1
|
Roudeau S, Trist BG, Carmona A, Davies KM, Halliday GM, Rufin Y, Claverol S, Van Malderen SJM, Falkenberg G, Double KL, Ortega R. Native Separation and Metallation Analysis of SOD1 Protein from the Human Central Nervous System: a Methodological Workflow. Anal Chem 2021; 93:11108-11115. [PMID: 34348022 DOI: 10.1021/acs.analchem.1c01128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.
Collapse
Affiliation(s)
- Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | | | - Katherine M Davies
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Yann Rufin
- Plateforme Biochimie et Biophysique (BioProt), Univ. Bordeaux, F-33077 Bordeaux, France
| | - Stéphane Claverol
- Plateforme Proteome, Univ. Bordeaux, Camperdown, F-33076 Bordeaux, France
| | | | | | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR-5797, F-33170 Gradignan, France
| |
Collapse
|
2
|
Porcaro F, Roudeau S, Carmona A, Ortega R. Advances in element speciation analysis of biomedical samples using synchrotron-based techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Pushie MJ, Pickering I, Korbas M, Hackett MJ, George GN. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 2014; 114:8499-541. [PMID: 25102317 PMCID: PMC4160287 DOI: 10.1021/cr4007297] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- M. Jake Pushie
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ingrid
J. Pickering
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology
Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Malgorzata Korbas
- Canadian
Light Source Inc., 44
Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
- Department
of Anatomy and Cell Biology, University
of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mark J. Hackett
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N. George
- Molecular
and Environmental Sciences Research Group, Department of Geological
Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology
Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
5
|
Sun X, Yu G, Xu Q, Li N, Xiao C, Yin X, Cao K, Han J, He QY. Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae. Metallomics 2014; 5:928-35. [PMID: 23775531 DOI: 10.1039/c3mt00126a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cobalt and nickel play important roles in various biological processes. The present work focuses on the enrichment and identification of Co- and Ni-binding motifs and proteins in Gram-positive bacteria. Immobilized metal affinity column (IMAC) was used to partially enrich putative metal-binding proteins and peptides from Streptococcus pneumoniae, and then LTQ-Orbitrap mass spectrometry (MS) was applied to identify and characterize the metal-binding motifs and proteins. In total, 208 and 223 proteins were isolated by Co- and Ni-IMAC columns respectively, in which 129 proteins were present in both preparations. Based on the gene ontology (GO) analysis, the putative metal-binding proteins were found to be mainly involved in protein metabolism, gene expression regulation and carbohydrate metabolism. These putative metal-binding proteins form a highly connected network, indicating that they may synergistically work together to achieve specific biological functions. Putative Co- and Ni-binding motifs were identified with H(X)nH, M(X)nH and H(X)nM derived from the identified 51 Co-binding peptides and 66 Ni-binding peptides. Statistics of frequency of amino acids in the metal-binding motifs showed that cobalt and nickel prefer to bind histidine and methionine, but not cysteine. These results obtained by a systematic metalloproteomic approach provide important clues for the further investigation of metal homeostasis and metal-related virulence of bacteria.
Collapse
Affiliation(s)
- Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
da Silva MAO, Sussulini A, Arruda MAZ. Metalloproteomics as an interdisciplinary area involving proteins and metals. Expert Rev Proteomics 2014; 7:387-400. [DOI: 10.1586/epr.10.16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Lauria A, Bonsignore R, Terenzi A, Spinello A, Giannici F, Longo A, Almerico AM, Barone G. Nickel(ii), copper(ii) and zinc(ii) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation. Dalton Trans 2014; 43:6108-19. [DOI: 10.1039/c3dt53066c] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Matsuyama S, Matsunaga A, Sakamoto S, Iida Y, Suzuki Y, Ishizaka Y, Yamauchi K, Ishikawa T, Shimura M. Scanning protein analysis of electrofocusing gels using X-ray fluorescence. Metallomics 2013; 5:492-500. [DOI: 10.1039/c3mt20266f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Metallomics in environmental and health related research: Current status and perspectives. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5496-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Chevreux S, Llorens I, Solari PL, Roudeau S, Devès G, Carmona A, Testemale D, Hazemann JL, Ortega R. Coupling of native IEF and extended X-ray absorption fine structure to characterize zinc-binding sites from pI isoforms of SOD1 and A4V pathogenic mutant. Electrophoresis 2012; 33:1276-81. [DOI: 10.1002/elps.201100596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sylviane Chevreux
- CENBG; Centre d'Etudes Nucléaires de Bordeaux Gradignan; CNRS UMR5797; University Bordeaux 1; Gradignan; France
| | | | | | - Stéphane Roudeau
- CENBG; Centre d'Etudes Nucléaires de Bordeaux Gradignan; CNRS UMR5797; University Bordeaux 1; Gradignan; France
| | - Guillaume Devès
- CENBG; Centre d'Etudes Nucléaires de Bordeaux Gradignan; CNRS UMR5797; University Bordeaux 1; Gradignan; France
| | - Asuncion Carmona
- CENBG; Centre d'Etudes Nucléaires de Bordeaux Gradignan; CNRS UMR5797; University Bordeaux 1; Gradignan; France
| | | | | | - Richard Ortega
- CENBG; Centre d'Etudes Nucléaires de Bordeaux Gradignan; CNRS UMR5797; University Bordeaux 1; Gradignan; France
| |
Collapse
|
11
|
Morgan MT, Bagchi P, Fahrni CJ. Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J Am Chem Soc 2011; 133:15906-9. [PMID: 21916472 DOI: 10.1021/ja207004v] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.
Collapse
Affiliation(s)
- M Thomas Morgan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | | | | |
Collapse
|
12
|
Gómez-Ariza JL, Jahromi EZ, González-Fernández M, García-Barrera T, Gailer J. Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobiotics and mammalian organisms. Metallomics 2011; 3:566-77. [PMID: 21614343 DOI: 10.1039/c1mt00037c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.
Collapse
Affiliation(s)
- José Luis Gómez-Ariza
- Department of Chemistry and Material Sciences, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | | | | | | | | |
Collapse
|
13
|
Shanker AK, Djanaguiraman M, Venkateswarlu B. Chromium interactions in plants: current status and future strategies. Metallomics 2009; 1:375-83. [DOI: 10.1039/b904571f] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|