1
|
Wang H, Hu XH, Wang HF. Temporal and Chirp Effects of Laser Pulses on the Spectral Lineshape in Sum-Frequency Generation Vibrational Spectroscopy. J Chem Phys 2022; 156:204706. [DOI: 10.1063/5.0088506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral lineshape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS has not been widely adopted. The majority of SFG measurements so far still relies on the picosecond scanning SFG-VS (ps-SFG-VS) or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm-1, which also results in less ideal spectral lineshape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this report, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral lineshape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., OTS (octadecyltrichlorosilane) monolayer on glass, obtained from the ps-SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements, are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting lineshape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening, and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS spectra.
Collapse
|
2
|
Hantal G, Sega M, Horvai G, Jedlovszky P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. II: Role of the Size and Charge Sign of the Counterions. J Phys Chem B 2021; 125:9005-9018. [PMID: 34319728 DOI: 10.1021/acs.jpcb.1c04216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.
Collapse
Affiliation(s)
- György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria.,Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| | - Marcello Sega
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11),Fürther Straße 248, D-90429 Nürnberg, Germany
| | - George Horvai
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
3
|
Role of the Counterions in the Surface Tension of Aqueous Surfactant Solutions. A Computer Simulation Study of Alkali Dodecyl Sulfate Systems. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have investigated the surface tension contributions of the counterions, surfactant headgroups and tails, and water molecules in aqueous alkali dodecyl sulfate (DS) solutions close to the saturated surface concentration by analyzing the lateral pressure profile contribution of these components using molecular dynamics simulations. For this purpose, we have used the combination of two popular force fields, namely KBFF for the counterions and GROMOS96 for the surfactant, which are both parameterized for the SPC/E water model. Except for the system containing Na+ counterions, the surface tension of the surfactant solutions has turned out to be larger rather than smaller than that of neat water, showing a severe shortcoming of the combination of the two force fields. We have traced back this failure of the potential model combination to the unphysically strong attraction of the KBFF counterions, except for Na+, to the anionic head of the surfactants. Despite this failure of the model, we have observed a clear relation between the soft/hard character (in the sense of the Hofmeister series) and the surface tension contribution of the counterions, which, given the above limitations of the model, can only be regarded as an indicative result. We emphasize that the obtained results, although in a twisted way, clearly stress the crucial role the counterions of ionic surfactants play in determining the surface tension of the aqueous surfactant solutions.
Collapse
|
4
|
Biadasz A, Rytel K, Kędzierski K, Adamski A, Kotkowiak M, Stachowiak A, Barszcz B, Jeong HY, Kim TD. The liquid crystal induced J-type aggregation of diketopyrrolopyrrole derivatives in monolayer. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Gürbulak O, Cebe E. Molecular dynamics study of 5CB at the air-water interface: From gas to beyond the monolayer collapse. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gürbulak O, Cebe E. Molecular dynamics simulations on the adsorption of 4-n-octyl-4′-cyanobiphenyl (8CB) at the air/water interface. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1380530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oğuz Gürbulak
- Department of Physics, Faculty of Science, Ege University, Izmir, Turkey
| | - Emine Cebe
- Department of Physics, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Hallett JE, Hayward DW, Arnold T, Bartlett P, Richardson RM. X-ray reflectivity reveals ionic structure at liquid crystal-aqueous interfaces. SOFT MATTER 2017; 13:5535-5542. [PMID: 28795175 DOI: 10.1039/c7sm01261f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here X-ray reflectivity has been used to determine the structure of liquid crystal monolayers for different cyanobiphenyl homologues supported on aqueous solutions of two different salt species. Sodium iodide induces homeotropic ordering for all of the monolayer forming liquid crystal homologues studied here, and forms a Stern layer of iodide ions at the liquid crystal cyano headgroup, similar to the case of lipids or surfactants supported on electrolyte solutions. The liquid crystal headgroups were also found to penetrate into the water surface when binding with iodide ions. Sodium bromide, however, does not form the same localisation of ions close to a liquid crystal monolayer, and instead appears to produce no noticeable change in the scattering length density of the liquid crystal monolayer compared to pure water. However, on further compression the X-ray reflectivity dramatically changes, revealing the emergence of the so-called "trilayer" structure for 5CB and 8CB. This transition occurs at a lower areal density for sodium bromide than for pure water, and unlike for the uncompressed film, a layer of bromide ions was found at the trilayer-water interface.
Collapse
Affiliation(s)
- James E Hallett
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
| | | | | | | | | |
Collapse
|
8
|
Abrankó-Rideg N, Horvai G, Jedlovszky P. Structure of the adsorption layer of various ionic and non-ionic surfactants at the free water surface, as seen from computer simulation and ITIM analysis. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Feng RR, Guo Y, Wang HF. Reorientation of the “free OH” group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy. J Chem Phys 2014; 141:18C507. [PMID: 25399172 DOI: 10.1063/1.4895561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ran-Ran Feng
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
10
|
Johnson CM, Baldelli S. Vibrational Sum Frequency Spectroscopy Studies of the Influence of Solutes and Phospholipids at Vapor/Water Interfaces Relevant to Biological and Environmental Systems. Chem Rev 2014; 114:8416-46. [DOI: 10.1021/cr4004902] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C. Magnus Johnson
- Division of Surface and Corrosion
Science, Royal Institute of Technology (KTH), Drottning Kristinas Väg 51, SE-100 44 Stockholm, Sweden
| | - Steven Baldelli
- Department
of Chemistry, University of Houston, Texas 77204-5003, United States
| |
Collapse
|
11
|
Unique determination of the –CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Velarde L, Wang HF. Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J Chem Phys 2013; 139:084204. [DOI: 10.1063/1.4818996] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
13
|
Abrankó-Rideg N, Darvas M, Horvai G, Jedlovszky P. Immersion Depth of Surfactants at the Free Water Surface: A Computer Simulation and ITIM Analysis Study. J Phys Chem B 2013; 117:8733-46. [DOI: 10.1021/jp401749r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nóra Abrankó-Rideg
- Laboratory of Interfaces and
Nanosize Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány P. Stny
1/A, H-1117 Budapest, Hungary
| | - Mária Darvas
- SISSA, Department of Biological and Statistical
Physics, 265 via Bonomea,
I-34136 Trieste, Italy
| | - George Horvai
- MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gellért
tér 4, H-1111 Budapest, Hungary
- Department of Inorganic and
Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111
Budapest, Hungary
| | - Pál Jedlovszky
- Laboratory of Interfaces and
Nanosize Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány P. Stny
1/A, H-1117 Budapest, Hungary
- MTA-BME Research Group of Technical Analytical Chemistry, Szt. Gellért
tér 4, H-1111 Budapest, Hungary
- EKF Department of Chemistry, Leányka u. 6, H-3300 Eger, Hungary
| |
Collapse
|
14
|
|
15
|
Carlton RJ, Ma CD, Gupta JK, Abbott NL. Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12796-12805. [PMID: 22866677 PMCID: PMC3448957 DOI: 10.1021/la3024293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4'-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate, and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 Å(2)/molecule for NaClO(4)) and thus smaller molecular tilt angles (30° from the surface normal for NaClO(4)) than kosmotropic salts (5.0 mN/m at 38 Å(2)/molecule with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights into ionic phenomena occurring at LC-aqueous interfaces, and reveal that the long-range ordering of LC oils can amplify ion-specific interactions at these interfaces into macroscopic ordering transitions.
Collapse
|
16
|
Zhang Z, Guo Y. Interfacial Water Structure in Langmuir Monolayer and Gibbs Layer Probed by Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Laß K, Friedrichs G. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jc006609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Feng RR, Guo Y, Lü R, Velarde L, Wang HF. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface. J Phys Chem A 2011; 115:6015-27. [DOI: 10.1021/jp110404h] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ran-ran Feng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Lü
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Luis Velarde
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Hong-fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Niga P, Johnson CM, Frey JG, Rutland MW. Crown ethers at the aqueous solution–air interface. Part 2. Electrolyte effects, ethylene oxide hydration and temperature behaviour. Phys Chem Chem Phys 2011; 13:7939-47. [DOI: 10.1039/c0cp02144j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Chen X, Hua W, Huang Z, Allen HC. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc 2010; 132:11336-42. [PMID: 20698700 DOI: 10.1021/ja1048237] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase-sensitive vibrational sum frequency generation is employed to investigate the water structure at phospholipid/water interfaces. Interfacial water molecules are oriented preferentially by the electrostatic potential imposed by the phospholipids and have, on average, their dipole pointing toward the phospholipid tails for all phospholipids studied, dipalmitoyl phosphocholine (DPPC), dipalmitoyl phosphoethanolamine (DPPE), dipalmitoyl phosphate (DPPA), dipalmitoyl phosphoglycerol (DPPG), and dipalmitoyl phospho-l-serine (DPPS). Zwitterionic DPPC and DPPE reveal weaker water orienting capability relative to net negative DPPA, DPPG, and DPPS. Binding of calcium cations to the lipid phosphate group reduces ordering of the water molecules.
Collapse
Affiliation(s)
- Xiangke Chen
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
21
|
Yang Z, Abbott NL. Spontaneous formation of water droplets at oil-solid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:13797-804. [PMID: 20712383 PMCID: PMC2951552 DOI: 10.1021/la101740p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report observations of spontaneous formation of micrometer-sized water droplets within micrometer-thick films of a range of different oils (isotropic and nematic 4-cyano-4'-pentylbiphenyl (5CB) and silicone, olive and corn oil) that are supported on glass substrates treated with octadecyltrichlorosilane (OTS) and immersed under water. Confocal imaging was used to determine that the water droplets nucleate and grow at the interface between the oils and OTS-treated glass with a contact angle of approximately 130 degrees. A simple thermodynamic model based on macroscopic interfacial energetic arguments consistent with the contact angle of 130 degrees, however, fails to account for the spontaneous formation of the water droplets. zeta-potential measurements performed with OTS-treated glass (-59.0 +/- 16.4 mV) and hydrophobic monolayers formed on gold films (2.0 +/- 0.7 mV), when combined with the observed absence of droplet formation under films of oil supported on the latter surfaces, suggest that the charge of the oil-solid interface promotes partitioning of water to the interfacial region. The hydrophobic nature of the OTS-treated glass promotes dewetting of water accumulated in the interfacial region into droplets (a thin film of water is seen to form on bare glass). The inhibitory effect on droplet formation of both salt (NaCl) and sucrose (0.1-500 mM) added to the aqueous phase was similar, indicating that both solutes lower the chemical potential of the bulk water (osmotic effect) sufficiently to prevent partitioning of the water to the interface between the oil and supporting substrates. These results suggest that charged, hydrophobic surfaces can provide routes to spontaneous formation of surface-supported, water-in-oil emulsions.
Collapse
Affiliation(s)
- Zhongqiang Yang
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | - Nicholas L. Abbott
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| |
Collapse
|
22
|
Campen RK, Ngo TTM, Sovago M, Ruysschaert JM, Bonn M. Molecular Restructuring of Water and Lipids upon the Interaction of DNA with Lipid Monolayers. J Am Chem Soc 2010; 132:8037-47. [DOI: 10.1021/ja100838q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. Kramer Campen
- FOM Institute for Atomic and Molecular Physics [AMOLF], 104 Science Park, 1098 XG Amsterdam, The Netherlands, and Structure and Function of Biological Membranes (SFMB), Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/2, B-1050 Brussels, Belgium
| | - Thuy T. M. Ngo
- FOM Institute for Atomic and Molecular Physics [AMOLF], 104 Science Park, 1098 XG Amsterdam, The Netherlands, and Structure and Function of Biological Membranes (SFMB), Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/2, B-1050 Brussels, Belgium
| | - Maria Sovago
- FOM Institute for Atomic and Molecular Physics [AMOLF], 104 Science Park, 1098 XG Amsterdam, The Netherlands, and Structure and Function of Biological Membranes (SFMB), Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/2, B-1050 Brussels, Belgium
| | - Jean-Marie Ruysschaert
- FOM Institute for Atomic and Molecular Physics [AMOLF], 104 Science Park, 1098 XG Amsterdam, The Netherlands, and Structure and Function of Biological Membranes (SFMB), Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/2, B-1050 Brussels, Belgium
| | - Mischa Bonn
- FOM Institute for Atomic and Molecular Physics [AMOLF], 104 Science Park, 1098 XG Amsterdam, The Netherlands, and Structure and Function of Biological Membranes (SFMB), Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/2, B-1050 Brussels, Belgium
| |
Collapse
|
23
|
Wei F, Xu YY, Guo Y, Liu SL, Wang HF. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/06/592-600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Sagisaka M, Hino M, Nakanishi Y, Inui Y, Kawaguchi T, Tsuchiya K, Sakai H, Abe M, Yoshizawa A. Self-assembly of double-tail anionic surfactant having cyanobiphenyl terminal groups in water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10230-10236. [PMID: 19705901 DOI: 10.1021/la901032c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study reports the interfacial properties and lyotropic liquid crystal formation of sodium 1,2-bis{6-[4-(4-cyanophenyl)phenyloxy]hexyloxycarbonyl}ethanesulfonate (SBCPHS), which is a double-tail surfactant with cyanobiphenyl terminal groups, in water. Polarized microscopic observation of water/SBCPHS mixtures revealed the presence of columnar and lamellar phases. In the lamellar phase, myelin figures representing multilamellar tubes were observed, and some of these figures had a double-helix structure. In order to examine these liquid crystal structures in detail, the bilayer thickness of the lamellar tubes and the lattice parameters of the columnar phase were measured by small-angle X-ray scattering analysis. Four scattering peaks that could be ascribed to C2/m symmetry were observed for the columnar phase. The bilayer thickness and one of the lattice parameters were smaller than twice the molecular length of SBCPHS; this showed that the liquid crystal phases had intercalated structures. Comparison of SBCPHS with a typical double-tail hydrocarbon surfactant revealed that the cyanobiphenyl terminal groups in the former helped increase the stability of the liquid crystal formed at low temperatures. The stabilizing effect of the cyanobiphenyl terminal groups on the liquid crystals could have been driven by electrostatic intermolecular interactions between the terminal groups in antiparallel arrangement of the SBCPHS molecules.
Collapse
Affiliation(s)
- Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bian HT, Feng RR, Guo Y, Wang HF. Specific Na+ and K+ cation effects on the interfacial water molecules at the air/aqueous salt solution interfaces probed with nonresonant second harmonic generation. J Chem Phys 2009; 130:134709. [DOI: 10.1063/1.3104609] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Wang F, Huang Z, Cui ZF, Wang HF. Absolute Orientation of Molecules with Competing Hydrophilic Head Groups at the Air/Water Interface Probed with Sum Frequency Generation Vibrational Spectroscopy. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/02/197-203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Allen HC, Casillas-Ituarte NN, Sierra-Hernández MR, Chen X, Tang CY. Shedding light on water structure at air–aqueous interfaces: ions, lipids, and hydration. Phys Chem Chem Phys 2009; 11:5538-49. [DOI: 10.1039/b901209e] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|