1
|
Williams LA, Neophytou A, Garmann RF, Chakrabarti D, Manoharan VN. Effect of coat-protein concentration on the self-assembly of bacteriophage MS2 capsids around RNA. NANOSCALE 2024; 16:3121-3132. [PMID: 38258446 DOI: 10.1039/d3nr03292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Self-assembly is a vital part of the life cycle of certain icosahedral RNA viruses. Furthermore, the assembly process can be harnessed to make icosahedral virus-like particles (VLPs) from coat protein and RNA in vitro. Although much previous work has explored the effects of RNA-protein interactions on the assembly products, relatively little research has explored the effects of coat-protein concentration. We mix coat protein and RNA from bacteriophage MS2, and we use a combination of gel electrophoresis, dynamic light scattering, and transmission electron microscopy to investigate the assembly products. We show that with increasing coat-protein concentration, the products transition from well-formed MS2 VLPs to "monster" particles consisting of multiple partial capsids to RNA-protein condensates consisting of large networks of RNA and partially assembled capsids. We argue that the transition from well-formed to monster particles arises because the assembly follows a nucleation-and-growth pathway in which the nucleation rate depends sensitively on the coat-protein concentration, such that at high protein concentrations, multiple nuclei can form on each RNA strand. To understand the formation of the condensates, which occurs at even higher coat-protein concentrations, we use Monte Carlo simulations with coarse-grained models of capsomers and RNA. These simulations suggest that the formation of condensates occurs by the adsorption of protein to the RNA followed by the assembly of capsids. Multiple RNA molecules can become trapped when a capsid grows from capsomers attached to two different RNA molecules or when excess protein bridges together growing capsids on different RNA molecules. Our results provide insight into an important biophysical process and could inform design rules for making VLPs for various applications.
Collapse
Affiliation(s)
- LaNell A Williams
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Andreas Neophytou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rees F Garmann
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Martín-Bravo M, Gomez Llorente JM, Hernández-Rojas J. Virtual indentation of the empty capsid of the minute virus of mice using a minimal coarse-grained model. Phys Rev E 2024; 109:024402. [PMID: 38491620 DOI: 10.1103/physreve.109.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 03/18/2024]
Abstract
A minimal coarse-grained model for T=1 viral capsids assembled from 20 protein rigid trimers has been designed by extending a previously proposed form of the interaction energy written as a sum of anisotropic pairwise interactions between the trimeric capsomers. The extension of the model has been performed to properly account for the coupling between two internal coordinates: the one that measures the intercapsomer distance and the other that gives the intercapsomer dihedral angle. The model has been able to fit with less than a 10% error the atomic force microscopy (AFM) indentation experimental data for the empty capsid of the minute virus of mice (MVM), providing in this way an admissible picture of the main mechanisms behind the capsid deformations. In this scenario, the bending of the intercapsomer dihedral angle is the angular internal coordinate that can support larger deformations away from its equilibrium values, determining important features of the AFM indentation experiments as the elastic constants along the three symmetry axes of the capsid and the critical indentations. From the value of one of the parameters of our model, we conclude that trimers in the MVM must be quite oblate tops, in excellent agreement with their known structure. The transition from the linear to the nonlinear regimes sampled in the indentation process appears to be an interesting topic for future research in physical virology.
Collapse
Affiliation(s)
- Manuel Martín-Bravo
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain
| | | | | |
Collapse
|
3
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
4
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
5
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
6
|
Martín-Bravo M, Llorente JMG, Hernández-Rojas J, Wales DJ. Minimal Design Principles for Icosahedral Virus Capsids. ACS NANO 2021; 15:14873-14884. [PMID: 34492194 PMCID: PMC8939845 DOI: 10.1021/acsnano.1c04952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The geometrical structures of single- and multiple-shell icosahedral virus capsids are reproduced as the targets that minimize the cost corresponding to relatively simple design functions. Capsid subunits are first identified as building blocks at a given coarse-grained scale and then represented in these functions as point particles located on an appropriate number of concentric spherical surfaces. Minimal design cost is assigned to optimal spherical packings of the particles. The cost functions are inspired by the packings favored for the Thomson problem, which minimize the electrostatic potential energy between identical charged particles. In some cases, icosahedral symmetry constraints are incorporated as external fields acting on the particles. The simplest cost functions can be obtained by separating particles in disjoint nonequivalent sets with distinct interactions, or by introducing interacting holes (the absence of particles). These functions can be adapted to reproduce any capsid structure found in real viruses. Structures absent in Nature require significantly more complex designs. Measures of information content and complexity are assigned to both the cost functions and the capsid geometries. In terms of these measures, icosahedral structures and the corresponding cost functions are the simplest solutions.
Collapse
Affiliation(s)
- Manuel Martín-Bravo
- Departamento
de Física and IUdEA, Universidad
de La Laguna, 38205 Tenerife, Spain
| | | | | | - David J. Wales
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
7
|
Waltmann C, Asor R, Raviv U, Olvera de la Cruz M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS NANO 2020; 14:4430-4443. [PMID: 32208635 PMCID: PMC7232851 DOI: 10.1021/acsnano.9b10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding viral assembly pathways is of critical importance to biology, medicine, and nanotechology. Here, we study the assembly path of a system with various structures, the simian vacuolating virus 40 (SV40) polymorphs. We simulate the templated assembly process of VP1 pentamers, which are the constituents of SV40, into icosahedal shells made of N = 12 pentamers (T = 1). The simulations include connections formed between pentamers by C-terminal flexible lateral units, termed here "C-terminal ligands", which are shown to control assembly behavior and shell dynamics. The model also incorporates electrostatic attractions between the N-terminal peptide strands (ligands) and the negatively charged cargo, allowing for agreement with experiments of RNA templated assembly at various pH and ionic conditions. During viral assembly, pentamers bound to any template increase its effective size due to the length and flexibility of the C-terminal ligands, which can connect to other VP1 pentamers and recruit them to a partially completed capsid. All closed shells formed other than the T = 1 feature the ability to dynamically rearrange and are thus termed "pseudo-closed". The N = 13 shell can even spontaneously "self-correct" by losing a pentamer and become a T = 1 capsid when the template size fluctuates. Bound pentamers recruiting additional pentamers to dynamically rearranging capsids allow closed shells to continue growing via the pseudo-closed growth mechanism, for which experimental evidence already exists. Overall, we show that the C-terminal ligands control the dynamic assembly paths of SV40 polymorphs.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Martín-Bravo M, Gomez Llorente JM, Hernández-Rojas J. A minimal coarse-grained model for the low-frequency normal mode analysis of icosahedral viral capsids. SOFT MATTER 2020; 16:3443-3455. [PMID: 32196061 DOI: 10.1039/d0sm00299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main goal of this work is the design of a coarse-grained theoretical model of minimal resolution for the study of the physical properties of icosahedral virus capsids within the linear-response regime. In this model the capsid is represented as an interacting many-body system whose composing elements are capsid subunits (capsomers), which are treated as three-dimensional rigid bodies. The total interaction potential energy is written as a sum of pairwise capsomer-capsomer interactions. Based on previous work [Gomez Llorente et al., Soft Matter, 2014, 10, 3560], a minimal and complete anisotropic binary interaction that includes a full Hessian matrix of independent force constants is proposed. In this interaction model, capsomers have rotational symmetry around an axis of order n > 2. The full coarse-grained model is applied to analyse the low-frequency normal-mode spectrum of icosahedral T = 1 capsids. The model performance is evaluated by fitting its predicted spectrum to the full-atom results for the Satellite Tobacco Necrosis Virus (STNV) capsid [Dykeman and Sankey, Phys. Rev. Lett., 2008, 100, 028101]. Two capsomer choices that are compatible with the capsid icosahedral symmetry are checked, namely pentamers (n = 5) and trimers (n = 3). Both subunit types provide fair fits, from which the magnitude of the coarse-grained force constants for a real virus is obtained. The model is able to uncover latent instabilities whose analysis is fully consistent with the current knowledge about the STNV capsid, which does not self-assemble in the absence of RNA and is thermally unstable. The straightforward generalisability of the model beyond the linear regime and its completeness make it a promising tool to theoretically interpret many experimental data such as those provided by the atomic force microscopy or even to better understand processes far from equilibrium such as the capsid self-assembly.
Collapse
Affiliation(s)
- M Martín-Bravo
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| | - J M Gomez Llorente
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| | - J Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| |
Collapse
|
9
|
Fejer SN. Minimalistic coarse-grained modeling of viral capsid assembly. COMPUTATIONAL APPROACHES FOR UNDERSTANDING DYNAMICAL SYSTEMS: PROTEIN FOLDING AND ASSEMBLY 2020; 170:405-434. [DOI: 10.1016/bs.pmbts.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Reguera D, Hernández-Rojas J, Gomez Llorente JM. Kinetics of empty viral capsid assembly in a minimal model. SOFT MATTER 2019; 15:7166-7172. [PMID: 31483421 DOI: 10.1039/c9sm01593k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The efficient construction of a protective protein shell or capsid is one of the most crucial steps in the replication cycle of a virus. The formation of the simplest capsid typically proceeds by the spontaneous assembly of identical building blocks. This process can also be achieved in vitro even in the absence of genetic material, thus opening the door to the production of artificial viral cages for a myriad of applications. In this work, we analyze the efficiency and the kinetic peculiarities of this self-assembly process using Brownian Dynamics simulations. We use a minimal model that considers identical assembly units and is able to reproduce successfully the correct final architecture of spherical capsids. The selection of a specific size and structure is achieved by changing a single parameter that imposes an angular anisotropy on the interaction. We analyze how the geometrical constraints of the interaction affect the efficiency of the assembly. We find that the optimal conditions for an efficient assembly from a kinetic point of view strongly depart from the lowest capsid energy corresponding to the minimum of the potential energy landscape. Our work illustrates the important differences between the equilibrium and dynamic characteristics of viral self-assembly, and provides important insights on how to design specific interactions for a successful assembly of artificial viral cages.
Collapse
Affiliation(s)
- D Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028-Barcelona, Spain.
| | | | | |
Collapse
|
11
|
Mohajerani F, Hagan MF. The role of the encapsulated cargo in microcompartment assembly. PLoS Comput Biol 2018; 14:e1006351. [PMID: 30063715 PMCID: PMC6086489 DOI: 10.1371/journal.pcbi.1006351] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial microcompartments are large, roughly icosahedral shells that assemble around enzymes and reactants involved in certain metabolic pathways in bacteria. Motivated by microcompartment assembly, we use coarse-grained computational and theoretical modeling to study the factors that control the size and morphology of a protein shell assembling around hundreds to thousands of molecules. We perform dynamical simulations of shell assembly in the presence and absence of cargo over a range of interaction strengths, subunit and cargo stoichiometries, and the shell spontaneous curvature. Depending on these parameters, we find that the presence of a cargo can either increase or decrease the size of a shell relative to its intrinsic spontaneous curvature, as seen in recent experiments. These features are controlled by a balance of kinetic and thermodynamic effects, and the shell size is assembly pathway dependent. We discuss implications of these results for synthetic biology efforts to target new enzymes to microcompartment interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
12
|
Lutomski CA, Lyktey NA, Pierson EE, Zhao Z, Zlotnick A, Jarrold MF. Multiple Pathways in Capsid Assembly. J Am Chem Soc 2018; 140:5784-5790. [PMID: 29672035 DOI: 10.1021/jacs.8b01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For a three-dimensional structure to spontaneously self-assemble from many identical components, the steps on the pathway must be kinetically accessible. Many virus capsids are icosahedral and assembled from hundreds of identical proteins, but how they navigate the assembly process is poorly understood. Capsid assembly is thought to involve stepwise addition of subunits to a growing capsid fragment. Coarse-grained models suggest that the reaction occurs on a downhill energy landscape, so intermediates are expected to be fleeting. In this work, charge detection mass spectrometry (CDMS) has been used to track assembly of the hepatitis B virus (HBV) capsid in real time. The icosahedral T = 4 capsid of HBV is assembled from 120 capsid protein dimers. Our results indicate that there are multiple pathways for assembly. Under conditions that favor a modest association energy there is no accumulation of large intermediates, which indicates that available pathways include ones on a downhill energy surface. Under higher salt conditions, where subunit interactions are strengthened, around half of the products of the initial assembly reaction have masses close to the T = 4 capsid and the other half are stalled intermediates which emerge abruptly at around 90 dimers, indicating a bifurcation in the ensemble of assembly paths. When incubated at room temperature, the 90-dimer intermediates accumulate dimers and gradually shift to higher mass and merge with the capsid peak. Though free subunits are present in solution, the stalled intermediates indicate the presence of a local minima on the energy landscape. Some intermediates may result from hole closure, where the growing capsid distorts to close the hole due to the missing capsid proteins or from a species where subsequent additions are particularly labile.
Collapse
|
13
|
Okumura H, Higashi M, Yoshida Y, Sato H, Akiyama R. Theoretical approaches for dynamical ordering of biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:212-228. [PMID: 28988931 DOI: 10.1016/j.bbagen.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. SCOPE OF REVIEW We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. MAJOR CONCLUSIONS The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. GENERAL SIGNIFICANCE These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masahiro Higashi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yuichiro Yoshida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Japan
| | - Ryo Akiyama
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Yoshida Y, Sato H, Morgan JW, Wales DJ. Potential energy landscapes of tetragonal pyramid molecules. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Rochal SB, Konevtsova OV, Myasnikova AE, Lorman VL. Hidden symmetry of small spherical viruses and organization principles in "anomalous" and double-shelled capsid nanoassemblies. NANOSCALE 2016; 8:16976-16988. [PMID: 27714069 DOI: 10.1039/c6nr04930c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose the principles of structural organization in spherical nanoassemblies with icosahedral symmetry constituted by asymmetric protein molecules. The approach modifies the paradigmatic geometrical Caspar and Klug (CK) model of icosahedral viral capsids and demonstrates the common origin of both the "anomalous" and conventional capsid structures. In contrast to all previous models of "anomalous" viral capsids the proposed modified model conserves the basic structural principles of the CK approach and reveals the common hidden symmetry underlying all small viral shells. We demonstrate the common genesis of the "anomalous" and conventional capsids and explain their structures in the same frame. The organization principles are derived from the group theory analysis of the positional order on the spherical surface. The relationship between the modified CK geometrical model and the theory of two-dimensional spherical crystallization is discussed. We also apply the proposed approach to complex double-shelled capsids and capsids with protruding knob-like proteins. The introduced notion of commensurability for the concentric nanoshells explains the peculiarities of their organization and helps to predict analogous, but yet undiscovered, double-shelled viral capsid nanostructures.
Collapse
Affiliation(s)
- S B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - O V Konevtsova
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - A E Myasnikova
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - V L Lorman
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, pl. E. Bataillon, 34095 Montpellier, France
| |
Collapse
|
16
|
Aznar M, Reguera D. Physical Ingredients Controlling Stability and Structural Selection of Empty Viral Capsids. J Phys Chem B 2016; 120:6147-59. [PMID: 27114062 DOI: 10.1021/acs.jpcb.6b02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the crucial steps in the viral replication cycle is the self-assembly of its protein shell. Typically, each native virus adopts a unique architecture, but the coat proteins of many viruses have the capability to self-assemble in vitro into different structures by changing the assembly conditions. However, the mechanisms determining which of the possible capsid shapes and structures is selected by a virus are still not well-known. We present a coarse-grained model to analyze and understand the physical mechanisms controlling the size and structure selection in the assembly of empty viral capsids. Using this model and Monte Carlo simulations, we have characterized the phase diagram and stability of T = 1,3,4,7 and snub cube shells. In addition, we have studied the tolerance of different shells to changes in physical parameters related to ambient conditions, identifying possible strategies to induce misassembly or failure. Finally, we discuss the factors that select the shape of a capsid as spherical, faceted, elongated, or decapsidated. Our model sheds important light on the ingredients that control the assembly and stability of viral shells. This knowledge is essential to get capsids with well-defined size and structure that could be used for promising applications in medicine or bionanotechnology.
Collapse
Affiliation(s)
- María Aznar
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| | - David Reguera
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| |
Collapse
|
17
|
Perlmutter JD, Mohajerani F, Hagan MF. Many-molecule encapsulation by an icosahedral shell. eLife 2016; 5. [PMID: 27166515 PMCID: PMC4947392 DOI: 10.7554/elife.14078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/10/2016] [Indexed: 12/31/2022] Open
Abstract
We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI:http://dx.doi.org/10.7554/eLife.14078.001 Bacterial microcompartments are protein shells that are found inside bacteria and enclose enzymes and other chemicals required for certain biological reactions. For example, the carboxysome is a type of microcompartment that enables the bacteria to convert the products of photosynthesis into sugars. During the formation of a microcompartment, the outer protein shell assembles around hundreds of enzymes and chemicals. This formation process is tightly controlled and involves multiple interactions between the shell proteins and the cargo – the enzymes and other reaction ingredients – they will enclose. Understanding how to control which enzymes are encapsulated within microcompartments could help researchers to re-engineer the microcompartments so that they contain drugs or other useful products. Recent studies have used microscopy to visualize how microcompartments are assembled. However, most of the intermediate structures that form during assembly are too small and short-lived to be seen. It has therefore not been possible to explore in detail how shell proteins collect the necessary cargo and then assemble into an ordered shell with the cargo on the inside. Experiments alone are probably not enough to understand the process, especially since microcompartment assembly can currently only be studied within live cells or cellular extract. Within these complex environments it is difficult to determine the effect of any individual factor on the overall assembly process. Perlmutter, Mohajerani and Hagan have now taken a different approach by developing computational and theoretical models to explore how microcompartments assemble. Computer simulations showed that microcompartments could assemble by two pathways. In one pathway, the protein shell and cargo coalesce at the same time. In the other pathway, the cargo molecules first assemble into a large disordered complex, with the shell proteins attached on the outside. The shell proteins then assemble, carving out a piece of the cargo complex. The simulations showed that many factors affect how the shell assembles, such as the strengths of the interactions between the shell proteins and the cargo. They also identified a factor that controls how much cargo ends up inside the assembled shell. Perlmutter, Mohajerani and Hagan found that, in addition to revealing how microcompartments may assemble within their natural setting, the simulations provided guidance on how to re-engineer microcompartments to assemble around other components. This would enable researchers to create customizable compartments that self-assemble within bacteria or other host organisms, for example to carry out carbon fixation or make biofuels. A future challenge will be to investigate other aspects of microcompartment assembly, such as the factors that control the size of these compartments. DOI:http://dx.doi.org/10.7554/eLife.14078.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| |
Collapse
|
18
|
Madge J, Miller MA. Design strategies for self-assembly of discrete targets. J Chem Phys 2015; 143:044905. [PMID: 26233162 DOI: 10.1063/1.4927671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.
Collapse
Affiliation(s)
- Jim Madge
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
19
|
The Role of Packaging Sites in Efficient and Specific Virus Assembly. J Mol Biol 2015; 427:2451-2467. [PMID: 25986309 DOI: 10.1016/j.jmb.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein-RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein-protein and nonspecific protein-RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.
Collapse
|
20
|
Ruiz-Herrero T, Hagan MF. Simulations show that virus assembly and budding are facilitated by membrane microdomains. Biophys J 2015; 108:585-95. [PMID: 25650926 PMCID: PMC4317536 DOI: 10.1016/j.bpj.2014.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
For many viruses, assembly and budding occur simultaneously during virion formation. Understanding the mechanisms underlying this process could promote biomedical efforts to block viral propagation and enable use of capsids in nanomaterials applications. To this end, we have performed molecular dynamics simulations on a coarse-grained model that describes virus assembly on a fluctuating lipid membrane. Our simulations show that the membrane can promote association of adsorbed subunits through dimensional reduction, but it also introduces thermodynamic and kinetic effects that can inhibit complete assembly. We find several mechanisms by which membrane microdomains, such as lipid rafts, reduce these effects, and thus, enhance assembly. We show how these predicted mechanisms can be experimentally tested. Furthermore, the simulations demonstrate that assembly and budding depend crucially on the system dynamics via multiple timescales related to membrane deformation, protein diffusion, association, and adsorption onto the membrane.
Collapse
Affiliation(s)
- Teresa Ruiz-Herrero
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, España
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
21
|
Zhang L, Lua LHL, Middelberg APJ, Sun Y, Connors NK. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev 2015; 44:8608-18. [DOI: 10.1039/c5cs00526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multi-scale investigation of VLP self-assembly aided by computational methods is facilitating the design, redesign, and modification of functionalized VLPs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Linda H. L. Lua
- Protein Expression Facility
- The University of Queensland
- Brisbane, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
22
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
23
|
Llorente JMG, Hernández-Rojas J, Bretón J. A minimal representation of the self-assembly of virus capsids. SOFT MATTER 2014; 10:3560-3569. [PMID: 24658312 DOI: 10.1039/c4sm00087k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viruses are biological nanosystems with a capsid of protein-made capsomer units that encloses and protects the genetic material responsible for their replication. Here we show how the geometrical constraints of the capsomer-capsomer interaction in icosahedral capsids and the requirement of low frustration fix the form of the shortest and universal truncated multipolar expansion of the two-body interaction between capsomers. The structures of many of the icosahedral and related virus capsids are located as single lowest energy states of a potential energy surface built from this interaction. Our minimalist representation is consistent with other models known to produce a controllable and efficient self-assembly, and unveils relevant features of the natural design of the capsids. It promises to be very useful in physical virology and may also be of interest in fields of nanoscience and nanotechnology where similar hollow convex structures are relevant.
Collapse
Affiliation(s)
- J M Gomez Llorente
- Departamento de Física Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife, Spain.
| | | | | |
Collapse
|
24
|
Zhang R, Linse P. Icosahedral capsid formation by capsomers and short polyions. J Chem Phys 2013; 138:154901. [PMID: 23614442 DOI: 10.1063/1.4799243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetical and structural aspects of the capsomer-polyion co-assembly into icosahedral viruses have been simulated by molecular dynamics using a coarse-grained model comprising cationic capsomers and short anionic polyions. Conditions were found at which the presence of polyions of a minimum length was necessary for capsomer formation. The largest yield of correctly formed capsids was obtained at which the driving force for capsid formation was relatively weak. Relatively stronger driving forces, i.e., stronger capsomer-capsomer short-range attraction and∕or stronger electrostatic interaction, lead to larger fraction of kinetically trapped structures and aberrant capsids. The intermediate formation was investigated and different evolving scenarios were found by just varying the polyion length.
Collapse
Affiliation(s)
- Ran Zhang
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
25
|
Perlmutter JD, Qiao C, Hagan MF. Viral genome structures are optimal for capsid assembly. eLife 2013; 2:e00632. [PMID: 23795290 PMCID: PMC3683802 DOI: 10.7554/elife.00632] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Understanding how virus capsids assemble around their nucleic acid (NA) genomes could promote efforts to block viral propagation or to reengineer capsids for gene therapy applications. We develop a coarse-grained model of capsid proteins and NAs with which we investigate assembly dynamics and thermodynamics. In contrast to recent theoretical models, we find that capsids spontaneously ‘overcharge’; that is, the negative charge of the NA exceeds the positive charge on capsid. When applied to specific viruses, the optimal NA lengths closely correspond to the natural genome lengths. Calculations based on linear polyelectrolytes rather than base-paired NAs underpredict the optimal length, demonstrating the importance of NA structure to capsid assembly. These results suggest that electrostatics, excluded volume, and NA tertiary structure are sufficient to predict assembly thermodynamics and that the ability of viruses to selectively encapsidate their genomic NAs can be explained, at least in part, on a thermodynamic basis. DOI:http://dx.doi.org/10.7554/eLife.00632.001 Viruses are infectious agents made up of proteins and a genome made of DNA or RNA. Upon infecting a host cell, viruses hijack the cell’s gene expression machinery and force it to produce copies of the viral genome and proteins, which then assemble into new viruses that can eventually infect other host cells. Because assembly is an essential step in the viral life cycle, understanding how this process occurs could significantly advance the fight against viral diseases. In many viral families, a protein shell called a capsid forms around the viral genome during the assembly process. However, capsids can also assemble around nucleic acids in solution, indicating that a host cell is not required for their formation. Since capsid proteins are positively charged, and nucleic acids are negatively charged, electrostatic interactions between the two are thought to have an important role in capsid assembly. However, it is unclear how structural features of the viral genome affect assembly, and why the negative charge on viral genomes is actually far greater than the positive charge on capsids. These questions are difficult to address experimentally because most of the intermediates that form during virus assembly are too short-lived to be imaged. Here, Perlmutter et al. have used state of the art computational methods and advances in graphical processing units (GPUs) to produce the most realistic model of capsid assembly to date. They showed that the stability of the complex formed between the nucleic acid and the capsid depends on the length of the viral genome. Yield was highest for genomes within a certain range of lengths, and capsids that assembled around longer or shorter genomes tended to be malformed. Perlmutter et al. also explored how structural features of the virus—including base-pairing between viral nucleic acids, and the size and charge of the capsid—determine the optimal length of the viral genome. When they included structural data from real viruses in their simulations and predicted the optimal lengths for the viral genome, the results were very similar to those seen in existing viruses. This indicates that the structure of the viral genome has been optimized to promote packaging into capsids. Understanding this relationship between structure and packaging will make it easier to develop antiviral agents that thwart or misdirect virus assembly, and could aid the redesign of viruses for use in gene therapy and drug delivery. DOI:http://dx.doi.org/10.7554/eLife.00632.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin A Fisher School of Physics , Brandeis University , Waltham , United States
| | | | | |
Collapse
|
26
|
Abstract
All matter has to obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them, but have managed to use them for their own survival. In this chapter we will review some of the exciting physics behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be understood using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Fundamental Physics, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | | |
Collapse
|
27
|
Baschek JE, R Klein HC, Schwarz US. Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly. BMC BIOPHYSICS 2012; 5:22. [PMID: 23244740 PMCID: PMC3563543 DOI: 10.1186/2046-1682-5-22] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). RESULTS In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. CONCLUSIONS Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase our physical understanding of an essential biological process, with many interesting potential applications in medicine and materials science.
Collapse
Affiliation(s)
- Johanna E Baschek
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany
| | - Heinrich C R Klein
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Saunders MG, Voth GA. Coarse-graining of multiprotein assemblies. Curr Opin Struct Biol 2012; 22:144-50. [PMID: 22277168 DOI: 10.1016/j.sbi.2012.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
Abstract
Multiscale models are important tools to elucidate how small changes in local subunit conformations may propagate to affect the properties of macromolecular complexes. We review recent advances in coarse-graining methods for poly-protein assemblies, systems that are composed of many copies of relatively few components, with a particular focus on viral capsids and cytoskeletal filaments. These methods are grouped into two broad categories-mapping methods, which use information from one scale of representation to parameterize a lower resolution model, and bridging methods, which repeatedly connect different scales during simulation-and we provide examples of both classes at different levels of complexity. Collectively, these models illustrate the numerous approaches to information transfer between scales and demonstrate that the complexity required of the model depends in general on the nature of the information sought.
Collapse
Affiliation(s)
- Marissa G Saunders
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
29
|
Hartke B. Global optimization. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.70] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Yang M, Sun K, Kotov NA. Formation and assembly-disassembly processes of ZnO hexagonal pyramids driven by dipolar and excluded volume interactions. J Am Chem Soc 2010; 132:1860-72. [PMID: 20088520 DOI: 10.1021/ja906868h] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ZnO hexagonal pyramids were obtained in hydrophilic media without any traditional stabilizers (capping agents). The absence of a thick organic shell reducing the anisotropy of nanoparticle (NP) interactions, oxide nature of the materials, and new geometry of the nanocrystals makes possible the observation of new self-organization phenomena. Several new features not present in the previous cases of NP self-organization were identified and discussed. The formation of ZnO pyramids involved recrystallization of larger amorphous NPs followed by the multistage disassembly of intermediate aggregates into individual virtually perfectly shaped nanocrystals. The evolution of NPs begins with crystallization of clustered plates within the original amorphous spherical colloids, and then agglomerated truncated pyramids are formed. These agglomerates further transform into chained pyramids, which eventually separate from each other. The crystallization and disassembly processes can be associated with the decrease of potential and anisotropy of the attractive force field around the crystallites represented in part by dipole moments. The reassembly of the pyramids can still be attained via engaging excluded volume interaction after adding similarly charged polymer. Overall, in this system, we see the first examples of (1) coupled crystallization and disassembly process; (2) induced assembly of nanoscale particles using excluded volume interactions, which were previously used only for aggregation of microscale colloids; and (3) nanoparticle assemblies with variable and experimentally verifiable relative orientation of dipoles including head-to-tail, tail-to-tail pairs, and antiparallel chains. Described assemblies of ZnO pyramids with collective behavior of individual building blocks as well as distinct and experimentally controlled stages of assembly and disassembly present a fundamentally interesting nanoparticle system with rich dynamic behavior.
Collapse
Affiliation(s)
- Ming Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
31
|
Johnston IG, Louis AA, Doye JPK. Modelling the self-assembly of virus capsids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:104101. [PMID: 21389435 DOI: 10.1088/0953-8984/22/10/104101] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.
Collapse
Affiliation(s)
- Iain G Johnston
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | | | | |
Collapse
|
32
|
Fejer SN, Chakrabarti D, Wales DJ. Emergent complexity from simple anisotropic building blocks: shells, tubes, and spirals. ACS NANO 2010; 4:219-228. [PMID: 20055436 DOI: 10.1021/nn9013565] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe a remarkably simple, generic, coarse-grained model involving anisotropic interactions, and characterize the global minima for clusters as a function of various parameters. Appropriate choices for the anisotropic interactions can reproduce a wide variety of complex morphologies as global minima, including spheroidal shells, tubular, helical and even head-tail morphologies, elucidating the physical principles that drive the assembly of these mesoscopic structures. Our model captures several experimental observations, such as the existence of competing morphologies, capsid polymorphism, and the effect of scaffolding proteins on capsid assembly.
Collapse
Affiliation(s)
- Szilard N Fejer
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
33
|
Wilber AW, Doye JPK, Louis AA, Lewis ACF. Monodisperse self-assembly in a model with protein-like interactions. J Chem Phys 2009; 131:175102. [DOI: 10.1063/1.3243581] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|