1
|
Báez-Grez R, Pino-Rios R. Exploring the Nature of Chemical Bonding between Noble Gases and Hypercoordinate Group 13 Compounds: Beyond Boron. J Phys Chem A 2024; 128:4950-4955. [PMID: 38864772 DOI: 10.1021/acs.jpca.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In this article, we systematically study the stability and chemical bond nature of EH4Ng+ compounds (E = Al-Tl; Ng = He-Rn) at the CCSD(T) and ωB97XD levels of theory. Thermochemical calculations obtained by exploring different dissociation pathways show that these compounds could be stable at low temperatures. In addition, studied compounds have a strong E-Ng bond, which has been characterized using different methodologies such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) theory, and natural energy decomposition analysis (NEDA). Results indicate that the nature of the chemical bond is predominantly covalent, especially in the case those including the heavier gases (Ar-Rn), occurring through a charge transfer from the noble gas to the group 13 element. However, the electrostatic contribution is also important in the stabilization of this bond. This study extends the universe of group 13 molecules containing noble gas bonds beyond boron and other elements from the second period.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Facultad de Ciencias, Universidad Arturo Prat., Casilla 121, Iquique 1100000, Chile
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Centro de Investigación Medicina de Altura - CEIMA, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| |
Collapse
|
2
|
Araujo L, Fantuzzi F, Cardozo TM. Chemical Aristocracy: He 3 Dication and Analogous Noble-Gas-Exclusive Covalent Compounds. J Phys Chem Lett 2024; 15:3757-3763. [PMID: 38551487 PMCID: PMC11017316 DOI: 10.1021/acs.jpclett.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Herein, we predict the first set of covalently bonded triatomic molecular compounds composed exclusively of noble gases. Using a combination of double-hybrid DFT, CCSD(T), and MRCI+Q calculations and a range of bonding analyses, we explored a set of 270 doubly charged triatomics, which included various combinations of noble gases and main group elements. This extensive exploration uncovered nine noble-gas-exclusive covalent compounds incorporating helium, neon, argon, or combinations thereof, exemplified by cases such as He32+ and related systems. This work brings to light a previously uncharted domain of noble gas chemistry, demonstrating the potential of noble gases in forming covalent molecular clusters.
Collapse
Affiliation(s)
- Lucas Araujo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| | - Felipe Fantuzzi
- School
of Chemistry and Forensic Science, University
of Kent, Park Wood Road, Canterbury CT2 7NH, U.K.
| | - Thiago M. Cardozo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
3
|
Armenta Butt S, Price SD. Bimolecular reactions of CH 2CN 2+ with Ar, N 2 and CO: reactivity and dynamics. Phys Chem Chem Phys 2022; 24:15824-15839. [PMID: 35758308 DOI: 10.1039/d2cp01523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity, energetics and dynamics of bimolecular reactions between CH2CN2+ and three neutral species (Ar, N2 and CO) have been studied using a position sensitive coincidence methodology at centre-of-mass collision energies of 4.3-5.0 eV. This is the first study of bimolecular reactions involving CH2CN2+, a species relevant to the ionospheres of planets and satellites, including Titan. All of the collision systems investigated display two collision-induced dissociation (CID) channels, resulting in the formation of C+ + CH2N+ and H+ + HC2N+. Evidence for channels involving further dissociation of the CID product HC2N+, forming H + CCN+, were detected in the N2 and CO systems. Proton-transfer from the dication to the neutral species occurs in all three of the systems via a direct mechanism. Additionally, there are product channels resulting from single electron transfer following collisions of CH2CN2+ with both N2 and CO, but interestingly no electron transfer following collisions with Ar. Electronic structure calculations of the lowest energy electronic states of CH2CN2+ reveal six local geometric minima: both doublet and quartet spin states for cyclic, linear (CH2CN), and linear isocyanide (CH2NC) molecular geometries. The lowest energy electronic state was determined to be the doublet state of the cyclic dication. The ready generation of C+ ions by collision-induced dissociation suggests that the cyclic or linear isocyanide dication geometries are present in the [CH2CN]2+ beam.
Collapse
Affiliation(s)
- Sam Armenta Butt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Stephen D Price
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
4
|
Armenta Butt S, Price SD. Bimolecular reactions of S 2+ with Ar, H 2 and N 2: reactivity and dynamics. Phys Chem Chem Phys 2022; 24:8113-8128. [PMID: 35322816 DOI: 10.1039/d1cp05397c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity, energetics and dynamics of bimolecular reactions between S2+ and three neutral species (Ar, H2 and N2) have been studied using a position-sensitive coincidence methodology at centre-of-mass collision energies below 6 eV. This is the first study of bimolecular reactions involving S2+, a species detected in planetary ionospheres, the interstellar medium, and in anthropogenic manufacturing processes. The reactant dication beam employed consists predominantly of S2+ in the ground 3P state, but some excited states are also present. Most of the observed reactions involve the ground state of S2+, but the dissociative electron transfer reactions appear to exclusively involve excited states of this atomic dication. We observe exclusively single electron-transfer between S2+ and Ar, a process which exhibits strong forward scatting typical of the Landau-Zener style dynamics observed for other dicationic electron transfer reactions. Following collisions between S2+ + H2, non-dissociative and dissociative single electron-transfer reactions were detected. The dynamics here show evidence for the formation of a long-lived collision complex, [SH2]2+, in the dissociative single electron-transfer channel. The formation of SH+ was not observed. In contrast, the collisions of S2+ + N2 result in the formation of SN+ + N+ in addition to the products of single electron-transfer reactions.
Collapse
Affiliation(s)
- Sam Armenta Butt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Stephen D Price
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
5
|
Derbali I, Thissen R, Alcaraz C, Romanzin C, Zins EL. Study of the Reactivity of CH 3COOH +• and COOH + Ions with CH 3NH 2: Evidence of the Formation of New Peptide-like C(O)-N Bonds. J Phys Chem A 2021; 125:10006-10020. [PMID: 34761946 DOI: 10.1021/acs.jpca.1c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetamide, a small organic compound containing a peptide bond, was observed in the interstellar medium, but reaction pathways leading to the formation of this prebiotic molecule remain uncertain. We investigated the possible formation of a peptide-like bond from the reaction between acetic acid (CH3-COOH) and methylamine (CH3-NH2) that were identified in the interstellar medium. From an experimental point of view, a quadrupole/octopole/quadrupole mass spectrometer was used in combination with synchrotron radiation as a tunable source of VUV photons for monitoring the reactivity of selected ions. Acetic acid was photoionized, and the reactivity of CH3COOH+• as well as COOH+ (produced from either acetic acid or formic acid) ions with neutral CH3NH2 was further studied. With no surprise, charge transfer, proton transfer, and concomitant dissociation processes were found to largely dominate the reactivity. However, a C(O)-N bond formation process between the two reactants was also evidenced, with a weak cross section reaction. From a theoretical point of view, results concerning reactivity and barrier heights were obtained using density functional theory, with the LC-ωPBE range-separated functional in combination with the 6-311++G(d,p) Pople basis set and are in perfect agreement with the experimental data.
Collapse
Affiliation(s)
- Imene Derbali
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Roland Thissen
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Christian Alcaraz
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Claire Romanzin
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Emilie-Laure Zins
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Liu YT, Li AY. Long-bonding and bonding nature in noble gas insertion compounds MNgBY of transition metal-boron bond. J Mol Model 2021; 27:360. [PMID: 34817695 DOI: 10.1007/s00894-021-04970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
The nature of inert gas bonding has always been an important topic. The bonds of noble gases cover the entire range of chemical bonds, from the weakest van der Waals forces, to non-covalent interactions, and to covalent bonds. Two types of methods were used to investigate the properties of chemical bonds in the inert gas inserted compound MNgBY with the transition metal M = Cu/Ag/Au and substituents Y = O/S/NH, one based on orbital analysis and the other based on electron density analysis. The NBO/NRT analysis shows that in these compounds there exists long-bonding striding the noble gas between the transitional metal and boron, similar to the noble gas insertion compounds HNgX of hydrohalide, and so a three-center four-electron bond exists among the M-Ng-B part. The electron density analyses show that the M-Ng bond between the metal Cu/Ag/Au and noble gas and the Ng-B bond in the Cu/Ag compounds are partial covalent but the Ng-B bond in Au compounds is a typical covalent bond. The large relativistic effects of Au cause the bonds in Au compounds shorter and stronger than the bonds in Ag/Cu compounds. The properties of the M-Ng and Ng-B bonds are not affected by substituents Y, but the bond lengths are sensitive to substituents.
Collapse
Affiliation(s)
- Yan Tao Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
7
|
Gorbachev VM, Miloglyadova L, Tsybizova A, Chen P. Application of continuous wave quantum cascade laser in combination with CIVP spectroscopy for investigation of large organic and organometallic ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083002. [PMID: 34470415 DOI: 10.1063/5.0058625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Rapidly developing mid-infrared quantum cascade laser (QCL) technology gives easy access to broadly tunable mid-IR laser radiation at a modest cost. Despite several applications of QCL in the industry, its usage for spectroscopic investigation of synthetically relevant organic compounds has been limited. Here, we report the application of an external cavity, continuous wave, mid-IR QCL to cryogenic ion vibrational predissociation spectroscopy to analyze a set of large organic molecules, organometallic complexes, and isotopically labeled compounds. The obtained spectra of test molecules are characterized by a high signal-to-noise ratio and low full width at half-maximum-values, allowing the assignment of two compounds with just a few wavenumber difference. Data generated by cw-QCL and spectra produced by another standard Nd:YAG difference-frequency generation system are compared and discussed.
Collapse
Affiliation(s)
| | | | | | - Peter Chen
- Laboratorium für Organische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Abstract
Because of their closed shells, noble gas (Ng) atoms (Ng = Ne, Ar, Kr, and Xe) seldom take part in chemical reactions, yet finding such mechanisms not only is of scientific interest but also has practical significance. Following a recent work by Mayer et al. [Proc. Natl. Acad. Sci. U. S. A. 116, 8167-8172 (2019)] on the room temperature binding of Ar to a superelectrophilic boron site embedded in a negative ion complex, B12(CN)11 -, we have systematically studied the effect of cluster size and terminal ligands on the interaction of Ng by focusing on B12X11(Ng) (X = H, CN, and BO) and B12X10(Ng)2 (X = CN and BO) whose stabilities are governed by the Wade-Mingos rule and on C5BX5(Ng) (X = H, F, and CN) and C4B2(CN)4(Ng)2 whose stabilities are governed by the Huckel's aromaticity rule. Our conclusion, based on density functional theory, is that both the cluster size and the terminal ligands matter-the interaction between the cluster and the Ng atoms becomes stronger with increasing cluster size and the electron affinity of the terminal ligands. Our studies also led to a counter-intuitive finding-removing multiple terminal ligands can enable electrophilic centers to bind multiple Ng atoms simultaneously without compromising their binding strength.
Collapse
Affiliation(s)
- Hong Fang
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Deepika Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
9
|
Tsybizova A, Paenurk E, Gorbachev V, Chen P. Perturbation of Pyridinium CIVP Spectra by N 2 and H 2 Tags: An Experimental and BOMD Study. J Phys Chem A 2020; 124:8519-8528. [PMID: 32954731 DOI: 10.1021/acs.jpca.0c06752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In cryogenic ion vibrational predissociation (CIVP) spectroscopy, the influence of the tag on the spectrum is an important consideration. Whereas for small ions several studies have shown that the tag effects can be significant, these effects are less understood for large ions or for large numbers of tags. Nevertheless, it is commonly assumed that if the investigated molecular ion is large enough, the perturbations arising from the tag are small and can therefore be neglected in the interpretation. In addition, it is generally assumed that the more weakly bound the tag is, the less it perturbs the CIVP spectrum. Under these assumptions, CIVP spectra are claimed to be effectively IR absorption spectra of the free molecular ion. Having observed unexpected splittings in otherwise unproblematic CIVP spectra of some tagged ions, we report Born-Oppenheimer molecular dynamics (BOMD) simulations that strongly indicate that mobility among the more weakly bound tags leads to the surprising splittings. We compared the behavior of two tags commonly used in CIVP spectroscopy (H2 and N2) with a large pyridinium cation. Our experimental results surprisingly show that under the appropriate circumstances, the more weakly bound tag can perturb the CIVP spectra more than the more strongly bound tag by not just shifting but also splitting the observed bands. The more weakly bound tag had significant residence times at several spectroscopically distinct sites on the molecular ion. This indicates that the weakly bound tag is likely to sample several binding sites in the experiment, some of which involve interaction with the reporter chromophore.
Collapse
Affiliation(s)
- Alexandra Tsybizova
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Eno Paenurk
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Vladimir Gorbachev
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Chen
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Mazej Z. Noble-Gas Chemistry More than Half a Century after the First Report of the Noble-Gas Compound. Molecules 2020; 25:E3014. [PMID: 32630333 PMCID: PMC7412050 DOI: 10.3390/molecules25133014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the laboratory use and in the industry. As a ligand it can coordinate to metal centers resulting in [M(XeF2)x]n+ salts. With strong Lewis acids, XeF2 acts as a fluoride ion donor forming [XeF]+ or [Xe2F3]+ salts. Latest examples are [Xe2F3][RuF6]·XeF2, [Xe2F3][RuF6] and [Xe2F3][IrF6]. Adducts NgF2·CrOF4 and NgF2·2CrOF4 (Ng = Xe, Kr) were synthesized and structurally characterized at low temperatures. The geometry of XeF6 was studied in solid argon and neon matrices. Xenon hexafluoride is a well-known fluoride ion donor forming various [XeF5]+ and [Xe2F11]+ salts. A large number of crystal structures of previously known or new [XeF5]+ and [Xe2F11]+ salts were reported, i.e., [Xe2F11][SbF6], [XeF5][SbF6], [XeF5][Sb2F11], [XeF5][BF4], [XeF5][TiF5], [XeF5]5[Ti10F45], [XeF5][Ti3F13], [XeF5]2[MnF6], [XeF5][MnF5], [XeF5]4[Mn8F36], [Xe2F11]2[SnF6], [Xe2F11]2[PbF6], [XeF5]4[Sn5F24], [XeF5][Xe2F11][CrVOF5]·2CrVIOF4, [XeF5]2[CrIVF6]·2CrVIOF4, [Xe2F11]2[CrIVF6], [XeF5]2[CrV2O2F8], [XeF5]2[CrV2O2F8]·2HF, [XeF5]2[CrV2O2F8]·2XeOF4, A[XeF5][SbF6]2 (A = Rb, Cs), Cs[XeF5][BixSb1-xF6]2 (x = ~0.37-0.39), NO2XeF5(SbF6)2, XeF5M(SbF6)3 (M = Ni, Mg, Zn, Co, Cu, Mn and Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Despite its extreme sensitivity, many new XeO3 adducts were synthesized, i.e., the 15-crown adduct of XeO3, adducts of XeO3 with triphenylphosphine oxide, dimethylsulfoxide and pyridine-N-oxide, and adducts between XeO3 and N-bases (pyridine and 4-dimethylaminopyridine). [Hg(KrF2)8][AsF6]2·2HF is a new example of a compound in which KrF2 serves as a ligand. Numerous new charged species of noble gases were reported (ArCH2+, ArOH+, [ArB3O4]+, [ArB3O5]+, [ArB4O6]+, [ArB5O7]+, [B12(CN)11Ne]-). Molecular ion HeH+ was finally detected in interstellar space. The discoveries of Na2He and ArNi at high pressure were reported. Bonding motifs in noble-gas compounds are briefly commented on in the last paragraph of this review.
Collapse
Affiliation(s)
- Zoran Mazej
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Abstract
Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B12(CN)12]2-, the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B12(CN)11]-, which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.
Collapse
|
12
|
Fortenberry RC, Ascenzi D. ArCH 2 + : A Detectable Noble Gas Molecule. Chemphyschem 2018; 19:3388-3392. [PMID: 30370986 DOI: 10.1002/cphc.201800888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Indexed: 11/07/2022]
Abstract
The noble gas molecular cation, ArCH2 + , has been observed in mass spectrometry experiments, and the present work is providing high-level quantum chemical predictions for the vibrational and rotational spectroscopic data necessary to observe this molecule in situ in other laboratory conditions. The Ar-C stretch in this cation is a bright fundamental vibrational frequency that should be observable in the early regions of the far-infrared at 421.2 cm-1 for the universally most common 36 Ar isotope. The near-prolate nature of this molecule and its 2.91 D dipole moment should also make it distinguishable for submillimeter detection, as well. Furthermore, the Ar-C bond strength in ArCH2 + is greater than the global minimum for the dissociation of the experimentally known ArOH+ cation. As a result, the infrared spectrum of this simple organo-noble gas molecule is likely waiting to be observed and may already exist in the spectra of hydrocarbon cations in argon-matrix condensed phase experiments.
Collapse
Affiliation(s)
- Ryan C Fortenberry
- University of Mississippi, Department of Chemistry & Biochemistry, University, MS 38677-1848, U.S.A
| | - Daniela Ascenzi
- University of Trento, Department of Physics, Via Sommarive 14, 38050, Povo Trento, Italy
| |
Collapse
|
13
|
Price SD, Fletcher JD, Gossan FE, Parkes MA. Bimolecular reactions of the dications and trications of atoms and small molecules in the gas-phase. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1283844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Roithová J, Gray A, Andris E, Jašík J, Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc Chem Res 2016; 49:223-30. [PMID: 26821086 DOI: 10.1021/acs.accounts.5b00489] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore implemented two-color experiments where one laser is employed to selectively deplete a mixture by one (or more) isomer allowing helium tagging IRPD spectra of the remaining isomer(s) to be recorded via the second laser. Our experimental setup, based on a linear wire quadrupole ion trap, allows us to deplete almost 100% of all helium tagged ions in the trap. Using this special feature, we have developed attenuation experiments for determination of absolute photofragmentation cross sections. At the same time, this approach can be used to estimate the representation of isomers in a mixture. The ultimate aim is the routine use of this instrument and technique to study a wide range of reaction intermediates in catalysis. To this end, we present a study of hypervalent iron(IV)-oxo complexes ([(L)Fe(O)(NO3)](+)). We show that we can spectroscopically differentiate iron complexes with S = 1 and S = 2 according to the stretching vibrations of a nitrate counterion.
Collapse
Affiliation(s)
- Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Andrew Gray
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Dieter Gerlich
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
15
|
Gao K, Sheng L. Theoretical investigation of HNgNH3(+) ions (Ng = He, Ne, Ar, Kr, and Xe). J Chem Phys 2015; 142:144301. [PMID: 25877572 DOI: 10.1063/1.4916648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The equilibrium geometries, harmonic frequencies, and dissociation energies of HNgNH3(+) ions (Ng = He, Ne, Ar, Kr, and Xe) were investigated using the following method: Becke-3-parameter-Lee-Yang-Parr (B3LYP), Boese-Matrin for Kinetics (BMK), second-order Møller-Plesset perturbation theory (MP2), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The results indicate that HHeNH3(+), HArNH3(+), HKrNH3(+), and HXeNH3(+) ions are metastable species that are protected from decomposition by high energy barriers, whereas the HNeNH3(+) ion is unstable because of its relatively small energy barrier for decomposition. The bonding nature of noble-gas atoms in HNgNH3(+) was also analyzed using the atoms in molecules approach, natural energy decomposition analysis, and natural bond orbital analysis.
Collapse
Affiliation(s)
- Kunqi Gao
- Department of Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Li Sheng
- Department of Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
16
|
Fletcher JD, Parkes MA, Price SD. Electron transfer and bond-forming reactions following collisions of I2+with CO and CS2. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1007105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Jašík J, Gerlich D, Roithová J. Two-Color Infrared Predissociation Spectroscopy of C6H62+ Isomers Using Helium Tagging. J Phys Chem A 2014; 119:2532-42. [DOI: 10.1021/jp5088064] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juraj Jašík
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Dieter Gerlich
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
- Department
of Physics, University of Technology, 09107 Chemnitz, Germany
| | - Jana Roithová
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| |
Collapse
|
18
|
Fletcher JD, Parkes MA, Price SD. Bond-Forming Reactions of Small Triply Charged Cations with Neutral Molecules. Chemistry 2013; 19:10965-70. [DOI: 10.1002/chem.201301861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 11/10/2022]
|
19
|
Aguilar J, Lucas JM, de Andrés J, Albertí M, Bassi D, Aguilar A. Reactive processes in gas phase Na(+)-iso-C3H7Cl collisions: experimental guided-ion-beam and ab initio studies of the reactions on the ground singlet potential surface of the system up to 12.00 eV. Phys Chem Chem Phys 2011; 13:18581-91. [PMID: 21947277 DOI: 10.1039/c1cp22335f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reactive processes, taking place when sodium ions collide with neutral iso-C(3)H(7)Cl molecules in the 0.02-12.00 eV range of energies in the center of mass frame, have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. A dehydrohalogenation reaction channel leading to Na(C(3)H(6))(+) formation has been observed up to 1.00 eV while another process producing NaHCl(+) continues up to 4.00 eV. Furthermore, C(3)H(7)(+) formation resulting from decomposition of the reactants, ion-molecule adducts, has also been observed as well as its decomposition into C(2)H(3)(+) on increasing collision energy. Cross-section energy dependences for all these reactions have been obtained in absolute units. The ab initio electronic structure calculations have been done at the MP2 level for the colliding system ground singlet potential surface, giving information on the reactive surface main topological features. From the surface reactants side to the products' one, different potential wells and barriers have been characterized and their connectivity along the reaction evolution has been established using the intrinsic-reaction-coordinate method, thus interpreting the dynamical evolution of the reactants' collision complex to products. Experimental results demonstrate that NaHCl(+) can be produced via different channels. Reaction rate constants at 308.2 K for both dehydrohalogenation reactions have been calculated from measured excitation functions. It has been also confirmed that the reactants adduct decomposition giving C(3)H(7)(+) and NaCl takes place on the same potential surface. A qualitative interpretation of the experimental results in terms of ab initio calculations is also given.
Collapse
Affiliation(s)
- J Aguilar
- Departament de Química Física, Facultat de Química, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès, 1, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Parkes MA, Lockyear JF, Schröder D, Roithová J, Price SD. Electronic state selectivity in dication-molecule single electron transfer reactions: NO(2+) + NO. Phys Chem Chem Phys 2011; 13:18386-92. [PMID: 21842050 DOI: 10.1039/c1cp21612k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single-electron transfer reaction between NO(2+) and NO, which initially forms a pair of NO(+) ions, has been studied using a position-sensitive coincidence technique. The reactivity in this class of collision system, which involves the interaction of a dication with its neutral precursor, provides a sensitive test of recent ideas concerning electronic state selectivity in dicationic single-electron transfer reactions. In stark contrast to the recently observed single-electron transfer reactivity in the analogous CO(2)(2+)/CO(2) and O(2)(2+)/O(2) collision systems, electron transfer between NO(2+) and NO generates two product NO(+) ions which behave in an identical manner, whether the ions are formed from NO(2+) or NO. This observed behaviour is in excellent accord with the recently proposed rationalization of the state selectivity in dication-molecule SET reactions using simple propensity rules involving one-electron transitions.
Collapse
Affiliation(s)
- Michael A Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Zins EL, Milko P, Schröder D, Aysina J, Ascenzi D, Žabka J, Alcaraz C, Price SD, Roithová J. Formation of Organoxenon Dications in the Reactions of Xenon with Dications Derived from Toluene. Chemistry 2011; 17:4012-20. [DOI: 10.1002/chem.201002556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Indexed: 11/11/2022]
|
22
|
Grandinetti F. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:423-463. [PMID: 22173538 DOI: 10.1255/ejms.1151] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.
Collapse
Affiliation(s)
- Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
| |
Collapse
|
23
|
Lockyear JF, Ricketts CL, Parkes MA, Price SD. The formation of NH+following the reaction of N22+with H2. Chem Sci 2011. [DOI: 10.1039/c0sc00344a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Ascenzi D, Aysina J, Zins EL, Schröder D, Žabka J, Alcaraz C, Price SD, Roithová J. Double ionization of cycloheptatriene and the reactions of the resulting C7Hn2+ dications (n = 6, 8) with xenon. Phys Chem Chem Phys 2011; 13:18330-8. [DOI: 10.1039/c1cp21634a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lucas JM, de Andrés J, Albertí M, Bofill JM, Bassi D, Aguilar A. Experimental cross-sections energy dependence and an ab initio electronic structure survey of the ground singlet potential surface for reactive Li(+) + n-C(3)H(7)Cl collisions at low energies. Phys Chem Chem Phys 2010; 12:13646-56. [PMID: 20871870 DOI: 10.1039/c0cp00715c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive collisions between n-C(3)H(7)Cl molecules and lithium ions both in their ground electronic state have been studied in the 0.05-7.00 eV center of mass energy range using an octopole radio frequency guided-ion beam apparatus developed in our laboratory and recently modified. At low collision energies, dehydrohalogenation reactions leading to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while on increasing energies C(3)H(7)(+) and C(2)H(3)(+) formation become dominant. Cross section energy dependences in arbitrary units for all these reactions have been measured. Also, ab initio electronic structure calculations at the MP2 level have been performed to obtain information about the potential energy surface on which the reactive processes take place. The reactants' entrance channel leads to the formation of a stable [Li-n-C(3)H(7)Cl](+) ion-molecule adduct that, following an intrinsic-reaction-coordinate pathway and surmounting a transition state, isomerizes to [Li-i-C(3)H(7)Cl](+). From this second minimum, dehydrohalogenation reactions for both n-C(3)H(7)Cl and i-C(3)H(7)Cl share a common reaction pathway leading to the same products. All potential barriers explored by reactions always lie below the reactants' energy. The entrance reaction channel [Li-n-C(3)H(7)Cl](+) adduct also leads adiabatically to C(3)H(7)(+) formation which, on increasing collision energy generates C(2)H(3)(+)via a unimolecular decomposition. A qualitative interpretation of the experimental results based on our ab initio calculations is also given.
Collapse
Affiliation(s)
- José María Lucas
- Departament de Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Parkes MA, Lockyear JF, Price SD, Schröder D, Roithová J, Herman Z. Selective dissociation in dication–molecule reactions. Phys Chem Chem Phys 2010; 12:6233-43. [DOI: 10.1039/b926049h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|
28
|
|
29
|
Ascenzi D, Roithová J, Schröder D, Zins EL, Alcaraz C. Growth Of Doubly Ionized C,H,N Compounds in the Presence of Methane. J Phys Chem A 2009; 113:11204-10. [DOI: 10.1021/jp904859g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Ascenzi
- Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy, Department of Organic Chemistry, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic, Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075 CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 5, France, Laboratoire de
| | - Jana Roithová
- Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy, Department of Organic Chemistry, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic, Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075 CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 5, France, Laboratoire de
| | - Detlef Schröder
- Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy, Department of Organic Chemistry, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic, Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075 CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 5, France, Laboratoire de
| | - Emilie-Laure Zins
- Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy, Department of Organic Chemistry, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic, Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075 CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 5, France, Laboratoire de
| | - Christian Alcaraz
- Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo, Trento, Italy, Department of Organic Chemistry, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic, Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075 CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris 5, France, Laboratoire de
| |
Collapse
|
30
|
Lucas JM, de Andrés J, Sogas J, Albertí M, Bofill JM, Bassi D, Ascenzi D, Tosi P, Aguilar A. An experimental guided-ion-beam and ab initio study of the ion-molecule gas-phase reactions between Li+ ions and iso-C3H7Cl in their ground electronic state. J Chem Phys 2009; 131:024306. [PMID: 19603990 DOI: 10.1063/1.3168332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reactive collisions between Li(+) ions and i-C(3)H(7)Cl molecules have been studied in the 0.20-12.00 eV center-of-mass energy range using an octopole radio frequency guided-ion beam apparatus recently developed in our laboratory. At low collision energies, dehydrohalogenation reactions giving rise to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while at higher ones C(3)H(7)(+) and C(2)H(3)(+) become dominant, all their reactive cross sections having been measured as a function of the collision energy. To obtain information about the potential energy surfaces (PESs) on which the reactive processes take place, ab initio calculations at the MP2 level have been performed. For dehydrohalogenations, the reactive ground singlet PES shows ion-molecule adduct formation in both the reactant and product sides of the surface. Following the minimum energy path connecting both minima, an unstable intermediate and the corresponding barriers, both lying below the reactant's energy, have been characterized. The entrance channel ion-molecule adduct is also involved in the formation of C(3)H(7)(+), which then generates C(2)H(3)(+) via an CH(4) unimolecular elimination. A qualitative interpretation of the experimental results based on ab initio calculations is also included.
Collapse
Affiliation(s)
- J M Lucas
- Departament de Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|