1
|
Reactive Oxygen Species Production Is Responsible for Antineoplastic Activity of Osmium, Ruthenium, Iridium and Rhodium Half-Sandwich Type Complexes with Bidentate Glycosyl Heterocyclic Ligands in Various Cancer Cell Models. Int J Mol Sci 2022; 23:ijms23020813. [PMID: 35054999 PMCID: PMC8776094 DOI: 10.3390/ijms23020813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Platinum complexes are used in chemotherapy, primarily as antineoplastic agents. In this study, we assessed the cytotoxic and cytostatic properties of a set of osmium(II), ruthenium(II), iridium(III) and rhodium(III) half-sandwich-type complexes with bidentate monosaccharide ligands. We identified 5 compounds with moderate to negligible acute cytotoxicity but with potent long-term cytostatic activity. These structure-activity relationship studies revealed that: (1) osmium(II) p-cymene complexes were active in all models, while rhodium(III) and iridium(III) Cp* complexes proved largely inactive; (2) the biological effect was influenced by the nature of the central azole ring of the ligands—1,2,3-triazole was the most effective, followed by 1,3,4-oxadiazole, while the isomeric 1,2,4-oxadiazole abolished the cytostatic activity; (3) we found a correlation between the hydrophobic character of the complexes and their cytostatic activity: compounds with O-benzoyl protective groups on the carbohydrate moiety were active, compared to O-deprotected ones. The best compound, an osmium(II) complex, had an IC50 value of 0.70 µM. Furthermore, the steepness of the inhibitory curve of the active complexes suggested cooperative binding; cooperative molecules were better inhibitors than non-cooperative ones. The cytostatic activity of the active complexes was abolished by a lipid-soluble antioxidant, vitamin E, suggesting that oxidative stress plays a major role in the biological activity of the complexes. The complexes were active on ovarian cancer, pancreatic adenocarcinoma, osteosarcoma and Hodgkin’s lymphoma cells, but were inactive on primary, non-transformed human fibroblasts, indicating their applicability as potential anticancer agents.
Collapse
|
2
|
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040364. [PMID: 33920838 PMCID: PMC8071193 DOI: 10.3390/ph14040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.
Collapse
Affiliation(s)
- Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Nikolett Éva Hajnal
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Katalin E. Szabó
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
3
|
Pałasz A, Cież D, Trzewik B, Miszczak K, Tynor G, Bazan B. In the Search of Glycoside-Based Molecules as Antidiabetic Agents. Top Curr Chem (Cham) 2019; 377:19. [PMID: 31165274 PMCID: PMC6548768 DOI: 10.1007/s41061-019-0243-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
This review is an effort to summarize recent developments in synthesis of O-glycosides and N-, C-glycosyl molecules with promising antidiabetic potential. Articles published after 2000 are included. First, the O-glycosides used in the treatment of diabetes are presented, followed by the N-glycosides and finally the C-glycosides constituting the largest group of antidiabetic drugs are described. Within each group of glycosides, we presented how the structure of compounds representing potential drugs changes and when discussing chemical compounds of a similar structure, achievements are presented in the chronological order. C-Glycosyl compounds mimicking O-glycosides structure, exhibit the best features in terms of pharmacodynamics and pharmacokinetics. Therefore, the largest part of the article is concerned with the description of the synthesis and biological studies of various C-glycosides. Also N-glycosides such as N-(β-d-glucopyranosyl)-amides, N-(β-d-glucopyranosyl)-ureas, and 1,2,3-triazolyl derivatives belong to the most potent classes of antidiabetic agents. In order to indicate which of the compounds presented in the given sections have the best inhibitory properties, a list of the best inhibitors is presented at the end of each section. In summary, the best inhibitors were selected from each of the summarizing figures and the results of the ranking were placed. In this way, the reader can learn about the structure of the compounds having the best antidiabetic activity. The compounds, whose synthesis was described in the article but did not appear on the figures presenting the structures of the most active inhibitors, did not show proper activity as inhibitors. Thus, the article also presents studies that have not yielded the desired results and show directions of research that should not be followed. In order to show the directions of the latest research, articles from 2018 to 2019 are described in a separate Sect. 5. In Sect. 6, biological mechanisms of action of the glycosides and patents of marketed drugs are described.
Collapse
Affiliation(s)
- Aleksandra Pałasz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Miszczak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Grzegorz Tynor
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartłomiej Bazan
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
4
|
Compain P. Multivalent Effect in Glycosidase Inhibition: The End of the Beginning. CHEM REC 2019; 20:10-22. [PMID: 30993894 DOI: 10.1002/tcr.201900004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Indexed: 12/21/2022]
Abstract
Glycosidases are ubiquitous enzymes involved in a diversity of key biological processes such as energy uptake or cell wall degradation. The design of specific glycosidase inhibitors has been therefore the subject of intense research efforts in academia and pharmaceutical industry. However, until recently, the study of the impact of multivalency on glycosidase inhibition was almost completely neglected. The following account will review our ten year journey on the design of multivalent glycomimetics within our research group, from the discovery of the first strong multivalent effect in glycosidase inhibition to the high-resolution crystal structures of Jack bean α-mannosidase in complex with the multimeric inhibitor displaying the largest binding enhancements reported so far.
Collapse
Affiliation(s)
- Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
5
|
Szabó K, Kandra L, Gyémánt G. Studies on the reversible enzyme reaction of rabbit muscle glycogen phosphorylase b using isothermal titration calorimetry. Carbohydr Res 2019; 477:58-65. [PMID: 31005807 DOI: 10.1016/j.carres.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Glycogen phosphorylase enzymes (GP) catalyse reversible reactions; the glucose transfer from glycogen to inorganic phosphate (Pi, phosphorolysis) or the reverse glucose transfer from glucose-1-phosphate (G-1-P) to glycogen (synthesis). Rabbit muscle GPb (rmGPb) was used as a model enzyme to study the reversible enzyme reaction. To follow both directions of this reversible reaction, we have developed a novel isothermal titration calorimetry (ITC) method for the determination of the direct reaction rate. The preference of forward or reverse reaction was ensured by the 0.1 or 10 concentration ratios of G-1-P/Pi, respectively. Substrate specificity was studied using different maltooligosaccharides and glycogen. Based on the KM values, glycogen and 2-chloro-4-nitrophenyl maltoheptaoside (CNP-G7) were found to be analogous substrates, which allowed to optimize the method by taking advantage of the CNP chromophore being detectable in HPLC. In case of CNP-G7, substrate inhibition was observed and characterised by Ki of 23 ± 7 mM. Inhibition of human GP is a promising strategy for the treatment of diabetes. Our ITC measurements have confirmed that caffeine and glucopyranosylidene-spiro-thiohydantoin (GTH), as known GPb inhibitors, inhibit the rmGPb-catalysed reversible reaction in both directions. Ki values obtained in the direction of synthesis (1.92 ± 0.14 mM for caffeine and 11.5 ± 2.0 μM for GTH) have been shown to be in good agreement with the Ki values obtained in the direction of phosphorolysis (4.05 ± 0.26 mM for caffeine and 13.8 ± 1.6 μM for GTH). The higher difference between the inhibition constants of caffeine was explained by the non-competitive mechanism. The described ITC method using the developed experimental design and reaction conditions is suitable for activity measurements of different phosphorylase enzymes on various substrates and is applicable for inhibition studies as well.
Collapse
Affiliation(s)
- Kármen Szabó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Lili Kandra
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem Rev 2017; 117:1687-1764. [PMID: 28121130 DOI: 10.1021/acs.chemrev.6b00475] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Collapse
Affiliation(s)
- Éva Bokor
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| |
Collapse
|
7
|
Wang S, Dupin L, Noël M, Carroux CJ, Renaud L, Géhin T, Meyer A, Souteyrand E, Vasseur JJ, Vergoten G, Chevolot Y, Morvan F, Vidal S. Toward the Rational Design of Galactosylated Glycoclusters That Target Pseudomonas aeruginosa Lectin A (LecA): Influence of Linker Arms That Lead to Low-Nanomolar Multivalent Ligands. Chemistry 2016; 22:11785-94. [PMID: 27412649 DOI: 10.1002/chem.201602047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 02/03/2023]
Abstract
Anti-infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA-targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low-nanomolar (Kd =19 nm, microarray) ligand with a tyrosine-based linker arm could be identified in a structure-activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lucie Dupin
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Mathieu Noël
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Cindy J Carroux
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Louis Renaud
- Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Thomas Géhin
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Eliane Souteyrand
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France
| | - Gérard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576, CNRS - Université de Lille 1, Cité Scientifique, Avenue Mendeleiev, Bat C9, 59655, Villeneuve d'Ascq cedex, France
| | - Yann Chevolot
- Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134, Ecully cedex, France.
| | - François Morvan
- Institut des Biomolécules Max Mousseron (IBMM) - UMR 5247, CNRS - Université Montpellier - ENSCM, Place Eugène Bataillon, CC1704, 34095, Montpellier cedex 5, France.
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie UMR 5246, CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
8
|
Szennyes E, Bokor É, Batta G, Docsa T, Gergely P, Somsák L. Improved preparation of 4(5)-aryl-2-(β-d-glucopyranosyl)-imidazoles, the most efficient glucose analogue inhibitors of glycogen phosphorylase. RSC Adv 2016. [DOI: 10.1039/c6ra21839c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large scale (up to 20 g) preparation ofIandIIallowed the best inhibitors of glycogen phosphorylaseIIIto be synthesized in close to 60% overall yields fromI.
Collapse
Affiliation(s)
- Eszter Szennyes
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Éva Bokor
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Gyula Batta
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| | - Tibor Docsa
- Department of Medical Chemistry
- Faculty of Medicine
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Pál Gergely
- Department of Medical Chemistry
- Faculty of Medicine
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - László Somsák
- Department of Organic Chemistry
- University of Debrecen
- H-4002 Debrecen
- Hungary
| |
Collapse
|
9
|
Forgács A, Regueiro-Figueroa M, Barriada JL, Esteban-Gómez D, de Blas A, Rodríguez-Blas T, Botta M, Platas-Iglesias C. Mono-, bi-, and trinuclear bis-hydrated Mn(2+) complexes as potential MRI contrast agents. Inorg Chem 2015; 54:9576-87. [PMID: 26397808 DOI: 10.1021/acs.inorgchem.5b01677] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a series of ligands containing pentadentate 6,6′-((methylazanediyl)bis(methylene))dipicolinic acid binding units that form mono- (H2dpama), di- (mX(H2dpama)2), and trinuclear (mX(H2dpama)3) complexes with Mn2+ containing two coordinated water molecules per metal ion, which results in pentagonal bipyramidal coordination around the metal ions. In contrast, the hexadentate ligand 6,6′-((ethane-1,2-diylbis(azanediyl))bis(methylene))dipicolinic acid (H2bcpe) forms a complex with distorted octahedral coordination around Mn2+ that lacks coordinated water molecules. The protonation constants of the ligands and the stability constants of the Mn2+, Cu2+, and Zn2+ complexes were determined using potentiometric and spectrophotometric titrations in 0.15 M NaCl. The pentadentate dpama2– ligand and the di- and trinucleating mX(dpama)24– and mX(dpama)36– ligands provide metal complexes with stabilities that are very similar to that of the complex with the hexadentate ligand bcpe2–, with log β101 values in the range 10.1–11.6. Cyclic voltammetry experiments on aqueous solutions of the [Mn(bcpe)] complex reveal a quasireversible system with a half-wave potential of +595 mV versus Ag/AgCl. However, [Mn(dpama)] did not suffer oxidation in the range 0.0–1.0 V, revealing a higher resistance toward oxidation. A detailed 1H NMRD and 17O NMR study provided insight into the parameters that govern the relaxivity for these systems. The exchange rate of the coordinated water molecules in [Mn(dpama)] is relatively fast, kex298 = (3.06 ± 0.16) × 108 s–1. The trinuclear [mX(Mn(dpama)(H2O)2)3] complex was found to bind human serum albumin with an association constant of 1286 ± 55 M–1 and a relaxivity of the adduct of 45.2 ± 0.6 mM–1 s–1 at 310 K and 20 MHz.
Collapse
Affiliation(s)
- Attila Forgács
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | |
Collapse
|
10
|
Bokor É, Szennyes E, Csupász T, Tóth N, Docsa T, Gergely P, Somsák L. C-(2-Deoxy-d-arabino-hex-1-enopyranosyl)-oxadiazoles: synthesis of possible isomers and their evaluation as glycogen phosphorylase inhibitors. Carbohydr Res 2015; 412:71-9. [DOI: 10.1016/j.carres.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
|
11
|
Donnier-Maréchal M, Goyard D, Folliard V, Docsa T, Gergely P, Praly JP, Vidal S. 3-Glucosylated 5-amino-1,2,4-oxadiazoles: synthesis and evaluation as glycogen phosphorylase inhibitors. Beilstein J Org Chem 2015; 11:499-503. [PMID: 25977724 PMCID: PMC4419504 DOI: 10.3762/bjoc.11.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022] Open
Abstract
Glycogen phosporylase (GP) is a promising target for the control of glycaemia. The design of inhibitors binding at the catalytic site has been accomplished through various families of glucose-based derivatives such as oxadiazoles. Further elaboration of the oxadiazole aromatic aglycon moiety is now reported with 3-glucosyl-5-amino-1,2,4-oxadiazoles synthesized by condensation of a C-glucosyl amidoxime with N,N’-dialkylcarbodiimides or Vilsmeier salts. The 5-amino group introduced on the oxadiazole scaffold was expected to provide better inhibition of GP through potential additional interactions with the enzyme’s catalytic site; however, no inhibition was observed at 625 µM.
Collapse
Affiliation(s)
- Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Laboratoire de Chimie Organique 2, Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Laboratoire de Chimie Organique 2, Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Vincent Folliard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Laboratoire de Chimie Organique 2, Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Pal Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Laboratoire de Chimie Organique 2, Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Laboratoire de Chimie Organique 2, Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
12
|
Goyard D, Docsa T, Gergely P, Praly JP, Vidal S. Synthesis of 4-amidomethyl-1-glucosyl-1,2,3-triazoles and evaluation as glycogen phosphorylase inhibitors. Carbohydr Res 2015; 402:245-51. [DOI: 10.1016/j.carres.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
|
13
|
Kanfar N, Bartolami E, Zelli R, Marra A, Winum JY, Ulrich S, Dumy P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org Biomol Chem 2015; 13:9894-906. [DOI: 10.1039/c5ob01405k] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review highlights the recent implementation of multivalent nanoconstructs in enzyme inhibition and discusses the emerging trends in their design and identification.
Collapse
Affiliation(s)
- Nasreddine Kanfar
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
14
|
Gouin SG. Multivalent Inhibitors for Carbohydrate-Processing Enzymes: Beyond the “Lock-and-Key” Concept. Chemistry 2014; 20:11616-28. [DOI: 10.1002/chem.201402537] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Decroocq C, Joosten A, Sergent R, Mena Barragán T, Ortiz Mellet C, Compain P. The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Valency, Peripheral Ligand Structure, and Topology with Cyclodextrin-Based Iminosugar Click Clusters. Chembiochem 2013; 14:2038-49. [DOI: 10.1002/cbic.201300283] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 01/03/2023]
|
16
|
Goyard D, Baron M, Skourti PV, Chajistamatiou AS, Docsa T, Gergely P, Chrysina ED, Praly JP, Vidal S. Synthesis of 1,2,3-triazoles from xylosyl and 5-thioxylosyl azides: evaluation of the xylose scaffold for the design of potential glycogen phosphorylase inhibitors. Carbohydr Res 2012; 364:28-40. [DOI: 10.1016/j.carres.2012.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
17
|
C-Glucosylated malonitrile as a key intermediate towards carbohydrate-based glycogen phosphorylase inhibitors. Bioorg Med Chem 2012; 20:5592-9. [DOI: 10.1016/j.bmc.2012.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/14/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022]
|
18
|
Durka M, Buffet K, Iehl J, Holler M, Nierengarten JF, Vincent SP. The Inhibition of Liposaccharide Heptosyltransferase WaaC with Multivalent Glycosylated Fullerenes: A New Mode of Glycosyltransferase Inhibition. Chemistry 2011; 18:641-51. [DOI: 10.1002/chem.201102052] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Indexed: 12/13/2022]
|
19
|
Decroocq C, Rodríguez-Lucena D, Russo V, Mena Barragán T, Ortiz Mellet C, Compain P. The Multivalent Effect in Glycosidase Inhibition: Probing the Influence of Architectural Parameters with Cyclodextrin-based Iminosugar Click Clusters. Chemistry 2011; 17:13825-31. [DOI: 10.1002/chem.201102266] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Indexed: 11/08/2022]
|
20
|
|
21
|
|
22
|
Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten JF. Glycosidase Inhibition with Fullerene Iminosugar Balls: A Dramatic Multivalent Effect. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002802] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten JF. Glycosidase Inhibition with Fullerene Iminosugar Balls: A Dramatic Multivalent Effect. Angew Chem Int Ed Engl 2010; 49:5753-6. [DOI: 10.1002/anie.201002802] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Cheng K, Liu J, Sun H, Bokor É, Czifrák K, Kónya B, Tóth M, Docsa T, Gergely P, Somsák L. Tethered derivatives of d-glucose and pentacyclic triterpenes for homo/heterobivalent inhibition of glycogen phosphorylase. NEW J CHEM 2010. [DOI: 10.1039/b9nj00602h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|