1
|
Gao C, Ling S, Chen Z, Wang Y, Xu J. Coalescence law of microdroplet swarms in microchannels. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
|
3
|
Lee H, Partanen M, Lee M, Jeong S, Lee HJ, Kim K, Ryu W, Dholakia K, Oh K. A laser-driven optical atomizer: photothermal generation and transport of zeptoliter-droplets along a carbon nanotube deposited hollow optical fiber. NANOSCALE 2022; 14:5138-5146. [PMID: 35302135 DOI: 10.1039/d1nr06211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
From mechanical syringes to electric field-assisted injection devices, precise control of liquid droplet generation has been sought after, and the present state-of-the-art technologies have provided droplets ranging from nanoliter to subpicoliter volume sizes. In this study, we present a new laser-driven method to generate liquid droplets with a zeptoliter volume, breaking the fundamental limits of previous studies. We guided an infrared laser beam through a hollow optical fiber (HOF) with a ring core whose end facet was coated with single-walled carbon nanotubes. The laser light was absorbed by this nanotube film and efficiently generated a highly localized microring heat source. This evaporated the liquid inside the HOF, which rapidly recondensed into zeptoliter droplets in the surrounding air at room temperature. We spectroscopically confirmed the chemical structures of the liquid precursor maintained in the droplets by atomizing dye-dissolved glycerol. Moreover, we explain the fundamental physical principles as well as functionalities of the optical atomizer and perform a detailed characterization of the droplets. Our approach has strong prospects for nanoscale delivery of biochemical substances in minuscule zeptoliter volumes.
Collapse
Affiliation(s)
- Hyeonwoo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Mikko Partanen
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Photonics Group, Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Mingyu Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Sunghoon Jeong
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyeung Joo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| | - Wonhyoung Ryu
- Biomedical and Energy System Laboratory, Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kishan Dholakia
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, UK.
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
4
|
Zhang Y, Yan S, Yang X, Bai Z. Hydrodynamics and morphologies of droplets coalescence on fiber. AIChE J 2022. [DOI: 10.1002/aic.17673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Shenglin Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Xiaoyong Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
5
|
Pagán Pagán NM, Zhang Z, Nguyen TV, Marciel AB, Biswal SL. Physicochemical Characterization of Asphaltenes Using Microfluidic Analysis. Chem Rev 2022; 122:7205-7235. [PMID: 35196011 DOI: 10.1021/acs.chemrev.1c00897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Crude oils are complex mixtures of organic molecules, of which asphaltenes are the heaviest component. Asphaltene precipitation and deposition have been recognized to be a significant problem in oil production, transmission, and processing facilities. These macromolecular aromatics are challenging to characterize due to their heterogeneity and complex molecular structure. Microfluidic devices are able to capture key characteristics of reservoir rocks and provide new insights into the transport, reactions, and chemical interactions governing fluids used in the oil and gas industry. Understanding the microscale phenomena has led to better design of macroscale processes used by the industry. One area that has seen significant growth is in the area of chemical analysis under flowing conditions. Microfluidics and microscale analysis have advanced the understanding of complex mixtures by providing in situ imaging that can be combined with other chemical characterization methods to give details of how oil, water, and added chemicals interface with pore-scale detail. This review article aims to showcase how microfluidic devices offer new physical, chemical, and dynamic information on the behavior of asphaltenes. Specifically, asphaltene deposition and related flow assurance problems, interfacial properties and rheology, and evaluation of remediation strategies studied in microchannels and microfluidic porous media are presented. Examples of successful applications that address key asphaltene-related problems highlight the advances of microscale systems as a tool for advancing the physicochemical characterization of complex fluids for the oil and gas industry.
Collapse
Affiliation(s)
- Nataira M Pagán Pagán
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zhuqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Thao Vy Nguyen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Sankar E. M. A, Rengaswamy R. Droplet microfluidic networks as hybrid dynamical systems: Inlet spacing optimization for sorting of drops. AIChE J 2022. [DOI: 10.1002/aic.17633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Deng Y, Guo W, Zhu C, Fu T, Ma Y. Coalescence dynamics of two droplets in T-junction microchannel with a lantern-shaped expansion chamber. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Porto Santos T, Cejas CM, Cunha RL. Microfluidics as a tool to assess and induce emulsion destabilization. SOFT MATTER 2022; 18:698-710. [PMID: 35037925 DOI: 10.1039/d1sm01588e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic technology enables judicious control of the process parameters on a small length scale, which in turn allows speeding up the destabilization of emulsion droplets interface in microfluidic devices. In this light, microfluidic channels can be used as an efficient tool to assess emulsion stability and to observe the behavior of the droplets immediately after their formation, enabling to determine whether or not they are prone to re-coalescence. Observation of the droplets after emulsifier adsorption also allows the investigation of emulsion stability over time. Both evaluations would contribute to determine emulsion stability aiming at specific applications in food and pharmaceutical industries. Furthermore, emulsion coalescence can also be performed under extremely controlled conditions within the microfluidic devices in order to explore emulsion droplets as micro-reactors (for regulated biological and chemical assays). Such microfluidic procedures can be performed either in confined environments or under dynamic flow conditions. Under confined environments, droplets are observed in fixed positions simulating different environmental conditions. On the other hand, with the scrutiny of emulsions under dynamic flow processes, it is possible to determine the behavior of the droplets when subjected to shear forces, comparable to those experienced in conventional emulsification techniques or even in pumping operations. Given the above, this paper reviews different microfluidic techniques (such as changing channel geometry or wettability) hitherto used to destabilize emulsions, mainly focusing on the specificities of each study, whether the droplets are destabilized in confined or dynamic flow processes. Thereby, by going deeper into this review, readers will be able to identify different strategies for emulsion destabilization (in order to understand stabilizing mechanisms or even to apply these droplets as micro-reactors), as this paper shows the particularities of the most recent studies and elucidates the current state-of-the-art of this microfluidic-related application.
Collapse
Affiliation(s)
- Tatiana Porto Santos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil.
| |
Collapse
|
9
|
Ho TM, Razzaghi A, Ramachandran A, Mikkonen KS. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence. Adv Colloid Interface Sci 2022; 299:102541. [PMID: 34920366 DOI: 10.1016/j.cis.2021.102541] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 01/29/2023]
Abstract
Emulsions have gained significant importance in many industries including foods, pharmaceuticals, cosmetics, health care formulations, paints, polymer blends and oils. During emulsion generation, collisions can occur between newly-generated droplets, which may lead to coalescence between the droplets. The extent of coalescence is driven by the properties of the dispersed and continuous phases (e.g. density, viscosity, ion strength and pH), and system conditions (e.g. temperature, pressure or any external applied forces). In addition, the diffusion and adsorption behaviors of emulsifiers which govern the dynamic interfacial tension of the forming droplets, the surface potential, and the duration and frequency of the droplet collisions, contribute to the overall rate of coalescence. An understanding of these complex behaviors, particularly those of interfacial tension and droplet coalescence during emulsion generation, is critical for the design of an emulsion with desirable properties, and for the optimization of the processing conditions. However, in many cases, the time scales over which these phenomena occur are extremely short, typically a fraction of a second, which makes their accurate determination by conventional analytical methods extremely challenging. In the past few years, with advances in microfluidic technology, many attempts have demonstrated that microfluidic systems, characterized by micrometer-size channels, can be successfully employed to precisely characterize these properties of emulsions. In this review, current applications of microfluidic devices to determine the equilibrium and dynamic interfacial tension during droplet formation, and to investigate the coalescence stability of dispersed droplets applicable to the processing and storage of emulsions, are discussed.
Collapse
|
10
|
Guo W, Zhu C, Fu T, Ma Y. Coalescence dynamics of two droplets of different viscosities in T-junction microchannel with a funnel-typed expansion chamber. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Santos TP, Michelon M, Carvalho MS, Cunha RL. Formation and stability of oil-in-water emulsions based on components of bioprocesses: A microfluidic analysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Asymmetric behaviors of interface-stabilized slug pairs in a T-junction microchannel reactor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Conchouso D, Al-Ma'abadi A, Behzad H, Alarawi M, Hosokawa M, Nishikawa Y, Takeyama H, Mineta K, Gojobori T. Integration of Droplet Microfluidic Tools for Single-Cell Functional Metagenomics: An Engineering Head Start. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:504-518. [PMID: 34952209 PMCID: PMC8864243 DOI: 10.1016/j.gpb.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single cells in droplets at a rate of ∼250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers (i.e., 405, 488, 561, and 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability (>50,000 cells/day) for mining and bioprospecting metagenomic data
Collapse
Affiliation(s)
- David Conchouso
- Department of Industrial and Mechanical Engineering, Universidad de las Américas Puebla, Puebla 72810, Mexico; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amani Al-Ma'abadi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hayedeh Behzad
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Coalescence dynamics in oil-in-water emulsions at elevated temperatures. Sci Rep 2021; 11:10990. [PMID: 34040010 PMCID: PMC8155042 DOI: 10.1038/s41598-021-89919-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 11/23/2022] Open
Abstract
Emulsion stability in a flow field is an extremely important issue relevant for many daily-life applications such as separation processes, food manufacturing, oil recovery etc. Microfluidic studies can provide micro-scale insight of the emulsion behavior but have primarily focussed on droplet breakup rather than on droplet coalescence. The crucial impact of certain conditions such as increased pressure or elevated temperature frequently used in industrial processes is completely overlooked in such micro-scale studies. In this work, we investigate droplet coalescence in flowing oil-in-water emulsions subjected to higher than room temperatures namely between 20 to 70 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{\circ }$$\end{document}∘C. We use a specifically designed lab-on-a-chip application for this purpose. Coalescence frequency is observed to increase with increasing temperature. We associate with this observation the change in viscosity at higher temperatures triggering a stronger perturbation in the thin aqueous film separating the droplets. Using the scaling law for rupture time of such a thin film, we establish a mechanism leading to a higher coalescence frequency at elevated temperatures.
Collapse
|
15
|
The Role of Electric Pressure/Stress Suppressing Pinhole Defect on Coalescence Dynamics of Electrified Droplet. COATINGS 2021. [DOI: 10.3390/coatings11050503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dimple occurs by sudden pressure inversion at the droplet’s bottom interface when a droplet collides with the same liquid-phase or different solid-phase. The air film entrapped inside the dimple is a critical factor affecting the sequential dynamics after coalescence and causing defects like the pinhole. Meanwhile, in the coalescence dynamics of an electrified droplet, the droplet’s bottom interfaces change to a conical shape, and droplet contact the substrate directly without dimple formation. In this work, the mechanism for the dimple’s suppression (interfacial change to conical shape) was studied investigating the effect of electric pressure. The electric stress acting on a droplet interface shows the nonlinear electric pressure adding to the uniform droplet pressure. This electric stress locally deforms the droplet’s bottom interface to a conical shape and consequentially enables it to overcome the air pressure beneath the droplet. The electric pressure, calculated from numerical tracking for interface and electrostatic simulation, was at least 108 times bigger than the air pressure at the center of the coalescence. This work helps toward understanding the effect of electric stress on droplet coalescence and in the optimization of conditions in solution-based techniques like printing and coating.
Collapse
|
16
|
Porto Santos T, Cejas CM, Cunha RL, Tabeling P. Unraveling driving regimes for destabilizing concentrated emulsions within microchannels. SOFT MATTER 2021; 17:1821-1833. [PMID: 33399611 DOI: 10.1039/d0sm01674h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coalescence is the most widely demonstrated mechanism for destabilizing emulsion droplets in microfluidic chambers. However, we find that depending on the channel wall surface functionalization, surface zeta potential, type of surfactant, characteristics of the oil as a dispersed phase, or even the presence of externally-induced stress, other different destabilization mechanisms can occur in subtle ways. In general, we observe four regimes leading to destabilization of concentrated emulsions: (i) coalescence, (ii) emulsion bursts, (iii) a combination of the two first mechanisms, attributed to the simultaneous occurrence of coalescence and emulsion bursts; and (iv) compaction of the droplet network that eventually destabilizes to fracture-like behavior. We correlate various physico-chemical properties (zeta potential, contact angle, interfacial tension) to understand their respective influence on the destabilization mechanisms. This work provides insights into possible ways to control or inflict emulsion droplet destabilization for different applications.
Collapse
Affiliation(s)
- Tatiana Porto Santos
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil. and Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil.
| | - Patrick Tabeling
- Microfluidics, MEMS, Nanostructures Laboratory, CNRS Chimie Biologie Innovation (CBI) UMR 8231, Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, PSL Research University, 6 rue Jean Calvin 75005, Paris, France.
| |
Collapse
|
17
|
Sudeepthi A, Nath A, Yeo LY, Sen AK. Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1578-1587. [PMID: 33478219 DOI: 10.1021/acs.langmuir.0c03292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microwell arrays are amongst the most commonly used platforms for biochemical assays. However, the coalescence of droplets that constitute the dispersed phase of suspensions housed within microwells has not received much attention to date. Herein, we study the coalescence of droplets in a two-phase system in a microwell driven by surface acoustic waves (SAWs). The microwell structure, together with symmetric exposure to SAW irradiation, coupled from beneath the microwell via a piezoelectric substrate, gives rise to the formation of a pair of counter-rotating vortices that enable droplet transport, trapping, and coalescence. We elucidate the physics of the coalescence phenomenon using a scaling analysis of the relevant forces, namely, the acoustic streaming-induced drag force, the capillary and viscous forces associated with the drainage of the thin continuous phase film between the droplets and the van der Waals attraction force. We confirm that droplet-droplet interface contact is established through the formation of a liquid bridge, whose neck radius grows linearly in time in the preceding viscous regime and proportionally with the square root of time in the subsequent inertial regime. Further, we investigate the influence of the input SAW power and droplet size on the film drainage time and demarcate the coalescence and non-coalescence regimes to derive a criterion for the onset of coalescence. The distinct deformation patterns observed for a pair of contacting droplets in both the regimes are elucidated and the possibility for driving concurrent coalescence of multiple droplets is demonstrated. We expect the study will find relevance in the demulsification of immiscible phases and the mixing of samples/reagents within microwells for a variety of biochemical applications.
Collapse
Affiliation(s)
- A Sudeepthi
- Micro Nano Bio -Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Nath
- Micro Nano Bio -Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - L Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, Royal Melbourne Institute of Technology (RMIT University), Melbourne, Victoria 3001, Australia
| | - A K Sen
- Micro Nano Bio -Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
18
|
Hassan MR, Wang C. Ferro-hydrodynamic interactions between ferrofluid droplet pairs in simple shear flows. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Narayan S, Makhnenko I, Moravec DB, Hauser BG, Dallas AJ, Dutcher CS. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9827-9842. [PMID: 32693603 DOI: 10.1021/acs.langmuir.0c01414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coalescence of micrometer-scale droplets is impacted by several parameters, including droplet size, viscosities of the two phases, droplet velocity, angle of approach, as well as interfacial tension and surfactant coverage. The thinning dynamics of films between coalescing droplets can be particularly complex in the presence of surfactants, due to the generation of Marangoni stresses and reduced film mobility. Here, a microfluidic hydrodynamic "Stokes" trap is used to gently steer and trap surfactant-laden micrometer-sized droplets at the center of a cross-slot. Water droplets are formed upstream of the cross-slot using a microfluidic T-junction, in heavy and light mineral oils and stabilized using SPAN 80, an oil-soluble surfactant. Incoming droplets are made to coalesce with the trapped droplet, yielding measurements of the film drainage time. Film drainage times are measured as a function of continuous phase viscosity, incoming droplet speed, trapped droplet size, and surfactant concentrations above and below the critical micelle concentration (CMC). As expected, systems with higher surfactant concentrations and slower incoming droplet speed exhibit longer film drainage times. At low surfactant concentrations, the drainage time is longer for the more viscous heavy mineral oil in the continuous phase, whereas at high surfactant concentrations, the dependence on continuous phase viscosity vanishes. Perhaps more surprisingly, larger droplets and high confinement also result in longer film drainage times, potentially due to deformation of the droplet interfaces. The results are used here to determine critical conditions for coalescence, including both an upper and a lower critical capillary number. Moreover, it is shown that induced surfactant concentration gradient effects enable coalescence events after the droplets had originally flocculated, at surfactant concentrations above the CMC. The microfluidic hydrodynamic trap provides new insights into the role of surfactants in film drainage and opens avenues for controlled coalescence studies at micrometer length scales and millisecond time scales.
Collapse
Affiliation(s)
- Shweta Narayan
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States
| | - Iaroslav Makhnenko
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States
| | - Davis B Moravec
- Donaldson Company, Inc., Bloomington, MN 55431, United States
| | - Brad G Hauser
- Donaldson Company, Inc., Bloomington, MN 55431, United States
| | - Andrew J Dallas
- Donaldson Company, Inc., Bloomington, MN 55431, United States
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
20
|
Liu C, Legchenkova I, Han L, Ge W, Lv C, Feng S, Bormashenko E, Liu Y. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9608-9615. [PMID: 32787135 DOI: 10.1021/acs.langmuir.0c01733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directional transport of liquid droplets is crucial for various applications including water harvesting, anti-icing, and condensation heat transfer. Here, bouncing of water droplets with patterned superhydrophobic surfaces composed of circular equidistant grooves was studied. The directional transport of droplets toward the pole of the grooves was observed. The impact of the Weber number, initial polar distance r, and geometrical parameters of the surface on the directional droplet bouncing was experimentally explored. The nature of bouncing was switched when the Weber numbers exceeded We ≅ 20-25. The rebouncing height was slightly dependent on the initial polar coordinate of the impact point for a fixed We, whereas it grew for We > 20. The weak dependence of the droplet spreading time on the Weber number was close to the dependence predicted by the Hertz bouncing, thus evidencing the negligible influence of viscosity in the process. Change in the scaling exponent describing the dependence of the normalized spreading time on the Weber number was registered for We ≅ 25. The universal dependence of the offset distance ΔL of the droplets on the Weber number ΔL/D0 ∼ We1.5 was established. The normalized offset distance decreased with the normalized initial polar distance as ΔL/D0 ∼ (r/S)-1, where D0 and S are the droplet diameter and groove width, respectively. This research may yield more insights into droplet bouncing on patterned surfaces and offer more options in directed droplet transportation.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Irina Legchenkova
- Chemical Engineering Department, Engineering Faculty, Ariel University, Ariel 40700, Israel
| | - Libao Han
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wenna Ge
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Cunjing Lv
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shile Feng
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Edward Bormashenko
- Chemical Engineering Department, Engineering Faculty, Ariel University, Ariel 40700, Israel
| | - Yahua Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Zhang Z, Song J, Lin YJ, Wang X, Biswal SL. Comparing the Coalescence Rate of Water-in-Oil Emulsions Stabilized with Asphaltenes and Asphaltene-like Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7894-7900. [PMID: 32597186 DOI: 10.1021/acs.langmuir.0c00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Asphaltenes are a significant contributor to flow assurance problems related to crude oil production. Because of their polydispersity, model molecules such as coronene and violanthrone-79 (VO-79) have been used as mimics to represent the physiochemical properties of asphaltenes. This work aims to evaluate the emulsion-stabilization characteristics of fractionated asphaltenes and these two model molecules. Such evaluation is expected to better characterize the stabilizing mechanisms of asphaltenes on water-in-oil emulsions. The coalescence process of water-in-oil emulsion droplets is visualized using a microfluidic flow-focusing geometry. The rate of coalescence events is used as the parameter to assess emulsion stability. Interfacial tension (IFT) and oil/brine zeta potential are measured to help explain the differences in the rates of coalescence. VO-79 is found to be better at stabilizing emulsions as compared to coronene. Although VO-79 and asphaltenes have similar interfacial tension and oil/brine zeta potential values, the rate of coalescence differs significantly. This highlights the difficulty in using model molecules to mimic the transport dynamics of asphaltenes.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yu-Jiun Lin
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Xinglin Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Yi H, Zhu C, Fu T, Ma Y. Efficient coalescence of microdroplet in the cross-focused microchannel with symmetrical chamber. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Rigoni C, Fresnais J, Talbot D, Massart R, Perzynski R, Bacri JC, Abou-Hassan A. Magnetic Field-Driven Deformation, Attraction, and Coalescence of Nonmagnetic Aqueous Droplets in an Oil-Based Ferrofluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5048-5057. [PMID: 32302141 DOI: 10.1021/acs.langmuir.0c00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive compartments are attracting more and more attention through the years motivated by their wide applications in different fields including encapsulation, manipulation, and triggering of chemical reactions on demand. Among others, magnetic responsive compartments are particularly attractive due to the numerous advantages of magnetic fields compared to other external stimuli. In this article, we used an oil-based ferrofluid where the magnetic nanoparticles have been coated with different polymers to increase their amphiphilic character and surface activity, consequently rendering the interface magnetically responsive. Microliter aqueous nonmagnetic droplets dispersed in the oil-based ferrofluid were used as a model of microreactors. A comprehensive experimental and theoretical study of the deformation, attraction, and coalescence processes of the nonmagnetic water droplets coated with the magnetic nanoparticles under an applied magnetic field in the continuous oil-based ferrofluid phase is provided. To manipulate the packing of the nanoparticles at the water/oil interface, the ionic strength of the aqueous droplets was varied using different NaCl concentrations, and its effect on modulating the coalescence of the droplets was probed. Our results show that the water droplets deform along the magnetic field depending on the magnetic properties of the ferrofluid itself and on the surface properties of the interface, attract in pairs under the action of the magnetic dipole force, and coalesce by the action of the same force with a stochastic behavior. We have studied all of these phenomena as a function of the magnetic field applied, evaluating in each case the forces and/or pressures acting on the droplets with particular attention to roles of magnetic attraction, interface properties, and viscosity in the system. This work offers an overall set of tools to understand and predict the behavior of multiple water droplets in an oil-based ferrofluid for lab-on-a-chip applications.
Collapse
Affiliation(s)
- C Rigoni
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Espoo, Finland
| | - J Fresnais
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - D Talbot
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - R Massart
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - R Perzynski
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| | - J-C Bacri
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - A Abou-Hassan
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
| |
Collapse
|
24
|
Guo W, Zhu C, Fu T, Ma Y. Controllable Droplet Coalescence in the T-Junction Microchannel with a Funnel-Typed Expansion Chamber. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Weixi Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
25
|
Water Droplets Translocation and Fission in a 3D Bi-Planar Multifurcated T-Junction Microchannels. Processes (Basel) 2020. [DOI: 10.3390/pr8050510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Droplet fission has gained notable interest in drug delivery applications due to its ability to perform parallel operations in single device. Hitherto, droplet flow behavior in a 3D constriction was scarcely investigated. This study aims to investigate droplets fission inside a 3D bi-planar multifurcated microfluidic device. The flow behavior and droplet size distribution were studied in trifurcated microchannels using distilled water as dispersed phase (1 mPa·s) and olive oil (68 mPa·s) as continuous phase. Various sizes of subordinate daughter droplets were manipulated passively through the modulation of flowrate ratio (Q) (0.15 < Q < 3.33). Overall, we found droplet size coefficient of variations (CV%) ranging from 0.72% to 69%. Highly monodispersed droplets were formed at the upstream T-junction (CV% < 2%) while the droplet fission process was unstable at higher flowrate ratio (Q > 0.4) as they travel downstream (1.5% < CV% < 69%) to splitting junctions. Complex responses to the non-monotonic behavior of mean droplet size was found at the downstream boundaries, which arose from the deformations under nonuniform flow condition. CFD was used as a tool to study the preliminary maximum velocity (Umax) profile for the symmetrical (0.01334 m/s < Umax < 0.0153 m/s) and asymmetrical branched channels (0.0223 m/s< Umax < 0.00438 m/s), thus complementing the experimental model studies.
Collapse
|
26
|
Verma RK, Ghosh S. Comparison of Slug Breakup for Confined Liquid–Liquid Flows in Serpentine Minigeometry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raj Kumar Verma
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| |
Collapse
|
27
|
Yuan H, Chao Y, Shum HC. Droplet and Microchamber-Based Digital Loop-Mediated Isothermal Amplification (dLAMP). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904469. [PMID: 31899592 DOI: 10.1002/smll.201904469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/22/2019] [Indexed: 05/15/2023]
Abstract
Digital loop-mediated isothermal amplification (dLAMP) refers to compartmentalizing nucleic acids and LAMP reagents into a large number of individual partitions, such as microchambers and droplets. This compartmentalization enables dLAMP to be an excellent platform to quantify the absolute number of the target nucleic acids. Owing to its low requirement for instrumentation complexity, high specificity, and strong tolerance to inhibitors in the nucleic acid samples, dLAMP has been recognized as a simple and accurate technique to quantify pathogenic nucleic acid. Herein, the general process of dLAMP techniques is summarized, the current dLAMP techniques are categorized, and a comprehensive discussion on different types of dLAMP techniques is presented. Also, the challenges of the current dLAMP are illustrated together with the possible strategies to address these challenges. In the end, the future directions of the dLAMP developments, including multitarget detection, multisample detection, and processing nucleic acid extraction are outlined. With recently significant advances in dLAMP, this technology has the potential to see more widespread use beyond the laboratory in the future.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
28
|
Review on Microbubbles and Microdroplets Flowing through Microfluidic Geometrical Elements. MICROMACHINES 2020; 11:mi11020201. [PMID: 32075302 PMCID: PMC7074625 DOI: 10.3390/mi11020201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Two-phase flows are found in several industrial systems/applications, including boilers and condensers, which are used in power generation or refrigeration, steam generators, oil/gas extraction wells and refineries, flame stabilizers, safety valves, among many others. The structure of these flows is complex, and it is largely governed by the extent of interphase interactions. In the last two decades, due to a large development of microfabrication technologies, many microstructured devices involving several elements (constrictions, contractions, expansions, obstacles, or T-junctions) have been designed and manufactured. The pursuit for innovation in two-phase flows in these elements require an understanding and control of the behaviour of bubble/droplet flow. The need to systematize the most relevant studies that involve these issues constitutes the motivation for this review. In the present work, literature addressing gas-liquid and liquid-liquid flows, with Newtonian and non-Newtonian fluids, and covering theoretical, experimental, and numerical approaches, is reviewed. Particular focus is given to the deformation, coalescence, and breakup mechanisms when bubbles and droplets pass through the aforementioned microfluidic elements.
Collapse
|
29
|
Ma P, Liang D, Zhu C, Fu T, Ma Y. An effective method to facile coalescence of microdroplet in the symmetrical T-junction with expanded convergence. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Church J, Lundin JG, Diaz D, Mercado D, Willner MR, Lee WH, Paynter DM. Identification and characterization of bilgewater emulsions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:981-995. [PMID: 31326820 DOI: 10.1016/j.scitotenv.2019.06.510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Literature on bilgewater focuses on empirically determined treatment methods and lacks specific information on emulsion characteristics. Therefore, this review discusses potential emulsion stabilization mechanisms that occur in bilgewater and evaluates common approaches to study their behavior. Current knowledge on emulsion formation, stabilization, and destabilization is outlined to provide researchers and bilgewater treatment operators with the knowledge needed to determine emulsion prevention and treatment strategies. Furthermore, a broad assessment of bilgewater emulsion characterization techniques, from general water quality analysis to advanced droplet stability characterization methods are discussed in detail. Lastly, a survey of typical bilgewater characteristics and information on standard synthetic bilgewater mixtures used in the testing of oil pollution abatement equipment are presented. Overall, the goal of this article is to provide a better understanding of physical and thermodynamic properties of emulsions to help improve bilgewater treatment and management.
Collapse
Affiliation(s)
- Jared Church
- Wastewater Management Branch, Naval Surface Warfare Center, Carderock Division, West Bethesda, MD, USA; Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Jeffrey G Lundin
- Chemistry Division, United States Naval Research Laboratory, Washington, DC, USA
| | - Daniela Diaz
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Dianne Mercado
- Burnette School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Marjorie R Willner
- Wastewater Management Branch, Naval Surface Warfare Center, Carderock Division, West Bethesda, MD, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Danielle M Paynter
- Wastewater Management Branch, Naval Surface Warfare Center, Carderock Division, West Bethesda, MD, USA.
| |
Collapse
|
31
|
Grösche M, Korvink JG, Rabe KS, Niemeyer CM. Comparison of Storage Methods for Microfluidically Produced Water‐in‐Oil Droplets. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maximilian Grösche
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jan G. Korvink
- Karlsruhe Institute of Technology (KIT)Institute of Microstructure Technology (IMT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
32
|
Ji X, Zhou T, Deng Y, Shi L, Zhang X, Woo Joo S. A new droplet breakup phenomenon in electrokinetic flow through a microchannel constriction. Electrophoresis 2019; 41:758-760. [PMID: 31177552 DOI: 10.1002/elps.201900140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 11/07/2022]
Abstract
A completely new droplet breakup phenomenon is reported for droplets passing through a constriction in an electrokinetic flow. The breakup occurs during the droplet shape recovery process past the constriction throat by the interplay of the dielectrophoretic stress release and the interface energy for droplets with smaller permittivity than that of the ambient fluid. There are conditions for constriction ratios and droplet size that the droplet breakup occurs. The numerical predictions provided here require experimental verification, and then can give rise to a novel microfluidic device design with novel droplet manipulations.
Collapse
Affiliation(s)
- Xiang Ji
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Yongbo Deng
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Science, Changchun, Jilin, P. R. China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Xianman Zhang
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyongsan, South Korea
| |
Collapse
|
33
|
|
34
|
Fanalista F, Birnie A, Maan R, Burla F, Charles K, Pawlik G, Deshpande S, Koenderink GH, Dogterom M, Dekker C. Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS NANO 2019; 13:5439-5450. [PMID: 31074603 PMCID: PMC6543616 DOI: 10.1021/acsnano.9b00220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Bottom-up biology is an expanding research field that aims to understand the mechanisms underlying biological processes via in vitro assembly of their essential components in synthetic cells. As encapsulation and controlled manipulation of these elements is a crucial step in the recreation of such cell-like objects, microfluidics is increasingly used for the production of minimal artificial containers such as single-emulsion droplets, double-emulsion droplets, and liposomes. Despite the importance of cell morphology on cellular dynamics, current synthetic-cell studies mainly use spherical containers, and methods to actively shape manipulate these have been lacking. In this paper, we describe a microfluidic platform to deform the shape of artificial cells into a variety of shapes (rods and discs) with adjustable cell-like dimensions below 5 μm, thereby mimicking realistic cell morphologies. To illustrate the potential of our method, we reconstitute three biologically relevant protein systems (FtsZ, microtubules, collagen) inside rod-shaped containers and study the arrangement of the protein networks inside these synthetic containers with physiologically relevant morphologies resembling those found in living cells.
Collapse
Affiliation(s)
- Federico Fanalista
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anthony Birnie
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Renu Maan
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Federica Burla
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Kevin Charles
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Grzegorz Pawlik
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Siddharth Deshpande
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
35
|
Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations. J Colloid Interface Sci 2019; 544:130-143. [DOI: 10.1016/j.jcis.2019.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/22/2022]
|
36
|
Wang X, Liu Z, Pang Y. Collision characteristics of droplet pairs with the presence of arriving distance differences. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Vecchiolla D, Giri V, Biswal SL. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation. SOFT MATTER 2018; 14:9312-9325. [PMID: 30289417 DOI: 10.1039/c8sm01285g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By incorporating the techniques of geometrically mediated splitting and bubble-bubble breakup, the present work offers a novel microfluidic foam generation system via production of segregated, mono- or bidisperse bubbles at capacities exceeding 10 000 bubbles per second. Bubble-bubble pinch-off is precise at high capillary numbers (Ca > 0.065), generating monodisperse or bidisperse daughter bubbles for a symmetric or an asymmetric expansion respectively. Bi- or tridisperse foam is produced as pinch-off perfectly alternates such that the system contains twice the number of fragmented bubbles as intact bubbles. A relationship between the upstream bubble extension and the capillary number demarcates the different regimes of pinch-off defined with respect to frequency and precision: non-splitting, irregular, polydisperse, and monodisperse (or bidisperse for an asymmetric expansion). For tridisperse foam generation via a fixed asymmetric expansion geometry, the wall bubble confinement can be tuned to adjust the pinch-off accuracy in order to access a spectrum of fragmented bubble size ratios. The simplicity in operating and characterizing our system will enable studies on dynamic bubble interactions and ordered, wet foam applications.
Collapse
Affiliation(s)
- Daniel Vecchiolla
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | | | | |
Collapse
|
38
|
Jang Y, Cha C, Jung J, Oh J. Interfacial Compression-Dependent Merging of Two Miscible Microdroplets in an Asymmetric Cross-Junction for In Situ Microgel Formation. Macromol Res 2018. [DOI: 10.1007/s13233-019-7013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Ma R, Zhang Q, Fu T, Zhu C, Wang K, Ma Y, Luo G. Manipulation of microdroplets at a T-junction: Coalescence and scaling law. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Emulsions in porous media: From single droplet behavior to applications for oil recovery. Adv Colloid Interface Sci 2018; 256:305-325. [PMID: 29622270 DOI: 10.1016/j.cis.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
Emulsions are suspensions of droplets ubiquitous in oil recovery from underground reservoirs. Oil is typically trapped in geological porous media where emulsions are either formed in situ or injected to elicit oil mobilization and thus enhance the amount of oil recovered. Here, we briefly review basic concepts on geometrical and wetting features of porous media, including thin film stability and fluids penetration modes, which are more relevant for oil recovery and oil-contaminated aquifers. Then, we focus on the description of emulsion flow in porous media spanning from the behaviour of single droplets to the collective flow of a suspension of droplets, including the effect of bulk and interfacial rheology, hydrodynamic and physico-chemical interactions. Finally, we describe the particular case of emulsions used in underground porous media for enhanced oil recovery, thereby discussing some perspectives of future work. Although focused on oil recovery related topics, most of the insights we provide are useful towards remediation of oil-contaminated aquifers and for a basic understanding of emulsion flow in any kind of porous media, such as biological tissues.
Collapse
|
41
|
Zhang Q, Li H, Zhu C, Fu T, Ma Y, Li HZ. Micro-magnetofluidics of ferrofluid droplet formation in a T-junction. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Shen C, Liu X, Yu C, Chen Y. Visualization study on coalescence of droplets with different sizes in external liquid. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.23040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chaoqun Shen
- School of Hydraulic, Energy and Power Engineering; Yangzhou University; Yangzhou 225127 P. R. China
| | - Xiangdong Liu
- School of Hydraulic, Energy and Power Engineering; Yangzhou University; Yangzhou 225127 P. R. China
| | - Cheng Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment; Southeast University; Nanjing 210096 P. R. China
| | - Yongping Chen
- School of Hydraulic, Energy and Power Engineering; Yangzhou University; Yangzhou 225127 P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment; Southeast University; Nanjing 210096 P. R. China
| |
Collapse
|
44
|
|
45
|
Wang X, Zhu C, Fu T, Qiu T, Ma Y. Critical condition for bubble breakup in a microfluidic flow-focusing junction. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Gai Y, Kim M, Pan M, Tang SKY. Amphiphilic nanoparticles suppress droplet break-up in a concentrated emulsion flowing through a narrow constriction. BIOMICROFLUIDICS 2017; 11:034117. [PMID: 28652887 PMCID: PMC5466449 DOI: 10.1063/1.4985158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/26/2017] [Indexed: 05/28/2023]
Abstract
This paper describes the break-up behavior of a concentrated emulsion comprising drops stabilized by amphiphilic silica nanoparticles flowing in a tapered microchannel. Such geometry is often used in serial droplet interrogation and sorting processes in droplet microfluidics applications. When exposed to high viscous stresses, drops can undergo break-up and compromise their physical integrity. As these drops are used as micro-reactors, such compromise leads to a loss in the accuracy of droplet-based assays. Here, we show droplet break-up is suppressed by replacing the fluoro-surfactant similar to the one commonly used in current droplet microfluidics applications with amphiphilic nanoparticles as droplet stabilizer. We identify parameters that influence the break-up of these drops and demonstrate that break-up probability increases with increasing capillary number and confinement, decreasing nanoparticle size, and is insensitive to viscosity ratio within the range tested. Practically, our results reveal two key advantages of nanoparticles with direct applications to droplet microfluidics. First, replacing surfactants with nanoparticles suppresses break-up and increases the throughput of the serial interrogation process to 3 times higher than that in surfactant system under similar flow conditions. Second, the insensitivity of break-up to droplet viscosity makes it possible to process samples having different composition and viscosities without having to change the channel and droplet geometry in order to maintain the same degree of break-up and corresponding assay accuracy.
Collapse
Affiliation(s)
- Ya Gai
- Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305, USA
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ming Pan
- Department of Material Science, Stanford University, Stanford, California 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
47
|
Shen F, Li Y, Liu Z, Li X. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:66. [PMID: 28890680 PMCID: PMC5589143 DOI: 10.1007/s10404-017-1902-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.
Collapse
Affiliation(s)
- Feng Shen
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yi Li
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
48
|
Abstract
A three-dimensional (3D) tissue model has significant advantages over the conventional two-dimensional (2D) model. A 3D model mimics the relevant in-vivo physiological conditions, allowing a cell culture to serve as an effective tool for drug discovery, tissue engineering, and the investigation of disease pathology. The present reviews highlight the recent advances and the development of microfluidics based methods for the generation of cell spheroids. The paper emphasizes on the application of microfluidic technology for tissue engineering including the formation of multicellular spheroids (MCS). Further, the paper discusses the recent technical advances in the integration of microfluidic devices for MCS-based high-throughput drug screening. The review compares the various microfluidic techniques and finally provides a perspective for the future opportunities in this research area.
Collapse
|
49
|
MacConnell AB, Price AK, Paegel BM. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening. ACS COMBINATORIAL SCIENCE 2017; 19:181-192. [PMID: 28199790 PMCID: PMC5350604 DOI: 10.1021/acscombsci.6b00192] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
DNA-encoded synthesis
is rekindling interest in combinatorial compound
libraries for drug discovery and in technology for automated and quantitative
library screening. Here, we disclose a microfluidic circuit that enables
functional screens of DNA-encoded compound beads. The device carries
out library bead distribution into picoliter-scale assay reagent droplets,
photochemical cleavage of
compound from the bead, assay incubation, laser-induced fluorescence-based
assay detection, and fluorescence-activated droplet sorting to isolate
hits. DNA-encoded compound beads (10-μm diameter) displaying
a photocleavable positive control inhibitor pepstatin A were mixed
(1920 beads, 729 encoding sequences) with negative control beads (58 000
beads, 1728 encoding sequences) and screened for cathepsin D inhibition
using a biochemical enzyme activity assay. The circuit sorted 1518
hit droplets for collection following 18 min incubation over a 240
min analysis. Visual inspection of a subset of droplets (1188 droplets)
yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative
control beads). Using template barcoding strategies, it was possible
to count hit collection beads (1863) using next-generation sequencing
data. Bead-specific barcodes enabled replicate counting, and the false
discovery rate was reduced to 2.6% by only considering hit-encoding
sequences that were observed on >2 beads. This work represents
a complete
distributable small molecule discovery platform, from microfluidic
miniaturized automation to ultrahigh-throughput hit deconvolution
by sequencing.
Collapse
Affiliation(s)
- Andrew B. MacConnell
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K. Price
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M. Paegel
- Department
of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
50
|
Ouimet CM, D’Amico CI, Kennedy RT. Advances in capillary electrophoresis and the implications for drug discovery. Expert Opin Drug Discov 2017; 12:213-224. [PMID: 27911223 PMCID: PMC5521262 DOI: 10.1080/17460441.2017.1268121] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Many screening platforms are prone to assay interferences that can be avoided by directly measuring the target or enzymatic product. Capillary electrophoresis (CE) and microchip electrophoresis (MCE) have been applied in a variety of formats to drug discovery. CE provides direct detection of the product allowing for the identification of some forms of assay interference. The high efficiency, rapid separations, and low volume requirements make CE amenable to drug discovery. Areas covered: This article describes advances in capillary electrophoresis throughput, sample introduction, and target assays as they pertain to drug discovery and screening. Instrumental advances discussed include integrated droplet microfluidics platforms and multiplexed arrays. Applications of CE to assays of diverse drug discovery targets, including enzymes and affinity interactions are also described. Expert opinion: Current screening with CE does not fully take advantage of the throughputs or low sample volumes possible with CE and is most suitable as a secondary screening method or for screens that are inaccessible with more common platforms. With further development, droplet microfluidics coupled to MCE could take advantage of the low sample requirements by performing assays on the nanoliter scale at high throughput.
Collapse
Affiliation(s)
- Claire M. Ouimet
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
| | - Cara I. D’Amico
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, United States
| |
Collapse
|