1
|
Basu D, Bailey TS, Lalaoui N, Richers CP, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. Synthetic Designs and Structural Investigations of Biomimetic Ni-Fe Thiolates. Inorg Chem 2019; 58:2430-2443. [PMID: 30707014 DOI: 10.1021/acs.inorgchem.8b02991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Described are the syntheses of several Ni(μ-SR)2Fe complexes, including hydride derivatives, in a search for improved models for the active site of [NiFe]-hydrogenases. The nickel(II) precursors include (i) nickel with tripodal ligands: Ni(PS3)- and Ni(NS3)- (PS33- = tris(phenyl-2-thiolato)phosphine, NS33- = tris(benzyl-2-thiolato)amine), (ii) traditional diphosphine-dithiolates, including chiral diphosphine R,R-DIPAMP, (iii) cationic Ni(phosphine-imine/amine) complexes, and (iv) organonickel precursors Ni( o-tolyl)Cl(tmeda) and Ni(C6F5)2. The following new nickel precursor complexes were characterized: PPh4[Ni(NS3)] and the dimeric imino/amino-phosphine complexes [NiCl2(PCH═NAn)]2 and [NiCl2(PCH2NHAn)]2 (P = Ph2PC6H4-2-). The iron(II) reagents include [CpFe(CO)2(thf)]BF4, [Cp*Fe(CO)(MeCN)2]BF4, FeI2(CO)4, FeCl2(diphos)(CO)2, and Fe(pdt)(CO)2(diphos) (diphos = chelating diphosphines). Reactions of the nickel and iron complexes gave the following new Ni-Fe compounds: Cp*Fe(CO)Ni(NS3), [Cp(CO)Fe(μ-pdt)Ni(dppbz)]BF4, [( R,R-DIPAMP)Ni(μ-pdt)(H)Fe(CO)3]BArF4, [(PCH═NAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH2NHAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH═NAn)Ni(μ-pdt)(H)Fe(dppbz)(CO)]BF4, [(dppv)(CO)Fe(μ-pdt)]2Ni, {H[(dppv)(CO)Fe(μ-pdt)]2Ni]}BF4, and (C6F5)2Ni(μ-pdt)Fe(CO)2(dppv) (DIPAMP = (CH2P(C6H4-2-OMe)2)2; BArF4- = [B(C6H3-3,5-(CF3)2]4-)) Within the context of Ni-(SR)2-Fe complexes, these new complexes feature new microenvironments for the nickel center: tetrahedral Ni, chirality, imine, and amine coligands, and Ni-C bonds. In the case of {H[(dppv)(CO)Fe(μ-pdt)]2Ni}+, four low-energy isomers are separated by ≤3 kcal/mol, one of which features a biomimetic HNi(SR)4 site, as supported by density functional theory calculations.
Collapse
Affiliation(s)
- Debashis Basu
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - T Spencer Bailey
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Noémie Lalaoui
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Casseday P Richers
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Toby J Woods
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| |
Collapse
|
2
|
Song LC, Zhang LD, Zhang WW, Liu BB. Heterodinuclear Ni/M (M = Mo, W) Complexes Relevant to the Active Site of [NiFe]-Hydrogenases: Synthesis, Characterization, and Electrocatalytic H 2 Evolution. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Long-Duo Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Wei Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Jia AQ, Tang LH, Dong XP, Xin Z, Zhang QF. Syntheses, structures and reactivity of dinuclear organoruthenium-nickel complexes with N , N ′-bis(2-thiobenzylidene)-1,2-phenylenediaminato (tsalphen) ligand. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Ghosh P, Quiroz M, Wang N, Bhuvanesh N, Darensbourg MY. Complexes of MN 2S 2·Fe(η 5-C 5R 5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans 2018; 46:5617-5624. [PMID: 28174781 DOI: 10.1039/c6dt04666e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of aggregation at sulfur by metallodithiolates (MN2S2) has made them prime candidates as building blocks for the synthesis of biomimetics of various bimetallic enzyme active sites, with reactivity consequences implicating redox control by both metal centers. Recent studies of MN2S2 (M = Ni2+, Fe(NO)2+) bound to [(η5-C5H5)Fe(CO)]+ as electrocatalysts for proton reduction, the hydrogen evolution reaction, demonstrated reduction-induced hemi-lability of the bridging cis-dithiolates as a key step in the electrochemical proton reduction process (Ding, et al., J. Am. Chem. Soc., 2016, 138, 12920-12927). The MN2S2·Fe(η5-C5R5)(CO) platform offers numerous possibilities for tuning the electronic character of the M(μ-S2)Fe core. As well as modifying M within the metallodithiolate ligand, replacing H by CH3 at the η5-C5R5 moiety increases the electron density at the Fe center, which might facilitate the reductive Fe-S bond cleavage. Although release of a free thiolate in these hemi-labile ligands creates a needed internal pendant base, this benefit might be countered by the increase in over-potential for addition of the first electron. Herein we report the preparation and characterization of four bimetallic aggregates with the (η5-C5R5)Fe(CO) (R = H, CH3; Fe' or Fe*', respectively) or the dicarbonyl (η5-C5R5)Fe(CO)2 scaffold (R = H, CH3; Fe'' or Fe*'', respectively) bound to redox active MN2S2 ligands (M = Ni2+, Co(NO)2+; N2S2 = bismercaptoethane diazacycloheptane) Co-Fe*', Ni-Fe*', Co-Fe' and Co-Fe*'' complexes. The bidentate complexes were found to be electrocatalysts for proton reduction, although at high over-potential, especially for the derivatives of the electron-rich (η5-C5(CH3)5)Fe(CO)+. The turnover (TON) and turnover frequencies (TOF) were determined and found to be comparable to the previously reported MN2S2·Fe(η5-C5H5)(CO)+ analogues.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
5
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
6
|
Yang D, Li Y, Su L, Wang B, Qu J. Versatile Reactivity of CH3CN-Coordinated Nickel-Iron Heterodimetallic Complexes with Cp* Ligand on Diazadithiolate (N2S2) or Dithiadithiolate (S4) Platforms. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Abstract
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| |
Collapse
|
8
|
Vedha SA, Solomon RV, Venuvanalingam P. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding. Phys Chem Chem Phys 2014; 16:10698-707. [PMID: 24756140 DOI: 10.1039/c4cp00526k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility of simultaneous addition of η(2)-H2 to both the metals (Ni and Fe) in the active site of the as isolated state of the enzyme (Ni-SI) is examined here by an atom-by-atom electronic energy partitioning based on the QTAIM method. Results show that the 4LS state prefers H2 removal than addition. Destabilization of the atomic basins of the thiolate bridges and decrease of the electrophilicity of the Fe and Ni, resulting in poor back donation to the CO ligand, are the bottlenecks that hamper dihydrogen activation simultaneously. The study helps to understand why such states are seldom accessed in the activation of dihydrogen. Moreover, Ni has been found to be the natural choice for the dihydrogen binding.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical & Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 24, India.
| | | | | |
Collapse
|
9
|
Huang CYD, Doyle AG. The chemistry of transition metals with three-membered ring heterocycles. Chem Rev 2014; 114:8153-98. [PMID: 24869559 DOI: 10.1021/cr500036t] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Song LC, Li JP, Xie ZJ, Song HB. Synthesis, Structural Characterization, and Electrochemical Properties of Dinuclear Ni/Mn Model Complexes for the Active Site of [NiFe]-Hydrogenases. Inorg Chem 2013; 52:11618-26. [DOI: 10.1021/ic401978h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry,
State Key Laboratory
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Peng Li
- Department of Chemistry,
State Key Laboratory
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao-Jun Xie
- Department of Chemistry,
State Key Laboratory
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hai-Bin Song
- Department of Chemistry,
State Key Laboratory
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Kim K, Kishima T, Matsumoto T, Nakai H, Ogo S. Selective Redox Activation of H2 or O2 in a [NiRu] Complex by Aromatic Ligand Effects. Organometallics 2012. [DOI: 10.1021/om300833m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kyoungmok Kim
- International Institute for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku,
Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Graduate School
of Engineering, Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kishima
- Department of Chemistry and Biochemistry, Graduate School
of Engineering, Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Matsumoto
- International Institute for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku,
Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Graduate School
of Engineering, Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hidetaka Nakai
- International Institute for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku,
Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Graduate School
of Engineering, Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral
Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku,
Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Graduate School
of Engineering, Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Core Research for
Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi
Center Building, 4-1-8 Honcho, Kawaguchi-shi, Saitama
332-0012, Japan
| |
Collapse
|
12
|
Schilter D, Rauchfuss TB. Nickel-iron dithiolates related to the deactivated [NiFe]-hydrogenases. Dalton Trans 2012; 41:13324-9. [PMID: 22992700 PMCID: PMC3489918 DOI: 10.1039/c2dt31895d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein are preparations of synthetic models for the deactivated Ni(II)Fe(II) states of the [NiFe]-hydrogenases. Iodination of the S = ½ species [(dppe)Ni(pdt)Fe(CO)(3)](+) afforded the diamagnetic iodo complex [(dppe)Ni(pdt)IFe(CO)(3)](+). Crystallographic analysis of this species confirmed the presence of square-pyramidal Ni linked to an octahedral Fe centre. The NiFe separation of 3.018 Å indicated the absence of metal-metal bonding. This complex could be reduced to give (dppe)Ni(pdt)Fe(CO)(3) and, in the presence of iodide, decarbonylated to afford (dppe)Ni(pdt)FeI(2). Derivatives of the type [(diphosphine)Ni(dithiolate)XFe(CO)(2)L](+) (X = Cl, Br, I) were prepared by halogenation of mixed-valence precursors [(diphosphine)Ni(dithiolate)Fe(CO)(2)L](+) (diphosphine = dppe, dcpe; L = tertiary phosphine or CO). The Fe(CO)(2)(PR(3))-containing derivatives are more robust than the related tricarbonyl derivatives. Exploiting this greater stability, we characterised examples of chloride and bromide derivatives. Related fluorides could be prepared by F(-) abstraction from BF(4)(-). Spectroscopic evidence is presented for the hydroperoxide [(dppe)Ni(pdt)(OOH)Fe(CO)(2)L](+), which represents a model for the Ni-SU state.
Collapse
|
13
|
Carroll ME, Barton BE, Gray DL, Mack AE, Rauchfuss TB. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties. Inorg Chem 2011; 50:9554-63. [PMID: 21866886 DOI: 10.1021/ic2012759] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Described are new derivatives of the type [HNiFe(SR)(2)(diphosphine)(CO)(3)](+), which feature a Ni(diphosphine) group linked to a Fe(CO)(3) group by two bridging thiolate ligands. Previous work had described [HNiFe(pdt)(dppe)(CO)(3)](+) ([1H](+)) and its activity as a catalyst for the reduction of protons (J. Am. Chem. Soc. 2010, 132, 14877). Work described in this paper focuses on the effects on properties of NiFe model complexes of the diphosphine attached to nickel as well as the dithiolate bridge, 1,3-propanedithiolate (pdt) vs 1,2-ethanedithiolate (edt). A new synthetic route to these Ni-Fe dithiolates is described, involving reaction of Ni(SR)(2)(diphosphine) with FeI(2)(CO)(4) followed by in situ reduction with cobaltocene. Evidence is presented that this route proceeds via a metastable μ-iodo derivative. Attempted isolation of such species led to the crystallization of NiFe(Me(2)pdt)(dppe)I(2), which features tetrahedral Fe(II) and square planar Ni(II) centers (H(2)Me(2)pdt = 2,2-dimethylpropanedithiol). The new tricarbonyls prepared in this work are NiFe(pdt)(dcpe)(CO)(3) (2, dcpe = 1,2-bis(dicyclohexylphosphino)ethane), NiFe(edt)(dppe)(CO)(3) (3), and NiFe(edt)(dcpe)(CO)(3) (4). Attempted preparation of a phenylthiolate-bridged complex via the FeI(2)(CO)(4) + Ni(SPh)(2)(dppe) route gave the tetrametallic species [(CO)(2)Fe(SPh)(2)Ni(CO)](2)(μ-dppe)(2). Crystallographic analysis of the edt-dcpe compund [2H]BF(4) and the edt-dppe compound [3H]BF(4) verified their close resemblance. Each features pseudo-octahedral Fe and square pyramidal Ni centers. Starting from [3H]BF(4) we prepared the PPh(3) derivative [HNiFe(edt)(dppe)(PPh(3))(CO)(2)]BF(4) ([5H]BF(4)), which was obtained as a ∼2:1 mixture of unsymmetrical and symmetrical isomers. Acid-base measurements indicate that changing from Ni(dppe) (dppe = Ph(2)PCH(2)CH(2)PPh(2)) to Ni(dcpe) decreases the acidity of the cationic hydride complexes by 2.5 pK(a)(PhCN) units, from ∼11 to ∼13.5 (previous work showed that substitution at Fe leads to more dramatic effects). The redox potentials are more strongly affected by the change from dppe to dcpe, for example the [2](0/+) couple occurs at E(1/2) = -820 for [2](0/+) vs -574 mV (vs Fc(+/0)) for [1](0/+). Changes in the dithiolate do not affect the acidity or the reduction potentials of the hydrides. The acid-independent rate of reduction of CH(2)ClCO(2)H by [2H](+) is about 50 s(-1) (25 °C), twice that of [1H](+). The edt-dppe complex [2H](+) proved to be the most active catalyst, with an acid-independent rate of 300 s(-1).
Collapse
Affiliation(s)
- Maria E Carroll
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
14
|
Ohki Y, Tatsumi K. Thiolate‐Bridged Iron–Nickel Models for the Active Site of [NiFe] Hydrogenase. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201001087] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| |
Collapse
|
15
|
Nayak S, Evangelisti M, Powell AK, Reedijk J. Magnetothermal Studies of a Series of Coordination Clusters Built from Ferromagnetically Coupled {MnII4MnIII6} Supertetrahedral Units. Chemistry 2010; 16:12865-72. [DOI: 10.1002/chem.201001988] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zheng C, Kim K, Matsumoto T, Ogo S. The useful properties of H2O as a ligand of a hydrogenase mimic. Dalton Trans 2010; 39:2218-25. [PMID: 20162194 DOI: 10.1039/b921273f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper investigates the required properties of Ru-coordinated ligands of a Ni-Ru based hydrogenase mimic. A series of ligands, including MeCN, pyridine, H(2)O and OH(-) were coordinated to Ru, with H(2)O being the only ligand to promote H(2)-activation. In addition, a tethered pyridyl moiety was synthesised and found to completely inhibit H(2)-activation. We conclude, therefore, that H(2)O is the ideal ligand for this mimic as a result of both its mild basicity and the availability of two lone pairs for simultaneous binding to Ru and H(2).
Collapse
Affiliation(s)
- Chunbai Zheng
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
17
|
Nayak S, Aromí G, Teat SJ, Ribas-Ariño J, Gamez P, Reedijk J. Hydrogen bond assisted co-crystallization of a bimetallic MnIII2NiII2cluster and a NiII2cluster unit: synthesis, structure, spectroscopy and magnetism. Dalton Trans 2010; 39:4986-90. [DOI: 10.1039/b919654d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|