hindrance engineering of PheDH from Bacillus badius to create an enhanced biocatalyst for efficient L-HPA synthesis. Mutagenesis libraries based on molecular docking, double-proximity filtering, and a degenerate codon significantly increased catalytic efficiency. Seven superior mutants were acquired, and the optimal triple-site mutant, V309G/L306V/V144G, showed a 12.7-fold higher kcat value, and accordingly a 12.9-fold higher kcat/Km value, than that of the wild type. A paired reaction system comprising V309G/L306V/V144G and glucose dehydrogenase converted 1.08 M 2-OPBA to L-HPA in 210 min, and the specific space-time conversion was 30.9 mmol g-1 L-1 h-1. The substrate loading and specific space-time conversion are the highest values to date. Docking simulation revealed increases in substrate-binding volume and additional degrees of freedom of the substrate 2-OPBA in the pocket. Tunnel analysis suggested the formation of new enzyme tunnels and the expansion of existing ones. CONCLUSIONS Overall, the results show that the mutant V309G/L306V/V144G has the potential for the industrial synthesis of L-HPA. The modified steric hindrance engineering approach can be a valuable addition to the current enzyme engineering toolbox.
Collapse
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Yuyan Xue
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zhang D, Jing X, Zhang W, Nie Y, Xu Y. Highly selective synthesis of d-amino acids from readily available l-amino acids by a one-pot biocatalytic stereoinversion cascade. RSC Adv 2019; 9:29927-29935. [PMID: 35531513 PMCID: PMC9072125 DOI: 10.1039/c9ra06301c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids. An efficient one-pot biocatalytic cascade was developed for synthesis of d-amino acids from readily available l-amino acids via stereoinversion.![]()
Collapse
Affiliation(s)
- Danping Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Xiaoran Jing
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Wenli Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yao Nie
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yan Xu
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
3
|
Parmeggiani F, Ahmed ST, Thompson MP, Weise NJ, Galman JL, Gahloth D, Dunstan MS, Leys D, Turner NJ. Single-Biocatalyst Synthesis of Enantiopured-Arylalanines Exploiting an Engineeredd-Amino Acid Dehydrogenase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600682] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Syed T. Ahmed
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Matthew P. Thompson
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Nicholas J. Weise
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - James L. Galman
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Deepankar Gahloth
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Mark S. Dunstan
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - David Leys
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| |
Collapse
|
4
|
Jiang T, Gao C, Dou P, Ma C, Kong J, Xu P. Rationally re-designed mutation of NAD-independent L-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli. Microb Cell Fact 2012; 11:151. [PMID: 23176608 PMCID: PMC3526519 DOI: 10.1186/1475-2859-11-151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/04/2012] [Indexed: 11/18/2022] Open
Abstract
Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
5
|
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem Rev 2011; 111:4141-64. [DOI: 10.1021/cr100386u] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gernot A. Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Oliver May
- DSM—Innovative Synthesis BV, Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | | |
Collapse
|
6
|
Abstract
The guiding principle of the IAS Medal Lecture and of the research it covered was that searching mathematical analysis, depending on good measurements, must underpin sound biochemical conclusions. This was illustrated through various experiences with the amino acid dehydrogenases. Topics covered in the present article include: (i) the place of kinetic measurement in assessing the metabolic role of GDH (glutamate dehydrogenase); (ii) the discovery of complex regulatory behaviour in mammalian GDH, involving negative co-operativity in coenzyme binding; (iii) an X-ray structure solution for a bacterial GDH providing insight into catalysis; (iv) almost total positive co-operativity in glutamate binding to clostridial GDH; (v) unexpected outcomes with mutations at the catalytic aspartate site in GDH; (vi) reactive cysteine as a counting tool in the construction of hybrid oligomers to probe the basis of allosteric interaction; (vii) tryptophan-to-phenylalanine mutations in analysis of allosteric conformational change; (viii) site-directed mutagenesis to alter substrate specificity in GDH and PheDH (phenylalanine dehydrogenase); and (ix) varying strengths of binding of the 'wrong' enantiomer in engineered mutant enzymes and implications for resolution of racemates.
Collapse
|
7
|
Li H, Yang Y, Zhu D, Hua L, Kantardjieff K. Highly Enantioselective Mutant Carbonyl Reductases Created via Structure-Based Site-Saturation Mutagenesis. J Org Chem 2010; 75:7559-64. [DOI: 10.1021/jo101541n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongmei Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Yan Yang
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Dunming Zhu
- State Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Ling Hua
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
- China Research Center, Genencor, A Danisco Division, Shanghai 200335, China
| | - Katherine Kantardjieff
- Department of Chemistry, California State Polytechnic University, Pomona, California 91768, United States
| |
Collapse
|