1
|
Amber C, Göttemann LT, Steele RT, Petitjean TM, Sarpong R. Reductive Amination of Carbonyl C-C Bonds Enables Formal Nitrogen Insertion. J Org Chem 2024; 89:17655-17663. [PMID: 39509344 PMCID: PMC11624976 DOI: 10.1021/acs.joc.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Given its relevance across numerous fields, reductive amination is one of the oldest and most widely used methods for amine synthesis. As a cornerstone of synthetic chemistry, it has largely remained unchanged since its discovery over a century ago. Herein, we report the mechanistically driven development of a complementary reaction, which reductively aminates the C-C σ-bond of carbonyls, not the carbonyl C-O π-bond, generating value-added linear and cyclic 3° amines in a modular fashion. Critical to our success were mechanistic insights that enabled us to modulate the resting state of a borane catalyst, minimize deleterious disproportionation of a hydroxylamine nitrogen source, and control the migratory selectivity of a key nitrenoid reactive intermediate. Experiments support the reaction occurring through a reductive amination/reductive Stieglitz cascade, via a ketonitrone, which can be interrupted under catalyst control to generate valuable N,N-disubstituted hydroxylamines. The method reported herein enables net transformations that would otherwise require lengthy synthetic sequences using pre-existing technologies. This is highlighted by its application to a two-step protocol for the valorization of hydrocarbon feedstocks, the late-stage C-C amination of complex molecules, diversity-oriented synthesis of isomeric amines from a single precursor, and transposition of nitrogen to different positions within a heterocycle.
Collapse
Affiliation(s)
- Charis Amber
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lucas T Göttemann
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryan T Steele
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Timothée M Petitjean
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Singh H, MacKay A, Sheibany N, Chen F, Mosser M, Rouet PÉ, Rousseau F, Askari MS, Ottenwaelder X. Intramolecular H-bond stabilization of a primary hydroxylamine in salen-type metal complexes. Chem Commun (Camb) 2021; 57:10403-10406. [PMID: 34545379 DOI: 10.1039/d1cc03077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary hydroxylamines, RNHOH, decompose readily in the presence of transition metal ions. We show that this reactivity can be arrested by ligand design via an intramolecular hydrogen bond. Six metal complexes with an intact NHOH group were synthesized and crystallographically characterized. The Cu-hydroxylamine complexes can catalyze the aerobic oxidation of benzylic alcohols.
Collapse
Affiliation(s)
- Hardeep Singh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Alyson MacKay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Nooshin Sheibany
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Fei Chen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Maëlle Mosser
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Pierre-Étienne Rouet
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Frédéric Rousseau
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Zsombor-Pindera J, Effaty F, Escomel L, Patrick B, Kennepohl P, Ottenwaelder X. Five Nitrogen Oxidation States from Nitro to Amine: Stabilization and Reactivity of a Metastable Arylhydroxylamine Complex. J Am Chem Soc 2020; 142:19023-19028. [PMID: 33124796 DOI: 10.1021/jacs.0c09300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex. While hydroxylamines typically disproportionate or decompose in the presence of transition metal ions, the reactivity of this metastable species is arrested by the presence of an intramolecular hydrogen bond. Two-electron oxidation yields a copper(II)-(arylnitrosyl radical) complex that can dissociate to a copper(I) species with uncoordinated arylnitroso. This combination of ligand redox noninnocence and hemilability provides opportunities in catalysis for two-electron chemistry via a one-electron copper(I/II) shuttle, as exemplified with an aerobic alcohol oxidation.
Collapse
Affiliation(s)
- Joseph Zsombor-Pindera
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Léon Escomel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Brian Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
4
|
Gutiérrez MM, Almaraz AE, Bari SE, Olabe JA, Amorebieta VT. The HNO donor ability of hydroxamic acids upon oxidation with cyanoferrates(III). J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- María M. Gutiérrez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandra E. Almaraz
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Sara E. Bari
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - Valentín T. Amorebieta
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
5
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Nucleophilic Addition Reactions of the Nitroprusside Ion – The Case of
O
‐Methylhydroxylamine. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María M. Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| | - José A. Olabe
- Department of Inorganic, Analytical and Physical Chemistry and INQUIMAE/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Valentín T. Amorebieta
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| |
Collapse
|
6
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Disproportionation of O-methylhydroxylamine catalyzed by aquapentacyanoferrate(II). Inorg Chem 2011; 50:8817-25. [PMID: 21859073 DOI: 10.1021/ic2007155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(•)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(•), thus establishing a radical path leading to N-methoxyamino ((•)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(•), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.
Collapse
Affiliation(s)
- María M Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
| | | | | |
Collapse
|
7
|
Montenegro AC, Dabrowski SG, Gutiérrez MM, Amorebieta VT, Bari SE, Olabe JA. Catalytic oxidation of hydroxyurea to bound NO+/ NO2- mediated by pentacyano(L)ferrates. Characterization of the nitroxide radical, bound C-nitrosoformamide and NO as reaction intermediates. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|