1
|
Paul D, Sahoo P, Sengupta A, Tripathy U, Chatterjee S. Revealing the Role of Electronic Effect to Modulate the Photophysics and Z-Scan Responses of o-Locked GFP Chromophores. J Phys Chem B 2024. [PMID: 39480189 DOI: 10.1021/acs.jpcb.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and 1H NMR studies. The fluorescence quantum yields (ϕf) of all of the chromophores were found to be more than an order of magnitude higher (∼0.2) than the unlocked chromophores (∼0.01). It was found that the electronic effect did affect the nonradiative rates, as the quantum yields were found to vary with respect to different analogues in the same solvents. The effect of the push-pull effect was also evident by a higher Stokes-shifted emission in the case of the methyl derivative with respect to the bromo- and iodo-analogues. Furthermore, the emission spectra of these GFP chromophores were found to show positive solvatochromism, which was supported by a quantum chemical calculation. A detailed study, correlating the observed spectral changes with various solvent functions and supported by computational results, established a facile proton transfer, followed by twisted intramolecular charge transfer (TICT) to be the major nonradiative channels of these chromophores. Besides, a completely novel usage of these chromophores was explored for the first time by studying their third-order nonlinear optical characteristics in DMSO using a single-beam Z-scan technique. All of the chromophores exhibited tunable nonlinear refraction (NLR) and nonlinear absorption (NLA) properties that depend upon different substituent groups present in the chromophores. Here, the NLR was due to the effect of self-defocusing, whereas the NLA was triggered by reverse saturable absorption, which is attributed to the two-photon absorption (TPA) process. Surprisingly, the efficiency of the TPA ability of the chromophores was found to be a function of the induced electronic effect. Hence, this work opens a new route for the utility of the ortho-locked GFP chromophores in the field of nonlinear optical applications.
Collapse
Affiliation(s)
- Debasish Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| |
Collapse
|
2
|
Kinoshita Y, Shigeno M, Ishino K, Minato H, Yamada N, Hosoi H. Unified Role of the 145th Residue on the Fluorescence Lifetime of Fluorescent Proteins from the Jellyfish Aequorea victoria. J Phys Chem B 2024; 128:9061-9073. [PMID: 39267290 DOI: 10.1021/acs.jpcb.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Finding a unified fluorescence mechanism is essential to develop and utilize fluorescent proteins appropriately. Here, we report the unified role of the 145th residue on the fluorescence efficiency of fluorescent proteins developed from the jellyfish Aequorea victoria by demonstrating the difference and similarity between two representative fluorescent proteins, enhanced green fluorescent protein (eGFP), and enhanced yellow fluorescent protein (eYFP). We determined the fluorescence lifetimes of the 19 different Y145 mutants of eGFP and eYFP by picosecond time-resolved fluorescence spectroscopy. We found that the effect of the 145th mutation on the fluorescence lifetime is significant for eYFP but moderate for eGFP. We compared known crystal structures to clarify the observed difference between eGFP and eYFP. As a result, we conclude that the efficiency of the steric restriction of the chromophore motion by the 145th side chain is essentially the same for both eGFP and eYFP. Meanwhile, the restriction of the chromophore motion by hydrogen bonds is more pronounced for eGFP than for YFP. Balance of the steric effect and hydrogen bonding controls the lifetime of the Y145 mutants for eGFP and eYFP. Furthermore, the steric restriction is induced by the electrostatic effect; the different 145th residue induces a different electrostatic environment around the chromophore. The finding in this study reasonably explains the reported lifetimes of other fluorescent proteins and allows the prediction of the lifetime of unknown fluorescent proteins from jellyfish.
Collapse
Affiliation(s)
- Yuna Kinoshita
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Mamoru Shigeno
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Kana Ishino
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruna Minato
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Natsumi Yamada
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| |
Collapse
|
3
|
Bhutani G, Verma P, Paul S, Dhamija S, Chattopadhyay K, De AK. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima. Photochem Photobiol 2024; 100:897-909. [PMID: 38752609 DOI: 10.1111/php.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Pratima Verma
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Sasthi Paul
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Kausik Chattopadhyay
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
4
|
Dumitraş D, Dalmau D, García-Orduña P, Pop A, Silvestru A, Urriolabeitia EP. Orthopalladated imidazolones and thiazolones: synthesis, photophysical properties and photochemical reactivity. Dalton Trans 2024; 53:8948-8957. [PMID: 38727513 DOI: 10.1039/d4dt00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The reaction of Pd(OAc)2 with (Z)-5-arylidene-4-(4H)-imidazolones (2a-e) and (Z)-4-arylidene-5(4H)-thiazolones (3a-e) in trifluoroacetic acid results in the corresponding orthopalladated dinuclear complexes (4a-e, imidazolones; 11a-d, thiazolones) with trifluoroacetate bridges through regioselective C-H activation at the ortho position of the 4-arylidene group. Compound 4e, which contains an imidazolone substituted at 2- and 4-positions of the arylidene ring with methoxide groups and exhibits strong push-pull charge transfer, is an excellent precursor for the synthesis of fluorescent complexes with green yellowish emission and remarkable quantum yields. Breaking the bridging system with pyridine yields the mononuclear complex 5e (ΦF = 5%), while metathesis of trifluoroacetate ligands with chloride leads to the dinuclear complex 6e, also a precursor of fluorescent complexes by breaking the chloride bridging system with pyridine (7e, ΦF = 7%), or by substitution of chloride ligands with pyridine (8e, ΦF = 15%) or acetylacetonate (9e, ΦF = 2%). In addition to notable photophysical properties, dinuclear complexes 4 and 11 also exhibit significant photochemical reactivity. Thus, irradiation of orthopalladates 4a-c and 11a-c in CH2Cl2 with blue light (465 nm) proceeds via [2 + 2] photocycloaddition of the CC double bonds of imidazolone and thiazolone ligands, yielding the corresponding cyclobutane-bridging diaminotruxillic derivatives 10a-c and 12a-c, respectively.
Collapse
Affiliation(s)
- Darius Dumitraş
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Alexandra Pop
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Anca Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
5
|
Yan L, Guo M, Wan Y, Wan Y, Li Q, Zhu L, Yin H, Shi Y. Fluorescence emission mechanism for the π-conjugated zwitterion 2,4-Bisimidazolylphenol base on ESIPT: A TDDFT theoretical reconsideration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124043. [PMID: 38368821 DOI: 10.1016/j.saa.2024.124043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J. Phys. Chem. A, 125 (2021), 4784-4792]. The observed fluorescence in chloroform was attributed to the keto tautomer. Based on the excited state intramolecular proton transfer, the photochromism of 2,4-bImP in chloroform was interpreted as zwitterion production. However, the zwitterion with a specific electronic structure can be in resonance with the conventional neutral structure. The impact of the resonance contribution from the zwitterion and the conventional neutral structure on fluorescence attribution was not taken into account in the previous studies. In this investigation, the ESIPT mechanism of the 2,4-bImP in chloroform has been explored using both the density functional theory and the time-dependent density functional theory. The optimized geometric configuration parameters illustrate the molecular resonant properties. The calculated fluorescence spectra on the basis of the optimization results further corroborate that the fluorescence peaks after proton transfer originates from the resonance of the zwitterionic and the neutral configuration. The zwitterionic nature of the molecule was demonstrated by electrostatic potential and atomic dipole modified Hesfeld atomic charge (ADCH) analysis. Furthermore, the characterization of potential energy curves and IR spectrum further verified the resonance of both the zwitterionic and neutral structures. The results reveal that the 2,4-bImP molecule generates the neutral o-quinoid structure and the zwitterionic structure resonance phenomenon following ESIPT. The aforementioned resonance structure offers novel insights into the ascription of fluorescence. These discoveries establish the theoretical foundation for the exploration and development of zwitterions.
Collapse
Affiliation(s)
- Lu Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Meilin Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Qi Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lixia Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Bourne-Worster S, Worth GA. Quantum dynamics of excited state proton transfer in green fluorescent protein. J Chem Phys 2024; 160:065102. [PMID: 38353309 DOI: 10.1063/5.0188834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Photoexcitation of green fluorescent protein (GFP) triggers long-range proton transfer along a "wire" of neighboring protein residues, which, in turn, activates its characteristic green fluorescence. The GFP proton wire is one of the simplest, most well-characterized models of biological proton transfer but remains challenging to simulate due to the sensitivity of its energetics to the surrounding protein conformation and the possibility of non-classical behavior associated with the movement of lightweight protons. Using a direct dynamics variational multiconfigurational Gaussian wavepacket method to provide a fully quantum description of both electrons and nuclei, we explore the mechanism of excited state proton transfer in a high-dimensional model of the GFP chromophore cluster over the first two picoseconds following excitation. During our simulation, we observe the sequential starts of two of the three proton transfers along the wire, confirming the predictions of previous studies that the overall process starts from the end of the wire furthest from the fluorescent chromophore and proceeds in a concerted but asynchronous manner. Furthermore, by comparing the full quantum dynamics to a set of classical trajectories, we provide unambiguous evidence that tunneling plays a critical role in facilitating the leading proton transfer.
Collapse
Affiliation(s)
| | - Graham A Worth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
7
|
Hunt NT. Biomolecular infrared spectroscopy: making time for dynamics. Chem Sci 2024; 15:414-430. [PMID: 38179520 PMCID: PMC10763549 DOI: 10.1039/d3sc05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Time resolved infrared spectroscopy of biological molecules has provided a wealth of information relating to structural dynamics, conformational changes, solvation and intermolecular interactions. Challenges still exist however arising from the wide range of timescales over which biological processes occur, stretching from picoseconds to minutes or hours. Experimental methods are often limited by vibrational lifetimes of probe groups, which are typically on the order of picoseconds, while measuring an evolving system continuously over some 18 orders of magnitude in time presents a raft of technological hurdles. In this Perspective, a series of recent advances which allow biological molecules and processes to be studied over an increasing range of timescales, while maintaining ultrafast time resolution, will be reviewed, showing that the potential for real-time observation of biomolecular function draws ever closer, while offering a new set of challenges to be overcome.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
8
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
10
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. Angew Chem Int Ed Engl 2023; 62:e202303889. [PMID: 37191208 PMCID: PMC10952796 DOI: 10.1002/anie.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
11
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202303889. [PMID: 38516006 PMCID: PMC10952208 DOI: 10.1002/ange.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 03/23/2024]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
12
|
Ashworth EK, Kao MH, Anstöter CS, Riesco-Llach G, Blancafort L, Solntsev KM, Meech SR, Verlet JRR, Bull JN. Alkylated green fluorescent protein chromophores: dynamics in the gas phase and in aqueous solution. Phys Chem Chem Phys 2023; 25:23626-23636. [PMID: 37649445 DOI: 10.1039/d3cp03250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fluorescent labelling of macromolecular samples, including using the green fluorescent protein (GFP), has revolutionised the field of bioimaging. The ongoing development of fluorescent proteins require a detailed understanding of the photophysics of the biochromophore, and how chemical derivatisation influences the excited state dynamics. Here, we investigate the photophysical properties associated with the S1 state of three alkylated derivatives of the chromophore in GFP, in the gas phase using time-resolved photoelectron imaging, and in water using femtosecond fluorescence upconversion. The gas-phase lifetimes (1.6-10 ps), which are associated with the intrinsic (environment independent) dynamics, are substantially longer than the lifetimes in water (0.06-3 ps), attributed to stabilisation of both twisted intermediate structures and conical intersection seams in the condensed phase. In the gas phase, alkylation on the 3 and 5 positions of the phenyl ring slows the dynamics due to inertial effects, while a 'pre-twist' of the methine bridge through alkylation on the 2 and 6 positions significantly shortens the excited state lifetimes. Formation of a minor, long-lived (≫ 40 ps) excited state population in the gas phase is attributed to intersystem crossing to a triplet state, accessed because of a T1/S1 degeneracy in the so-called P-trap potential energy minimum associated with torsion of the single-bond in the bridging unit connecting to the phenoxide ring. A small amount of intersystem crossing is supported through TD-DFT molecular dynamics trajectories and MS-CASPT2 calculations. No such intersystem crossing occurs in water at T = 300 K or in ethanol at T ≈ 77 K, due to a significantly altered potential energy surface and P-trap geometry.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Min-Hsien Kao
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Gerard Riesco-Llach
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Stephen R Meech
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
13
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
14
|
Dalmau D, Crespo O, Matxain JM, Urriolabeitia EP. Fluorescence Amplification of Unsaturated Oxazolones Using Palladium: Photophysical and Computational Studies. Inorg Chem 2023. [PMID: 37315074 DOI: 10.1021/acs.inorgchem.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.
Collapse
Affiliation(s)
- David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Zhang D, Chen Z, Du Z, Bao B, Su N, Chen X, Ge Y, Lin Q, Yang L, Hua Y, Wang S, Hua X, Zuo F, Li N, Liu R, Jiang L, Bao C, Zhao Y, Loscalzo J, Yang Y, Zhu L. Design of a palette of SNAP-tag mimics of fluorescent proteins and their use as cell reporters. Cell Discov 2023; 9:56. [PMID: 37311750 DOI: 10.1038/s41421-023-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/18/2023] [Indexed: 06/15/2023] Open
Abstract
Naturally occurring fluorescent proteins (FPs) are the most widely used tools for tracking cellular proteins and sensing cellular events. Here, we chemically evolved the self-labeling SNAP-tag into a palette of SNAP-tag mimics of fluorescent proteins (SmFPs) that possess bright, rapidly inducible fluorescence ranging from cyan to infrared. SmFPs are integral chemical-genetic entities based on the same fluorogenic principle as FPs, i.e., induction of fluorescence of non-emitting molecular rotors by conformational locking. We demonstrate the usefulness of these SmFPs in real-time tracking of protein expression, degradation, binding interactions, trafficking, and assembly, and show that these optimally designed SmFPs outperform FPs like GFP in many important ways. We further show that the fluorescence of circularly permuted SmFPs is sensitive to the conformational changes of their fusion partners, and that these fusion partners can be used for the development of single SmFP-based genetically encoded calcium sensors for live cell imaging.
Collapse
Affiliation(s)
- Dasheng Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengda Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zengmin Du
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bingkun Bao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Yihui Ge
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qiuning Lin
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Hua
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Hua
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ningfeng Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Bao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Ke HW, Sung K. 7-membered-ring effect on fluorescence quantum yield: does metal-complexation-induced twisting-inhibition of an amino GFP chromophore derivative enhance fluorescence? Phys Chem Chem Phys 2023; 25:14627-14634. [PMID: 37194347 DOI: 10.1039/d3cp00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To investigate two aspects, namely, (1) the 7-membered-ring effect on fluorescence quantum yield and (2) whether metal-complexation-induced twisting-inhibition of an amino green fluorescent protein (GFP) chromophore derivative is bound to enhance fluorescence, a novel GFP-chromophore-based triamine ligand, (Z)-o-PABDI, is designed and synthesized. Before complexation with metal ions, the S1 excited state of (Z)-o-PABDI undergoes τ-torsion relaxation (Z/E photoisomerization) with a Z/E photoisomerization quantum yield of 0.28, forming both ground-state (Z)- and (E)-o-PABDI isomers. Since (E)-o-PABDI is less stable than (Z)-o-PABDI, it is thermo-isomerized back to (Z)-o-PABDI at room temperature in acetonitrile with a first-order rate constant of (1.366 ± 0.082) × 10-6 s-1. After complexation with a Zn2+ ion, (Z)-o-PABDI as a tridentate ligand forms a 1 : 1 complex with the Zn2+ ion in acetonitrile and in the solid state, resulting in complete inhibition of the φ-torsion and τ-torsion relaxations, which does not enhance fluorescence but causes fluorescence quenching. (Z)-o-PABDI also forms complexes with other first-row transition metal ions Mn2+, Fe3+, Co2+, Ni2+ and Cu2+, generating almost the same fluorescence quenching effect. By comparison with the 2/Zn2+ complex, in which a 6-membered ring of Zn2+-complexation enhances fluorescence significantly (a positive 6-membered-ring effect on fluorescence quantum yield), we find that the flexible 7-membered rings of the (Z)-o-PABDI/Mn+ complexes trigger their S1 excited states to relax through internal conversion at a rate much faster than fluorescence (a negative 7-membered-ring effect on fluorescence quantum yield), leading to fluorescence quenching regardless of the type of transition metal that complexes with (Z)-o-PABDI.
Collapse
Affiliation(s)
- Hao-Wei Ke
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Fu Y, Liu X, Xia Y, Guo X, Guo J, Zhang J, Zhao W, Wu Y, Wang J, Zhong F. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
19
|
Lee J, Shin P, Chou PT, Joo T. Excited State Intramolecular Proton Transfer Dynamics of Derivatives of the Green Fluorescent Protein Chromophore. Int J Mol Sci 2023; 24:ijms24043448. [PMID: 36834871 PMCID: PMC9962057 DOI: 10.3390/ijms24043448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Excited state intramolecular proton transfer (ESIPT) dynamics of the o-hydroxy analogs of the green fluorescent protein (GFP) chromophore have been investigated by time-resolved spectroscopies and theoretical calculations. These molecules comprise an excellent system to investigate the effect of electronic properties on the energetics and dynamics of ESIPT and to realize applications in photonics. Time-resolved fluorescence with high enough resolution was employed to record the dynamics and the nuclear wave packets in the excited product state exclusively in conjunction with quantum chemical methods. The ESIPT are ultrafast occurring in 30 fs for the compounds employed in this work. Although the ESIPT rates are not affected by the electronic properties of the substituents suggesting barrierless reaction, the energetics, their structures, subsequent dynamics following ESIPT, and possibly the product species are distinct. The results attest that fine tuning of the electronic properties of the compounds may modify the molecular dynamics of ESIPT and subsequent structural relaxation to achieve brighter emitters with broad tuning capabilities.
Collapse
Affiliation(s)
- Junghwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Pyoungsik Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, China
- Correspondence: (P.-T.C.); (T.J.)
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Correspondence: (P.-T.C.); (T.J.)
| |
Collapse
|
20
|
Krueger TD, Tang L, Fang C. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. BIOSENSORS 2023; 13:bios13020218. [PMID: 36831983 PMCID: PMC9954042 DOI: 10.3390/bios13020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/14/2023]
Abstract
Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.
Collapse
|
21
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Addison K, Roy P, Bressan G, Skudaite K, Robb J, Bulman Page PC, Ashworth EK, Bull JN, Meech SR. Photophysics of the red-form Kaede chromophore. Chem Sci 2023; 14:3763-3775. [PMID: 37035701 PMCID: PMC10074405 DOI: 10.1039/d3sc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The chromophore responsible for colour switching in the optical highlighting protein Kaede has unexpectedly complicated excited state dynamics, which are measured and analysed here. This will inform the development of new imaging proteins.
Collapse
Affiliation(s)
- Kiri Addison
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Karolina Skudaite
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Josh Robb
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | - Eleanor K. Ashworth
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
23
|
dos Santos Rodrigues FH, Delgado GG, Santana da Costa T, Tasic L. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA ADVANCES 2023; 3:100091. [PMID: 37207090 PMCID: PMC10189374 DOI: 10.1016/j.bbadva.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Emission fluorescence is one of the most versatile and powerful biophysical techniques used in several scientific subjects. It is extensively applied in the studies of proteins, their conformations, and intermolecular contacts, such as in protein-ligand and protein-protein interactions, allowing qualitative, quantitative, and structural data elucidation. This review, aimed to outline some of the most widely used fluorescence techniques in this area, illustrate their applications and display a few examples. At first, the data on the intrinsic fluorescence of proteins is disclosed, mainly on the tryptophan side chain. Predominantly, research to study protein conformational changes, protein interactions, and changes in intensities and shifts of the fluorescence emission maximums were discussed. Fluorescence anisotropy or fluorescence polarization is a measurement of the changing orientation of a molecule in space, concerning the time between the absorption and emission events. Absorption and emission indicate the spatial alignment of the molecule's dipoles relative to the electric vector of the electromagnetic wave of excitation and emitted light, respectively. In other words, if the fluorophore population is excited with vertically polarized light, the emitted light will retain some polarization based on how fast it rotates in solution. Therefore, fluorescence anisotropy can be successfully used in protein-protein interaction investigations. Then, green fluorescent proteins (GFPs), photo-transformable fluorescent proteins (FPs) such as photoswitchable and photoconvertible FPs, and those with Large Stokes Shift (LSS) are disclosed in more detail. FPs are potent tools for the study of biological systems. Their versatility and wide range of colours and properties allow many applications. Finally, the application of fluorescence in life sciences is exposed, especially the application of FPs in fluorescence microscopy techniques with super-resolution that enables precise in vivo photolabeling to monitor the movement and interactions of target proteins.
Collapse
Affiliation(s)
| | - Gonzalo Garcia Delgado
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Thyerre Santana da Costa
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
- Corresponding author: Ljubica Tasic: IQ, UNICAMP, Rua Josué de Castro sn, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
24
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
25
|
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
- New York University‐East China Normal University Center for Computational Chemistry New York University Shanghai Shanghai China
| |
Collapse
|
26
|
Baxter J, Hutchison CD, Maghlaoui K, Cordon-Preciado V, Morgan RML, Aller P, Butryn A, Axford D, Horrell S, Owen RL, Storm SLS, Devenish NE, van Thor JJ. Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy. J Phys Chem B 2022; 126:9288-9296. [PMID: 36326150 PMCID: PMC9677427 DOI: 10.1021/acs.jpcb.2c06780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm-1 for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - R. Marc L. Morgan
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Pierre Aller
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Agata Butryn
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Danny Axford
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Sam Horrell
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Robin L. Owen
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Selina L. S. Storm
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom,
| |
Collapse
|
27
|
Deng H, Chen Y, Xu L, Mo X, Ju J, Yu C, Zhu X. A Biomimetic Emitter Inspired from Green Fluorescent Protein. J Phys Chem B 2022; 126:8771-8776. [PMID: 36278933 DOI: 10.1021/acs.jpcb.2c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unique tripeptide structure of green fluorescent protein (GFP), a Ser-Tyr-Gly motif, generates the mature chromophore in situ to define the emission profiles of GFP. Here, we describe the rational design and discovery of a biomimetic fluorescent emitter, MBP, by mimicking the key structure of the Ser-Tyr-Gly motif. Through systematically tailoring the tripeptide, a family of four chromophores were engineered, while only MBP exhibited bright fluorescence in different fluid solvents with highly enhanced quantum yields. Distinct to previous hydrogen-bonding-induced fluorescence quenching of GFP chromophore analogues, the emission of MBP was only slightly decreased in protic solvents. Heteronuclear multiple bond correlation techniques demonstrated the fundamental mechanism for enhanced fluorescence emission owing to the synergy of the formation of the intramolecular hydrogen-bonding-ring structure and the self-restricted effect, which was further illustrated via theoretical calculations. This work puts forward an extraordinary approach toward highly emissive biomimicking fluorophores, which gives new insights into the emission mechanisms and photophysics of GFP-like chromophores.
Collapse
Affiliation(s)
- Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
28
|
Kim D, Aktalay A, Jensen N, Uno K, Bossi ML, Belov VN, Hell SW. Supramolecular Complex of Photochromic Diarylethene and Cucurbit[7]uril: Fluorescent Photoswitching System for Biolabeling and Imaging. J Am Chem Soc 2022; 144:14235-14247. [PMID: 35895999 PMCID: PMC9376957 DOI: 10.1021/jacs.2c05036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Photoswitchable fluorophores—proteins and synthetic
dyes—whose
emission is reversibly switched on and off upon illumination, are
powerful probes for bioimaging, protein tracking, and super-resolution
microscopy. Compared to proteins, synthetic dyes are smaller and brighter,
but their photostability and the number of achievable switching cycles
in aqueous solutions are lower. Inspired by the robust photoswitching
system of natural proteins, we designed a supramolecular system based
on a fluorescent diarylethene (DAE) and cucurbit[7]uril
(CB7) (denoted as DAE@CB7). In this assembly, the photoswitchable DAE molecule is encapsulated by CB7 according to the host–guest
principle, so that DAE is protected from the environment
and its fluorescence brightness and fatigue resistance in pure water
improved. The fluorescence quantum yield (Φfl) increased
from 0.40 to 0.63 upon CB7 complexation. The photoswitching of the DAE@CB7 complex, upon alternating UV and visible light irradiations,
can be repeated 2560 times in aqueous solution before half-bleaching
occurs (comparable to fatigue resistance of the reversibly photoswitchable
proteins), while free DAE can be switched on and off
only 80 times. By incorporation of reactive groups [maleimide and N-hydroxysuccinimidyl (NHS) ester], we prepared bioconjugates
of DAE@CB7 with antibodies and demonstrated both specific
labeling of intracellular proteins in cells and the reversible on/off
switching of the probes in cellular environments under irradiations
with 355 nm/485 nm light. The bright emission and robust photoswitching
of DAE-Male3@CB7 and DAE-NHS@CB7 complexes
(without exclusion of air oxygen and addition of any stabilizing/antifading
reagents) enabled confocal and super-resolution RESOLFT (reversible
saturable optical fluorescence transitions) imaging with apparent
70–90 nm optical resolution.
Collapse
Affiliation(s)
- Dojin Kim
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Kakishi Uno
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| |
Collapse
|
29
|
Tau O, Henley A, Boichenko AN, Kleshchina NN, Riley R, Wang B, Winning D, Lewin R, Parkin IP, Ward JM, Hailes HC, Bochenkova AV, Fielding HH. Liquid-microjet photoelectron spectroscopy of the green fluorescent protein chromophore. Nat Commun 2022; 13:507. [PMID: 35082282 PMCID: PMC8791993 DOI: 10.1038/s41467-022-28155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Green fluorescent protein (GFP), the most widely used fluorescent protein for in vivo monitoring of biological processes, is known to undergo photooxidation reactions. However, the most fundamental property underpinning photooxidation, the electron detachment energy, has only been measured for the deprotonated GFP chromophore in the gas phase. Here, we use multiphoton ultraviolet photoelectron spectroscopy in a liquid-microjet and high-level quantum chemistry calculations to determine the electron detachment energy of the GFP chromophore in aqueous solution. The aqueous environment is found to raise the detachment energy by around 4 eV compared to the gas phase, similar to calculations of the chromophore in its native protein environment. In most cases, electron detachment is found to occur resonantly through electronically excited states of the chromophore, highlighting their importance in photo-induced electron transfer processes in the condensed phase. Our results suggest that the photooxidation properties of the GFP chromophore in an aqueous environment will be similar to those in the protein. The electronic structures of photoactive proteins underlie many natural photoinduced processes. The authors, using UV liquid-microjet photoelectron spectroscopy and quantum chemistry calculations, determine electron detachment energies of the green fluorescent protein chromophore in aqueous solution, approaching conditions of the protein environment.
Collapse
Affiliation(s)
- Omri Tau
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alice Henley
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Anton N Boichenko
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - River Riley
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Bingxing Wang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Danielle Winning
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Ross Lewin
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - John M Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | | | - Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
30
|
Chemically stable fluorescent proteins for advanced microscopy. Nat Methods 2022; 19:1612-1621. [PMID: 36344833 PMCID: PMC9718679 DOI: 10.1038/s41592-022-01660-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
We report the rational engineering of a remarkably stable yellow fluorescent protein (YFP), 'hyperfolder YFP' (hfYFP), that withstands chaotropic conditions that denature most biological structures within seconds, including superfolder green fluorescent protein (GFP). hfYFP contains no cysteines, is chloride insensitive and tolerates aldehyde and osmium tetroxide fixation better than common fluorescent proteins, enabling its use in expansion and electron microscopies. We solved crystal structures of hfYFP (to 1.7-Å resolution), a monomeric variant, monomeric hyperfolder YFP (1.6 Å) and an mGreenLantern mutant (1.2 Å), and then rationally engineered highly stable 405-nm-excitable GFPs, large Stokes shift (LSS) monomeric GFP (LSSmGFP) and LSSA12 from these structures. Lastly, we directly exploited the chemical stability of hfYFP and LSSmGFP by devising a fluorescence-assisted protein purification strategy enabling all steps of denaturing affinity chromatography to be visualized using ultraviolet or blue light. hfYFP and LSSmGFP represent a new generation of robustly stable fluorescent proteins developed for advanced biotechnological applications.
Collapse
|
31
|
Tang L, Fang C. Fluorescence Modulation by Ultrafast Chromophore Twisting Events: Developing a Powerful Toolset for Fluorescent-Protein-Based Imaging. J Phys Chem B 2021; 125:13610-13623. [PMID: 34883016 DOI: 10.1021/acs.jpcb.1c08570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of modern life sciences has benefited tremendously from the discovery and development of fluorescent proteins (FPs), widely expressed in live cells to track a myriad of cellular events. The chromophores of various FPs can undergo many ultrafast photophysical and/or photochemical processes in the electronic excited state and emit fluorescence with different colors. However, the chromophore becomes essentially nonfluorescent in solution environment due to its intrinsic twisting capability upon photoexcitation. To study "microscopic" torsional events and their effects on "macroscopic" fluorescence, we have developed an integrated ultrafast characterization platform involving femtosecond transient absorption (fs-TA) and wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS). A wide range of naturally occurring, circularly permuted, non-canonical amino-acid-decorated FPs and FP-based optical highlighters with photochromicity, photoconversion, and/or photoswitching capabilities have been recently investigated in great detail. Twisting conformational motions were elucidated to exist in all of these systems but to various extents. The associated different ultrafast pathways can be monitored via frequency changes of characteristic Raman bands during primary events and functional processes. The mapped electronic and structural dynamics information is crucial and has shown great potential and initial success for the rational design of proteins and other photoreceptors with novel functions and fluorescence properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
32
|
Liao JW, Sung R, Sung K. Against the NEER principle: the third type of photochromism for GFP chromophore derivatives. Phys Chem Chem Phys 2021; 24:295-304. [PMID: 34889318 DOI: 10.1039/d1cp03581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochromism is the heart of photochromic fluorescent proteins. Excited-state proton transfer (ESPT) is the major cause of photochromism for the green fluorescent protein (GFP) and Z-E photoisomerization through τ-torsion is the major cause of photochromism for Dronpa (a GFP mutant). In this article, s-E-1 opens a third type of photochromism for GFP chromophore derivatives, which involves light-driven φ-torsion with no τ-torsion, followed by excited-state intramolecular proton transfer (ESIPT), and is gated by environmental polarity. Since s-E-1 does not follow Z-E photoisomerization through τ-torsion but undergoes light-driven φ-torsion, which involves equilibration of the excited-state rotamers, it is clearly against the NEER (Non-Equilibration of Excited-state Rotamers) principle.
Collapse
Affiliation(s)
- Jun-Wei Liao
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Robert Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Zhan H, Tang Z, Li Z, Chen X, Tian J, Fei X, Wang Y. The influence of intermolecular hydrogen bonds on single fluorescence mechanism of 1-hydroxy-11H-benzo [b]fluoren-11-one and 10-hydroxy-11H-benzo [b]fluoren-11-one. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119993. [PMID: 34077862 DOI: 10.1016/j.saa.2021.119993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Solvent effects usually have an essential effect on excited-state intramolecular proton transfer (ESIPT) processes and fluorescence mechanism. This contribution presents new insights into a newly synthesized compound, namely, 10-hydroxy-11H-benzo [b]fluoren-11-one (10-HHBF), and its analogue 1-hydroxy-11H-benzo [b]fluoren-11-one (1-HHBF), which exhibit single-fluorescence properties in protic solvents (methanol, MeOH), using time-dependent density functional theory (TDDFT). The results established four schemes, namely, MeOH-1, MeOH-2, MeOH-3, and MeOH-4, for 1-HHBF and 10-HHBF in MeOH. Absorption and emission spectra showed that the 1-HHBF and 10-HHBF at the conformation MeOH-2, MeOH-3 and MeOH-4 were closer to the experimental values than those at the MeOH-1. Energy barriers indicate the possibility of the ESIPT and ESPT process in 1-HHBF and 10-HHBF under the four schemes. Moreover, reverse PT processes were easy to occur at the conformations of MeOH-2, MeOH-3, and MeOH-4 in the S1 state. Given the single-fluorescence properties of 1-HHBF and 10-HHBF in the experiment, the conformation MeOH-1 was excluded. Therefore, our contribution proved that MeOH-2, MeOH-3, and MeOH-4 might exist in single fluorescence, and the hydrogen bond at the MeOH-2 position plays a decisive role, indicating the intermolecular hydrogen bonding interaction on the acceptor atom will have a more significant impact on the fluorescence properties of the substance.
Collapse
Affiliation(s)
- Hongbin Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, PR China
| | - Zixian Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xu Fei
- Lab Analyst of Network Information Center, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
34
|
Boulanger SA, Chen C, Myasnyanko IN, Sokolov AI, Baranov MS, Fang C. Excited-State Dynamics of a meta-Dimethylamino Locked GFP Chromophore as a Fluorescence Turn-on Water Sensor †. Photochem Photobiol 2021; 98:311-324. [PMID: 34714942 DOI: 10.1111/php.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Strategic incorporation of a meta-dimethylamino (-NMe2 ) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m-NMe2 -LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ˜200-fold decrease in fluorescence quantum yield of m-NMe2 -LpHBDI in alcohols (e.g., MeOH, EtOH and 2-PrOH) supports this GFP-derived compound as a fluorescence turn-on water sensor, with large fluorescence intensity differences between H2 O and ROH emissions in various H2 O/ROH binary mixtures. A combination of steady-state electronic spectroscopy, femtosecond transient absorption, ground-state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen-bonding chain between a solvent -OH group and the chromophore phenolic ring -NMe2 and -OH functional groups, wherein fluorescence differences arise from an extended hydrogen-bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge-transfer state. The absence of a meta-NMe2 group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without the meta-NMe2 group or with both meta-NMe2 and para-OH groups locked in a six-membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.
Collapse
Affiliation(s)
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR
| |
Collapse
|
35
|
Liu X, Yuan H, Wang Y, Tao Y, Wang Y, Hou Y. Theoretical Investigation of Excited-State Intramolecular Double-Proton Transfer Mechanism of Substituent Modified 1, 3-Bis (2-Pyridylimino)-4,7-Dihydroxyisoindole in Dichloromethane Solution. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) methods were used to investigate substituent effects and excited-state intramolecular double-proton transfer (ESIDPT) in 1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole (BPI–OH) and its derivatives. The results of a systematic study of the substituent effects of electron-withdrawing groups (F, Cl and Br) on the adjacent sites of the benzene ring were used to regulate the photophysical properties of the molecules and the dynamics of the proton-transfer process. Geometric structure comparisons and infrared (IR) spectroscopic analysis confirmed that strengthening of the intramolecular hydrogen bond in the first excited state (S1) facilitated proton transfer. Functional analysis of the reduced density gradient confirmed these conclusions. Double-proton transfer in BPI–OH is considered to occur in two steps, i.e., BPI–OH (N) [Formula: see text] BPI–OH (T1) [Formula: see text] BPI–OH (T2), in the ground state (S0) and the S1 state. The potential-energy curves (PECs) for two-step proton transfer were scanned for both the S0 and S1 states to clarify the mechanisms and pathways of proton transfer. The stepwise path in which two protons are consecutively transferred has a low energy barrier and is more rational and favorable. This study shows that the presence or absence of coordinating groups, and the type of coordinating group, affect the hydrogen-bond strength. A coordinating group enhances hydrogen-bond formation, i.e., it promotes excited-state intramolecular proton transfer (ESIPT).
Collapse
Affiliation(s)
- Xiumin Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Heyao Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuxi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yaping Tao
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingmin Hou
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
36
|
Eckert P, Johs A, Semrau JD, DiSpirito AA, Richardson J, Sarangi R, Herndon E, Gu B, Pierce EM. Spectroscopic and computational investigations of organometallic complexation of group 12 transition metals by methanobactins from Methylocystis sp. SB2. J Inorg Biochem 2021; 223:111496. [PMID: 34271330 PMCID: PMC10569158 DOI: 10.1016/j.jinorgbio.2021.111496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Methanotrophic bacteria catalyze the aerobic oxidation of methane to methanol using Cu-containing enzymes, thereby exerting a modulating influence on the global methane cycle. To facilitate the acquisition of Cu ions, some methanotrophic bacteria secrete small modified peptides known as "methanobactins," which strongly bind Cu and function as an extracellular Cu recruitment relay, analogous to siderophores and Fe. In addition to Cu, methanobactins form complexes with other late transition metals, including the Group 12 transition metals Zn, Cd, and Hg, although the interplay among solution-phase configurations, metal interactions, and the spectroscopic signatures of methanobactin-metal complexes remains ambiguous. In this study, the complexation of Zn, Cd, and Hg by methanobactin from Methylocystis sp. strain SB2 was studied using a combination of absorbance, fluorescence, extended x-ray absorption fine structure (EXAFS) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. We report changes in sample absorbance and fluorescence spectral dynamics, which occur on a wide range of experimental timescales and characterize a clear stoichiometric complexation dependence. Mercury L3-edge EXAFS and TD-DFT calculations suggest a linear model for HgS coordination, and TD-DFT suggests a tetrahedral model for Zn2+ and Cd2+. We observed an enhancement in the fluorescence of methanobactin upon interaction with transition metals and propose a mechanism of complexation-hindered isomerization drawing inspiration from the wild-type Green Fluorescent Protein active site. Collectively, our results represent the first combined computational and experimental spectroscopy study of methanobactins and shed new light on molecular interactions and dynamics that characterize complexes of methanobactins with Group 12 transition metals.
Collapse
Affiliation(s)
- Peter Eckert
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy D Semrau
- Civil & Environmental Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jocelyn Richardson
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Ritimukta Sarangi
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
37
|
Coughlan NJA, Stockett MH, Kjær C, Ashworth EK, Bulman Page PC, Meech SR, Brøndsted Nielsen S, Blancafort L, Hopkins WS, Bull JN. Action spectroscopy of the isolated red Kaede fluorescent protein chromophore. J Chem Phys 2021; 155:124304. [PMID: 34598549 DOI: 10.1063/5.0063258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Incorporation of fluorescent proteins into biochemical systems has revolutionized the field of bioimaging. In a bottom-up approach, understanding the photophysics of fluorescent proteins requires detailed investigations of the light-absorbing chromophore, which can be achieved by studying the chromophore in isolation. This paper reports a photodissociation action spectroscopy study on the deprotonated anion of the red Kaede fluorescent protein chromophore, demonstrating that at least three isomers-assigned to deprotomers-are generated in the gas phase. Deprotomer-selected action spectra are recorded over the S1 ← S0 band using an instrument with differential mobility spectrometry coupled with photodissociation spectroscopy. The spectrum for the principal phenoxide deprotomer spans the 480-660 nm range with a maximum response at ≈610 nm. The imidazolate deprotomer has a blue-shifted action spectrum with a maximum response at ≈545 nm. The action spectra are consistent with excited state coupled-cluster calculations of excitation wavelengths for the deprotomers. A third gas-phase species with a distinct action spectrum is tentatively assigned to an imidazole tautomer of the principal phenoxide deprotomer. This study highlights the need for isomer-selective methods when studying the photophysics of biochromophores possessing several deprotonation sites.
Collapse
Affiliation(s)
- Neville J A Coughlan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Philip C Bulman Page
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen R Meech
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - Lluís Blancafort
- Institut de Química Computacional i Catálisi and Departament de Química, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
38
|
Chen C, Tutol JN, Tang L, Zhu L, Ong WSY, Dodani SC, Fang C. Excitation ratiometric chloride sensing in a standalone yellow fluorescent protein is powered by the interplay between proton transfer and conformational reorganization. Chem Sci 2021; 12:11382-11393. [PMID: 34667546 PMCID: PMC8447875 DOI: 10.1039/d1sc00847a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Natural and laboratory-guided evolution has created a rich diversity of fluorescent protein (FP)-based sensors for chloride (Cl−). To date, such sensors have been limited to the Aequorea victoria green fluorescent protein (avGFP) family, and fusions with other FPs have unlocked ratiometric imaging applications. Recently, we identified the yellow fluorescent protein from jellyfish Phialidium sp. (phiYFP) as a fluorescent turn-on, self-ratiometric Cl− sensor. To elucidate its working mechanism as a rare example of a single FP with this capability, we tracked the excited-state dynamics of phiYFP using femtosecond transient absorption (fs-TA) spectroscopy and target analysis. The photoexcited neutral chromophore undergoes bifurcated pathways with the twisting-motion-induced nonradiative decay and barrierless excited-state proton transfer. The latter pathway yields a weakly fluorescent anionic intermediate , followed by the formation of a red-shifted fluorescent state that enables the ratiometric response on the tens of picoseconds timescale. The redshift results from the optimized π–π stacking between chromophore Y66 and nearby Y203, an ultrafast molecular event. The anion binding leads to an increase of the chromophore pKa and ESPT population, and the hindrance of conversion. The interplay between these two effects determines the turn-on fluorescence response to halides such as Cl− but turn-off response to other anions such as nitrate as governed by different binding affinities. These deep mechanistic insights lay the foundation for guiding the targeted engineering of phiYFP and its derivatives for ratiometric imaging of cellular chloride with high selectivity. We discovered an interplay between proton transfer and conformational reorganization that powers a standalone fluorescent-protein-based excitation-ratiometric biosensor for chloride imaging.![]()
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Longteng Tang
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| | - Whitney S Y Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road Richardson TX 75080 USA https://lab.utdallas.edu/dodani/
| | - Chong Fang
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR 97331-4003 USA https://fanglab.oregonstate.edu/
| |
Collapse
|
39
|
Boulanger SA, Chen C, Tang L, Zhu L, Baleeva NS, Myasnyanko IN, Baranov MS, Fang C. Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Phys Chem Chem Phys 2021; 23:14636-14648. [PMID: 34212170 DOI: 10.1039/d1cp02140k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.
Collapse
Affiliation(s)
- Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| |
Collapse
|
40
|
Zhang F, Zhao J, Li C. Effect of benzene ring on the excited‐state intramolecular proton transfer mechanisms of hydroxyquinoline derivatives. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhang
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Jing Zhao
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Chaozheng Li
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
41
|
Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nat Commun 2021; 12:3549. [PMID: 34112799 PMCID: PMC8192780 DOI: 10.1038/s41467-021-23932-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.
Collapse
|
42
|
Kuramochi H, Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J Am Chem Soc 2021; 143:9699-9717. [PMID: 34096295 PMCID: PMC9344463 DOI: 10.1021/jacs.1c02545] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In traditional Raman spectroscopy,
narrow-band light is irradiated
on a sample, and its inelastic scattering, i.e., Raman scattering,
is detected. The energy difference between the Raman scattering and
the incident light corresponds to the vibrational energy of the molecule,
providing the Raman spectrum that contains rich information about
the molecular-level properties of the materials. On the other hand,
by using ultrashort optical pulses, it is possible to induce Raman-active
coherent nuclear motion of the molecule and to observe the molecular
vibration in real time. Moreover, this time-domain Raman measurement
can be combined with femtosecond photoexcitation, triggering chemical
changes, which enables tracking ultrafast structural dynamics in a
form of “time-resolved” time-domain Raman spectroscopy,
also known as time-resolved impulsive stimulated Raman spectroscopy.
With the advent of stable, ultrashort laser pulse sources, time-resolved
impulsive stimulated Raman spectroscopy now realizes high sensitivity
and a wide detection frequency window from THz to 3000 cm–1, and has seen success in unveiling the molecular mechanisms underlying
the efficient functions of complex molecular systems. In this Perspective,
we overview the present status of time-domain Raman spectroscopy,
particularly focusing on its application to the study of femtosecond
structural dynamics. We first explain the principle and a brief history
of time-domain Raman spectroscopy and then describe the apparatus
and recent applications to the femtosecond dynamics of complex molecular
systems, including proteins, molecular assemblies, and functional
materials. We also discuss future directions for time-domain Raman
spectroscopy, which has reached a status allowing a wide range of
applications.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
43
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
44
|
Li MJ, Lin YH, Sung R, Sung K. E- Z Isomerization Mechanism of the Green Fluorescent Protein Chromophore: Remote Regulation by Proton Dissociation of the Phenol Group. J Phys Chem A 2021; 125:3614-3621. [PMID: 33885302 DOI: 10.1021/acs.jpca.1c01371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dronpa, a GFP (green fluorescent protein)-like fluorescent protein, allows its fluorescent and nonfluorescent states to be switched to each other reversibly by light or heat through E-Z isomerization of the GFP chromophore. In this article, a GFP chromophore (p-HBDI) in water is used as a model to explore this E-Z isomerization mechanism. Based on the experimental solvent isotope effect (kH2O/kD2O = 2.30), the E-Z isomerization of p-HBDI in water is suggested to go through the remote-proton-dissociation-regulated direct mechanism with a proton transfer in the rate-determining step. The fractionation factor (ϕ) of the water-associated phenol proton of p-HBDI in the transition state is found to be 0.43, which is exactly in the range of 0.1-0.6 for the fractionation factor (ϕ) of the transferring proton in the transition state of R2O···H···O+H2 in water. This means that the phenol proton of E-p-HBDI in the transition state is on the way to the associated water oxygen during the E-Z isomerization. The proton dissociation from the phenol group of p-HBDI remotely regulates its E-Z isomerization. Less proton dissociation from the phenol group (pKa = 8.0) at pH = 1-4 results in a modest reduction in the E-Z isomerization rate of p-HBDI, while complete proton dissociation from the phenol group at pH = 11-12 also reduces its E-Z isomerization rate by one order of magnitude because of the larger charge separation in the transition state of the p-HBDI anion. All of these results are consistent with the remote-proton-dissociation-regulated direct mechanism but against the water-assisted addition/elimination mechanism.
Collapse
Affiliation(s)
- Ming-Ju Li
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yen-Hsun Lin
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| | - Robert Sung
- Faculty of Family Medicine, Northern Ontario School of Medicine, Sudbury, Ontario P3E 2C6, Canada
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
45
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Rathnachalam S, Menger MFS, Faraji S. Influence of the Environment on Shaping the Absorption of Monomeric Infrared Fluorescent Proteins. J Phys Chem B 2021; 125:2231-2240. [PMID: 33626280 PMCID: PMC7957859 DOI: 10.1021/acs.jpcb.0c10466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Indexed: 12/05/2022]
Abstract
Infrared fluorescent proteins (iRFPs) are potential candidates for deep-tissue in vivo imaging. Here, we provide molecular-level insights into the role of the protein environment in the structural stability of the chromophore within the protein binding pocket through the flexible hydrogen-bonding network using molecular dynamics simulation. Furthermore, we present systematic excited-state analysis to characterize the nature of the first two excited states and the role of the environment in shaping the nature of the chromophore's excited states within the hybrid quantum mechanics/molecular mechanics framework. Our results reveal that the environment red-shifts the absorption of the chromophore by about 0.32 eV compared to the isolated counterpart, and besides the structural stability, the protein environment does not alter the nature of the excited state of the chromophore significantly. Our study contributes to the fundamental understanding of the excited-state processes of iRFPs in a complex environment and provides a design principle for developing iRFPs with desired spectral properties.
Collapse
Affiliation(s)
- Sivasudhan Rathnachalam
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Maximilian F. S.
J. Menger
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| | - Shirin Faraji
- Theoretical Chemistry
Group,
Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
47
|
Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4 H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021; 26:molecules26051238. [PMID: 33669118 PMCID: PMC7956804 DOI: 10.3390/molecules26051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.
Collapse
|
48
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
49
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
50
|
Sen T, Ma Y, Polyakov IV, Grigorenko BL, Nemukhin AV, Krylov AI. Interplay between Locally Excited and Charge Transfer States Governs the Photoswitching Mechanism in the Fluorescent Protein Dreiklang. J Phys Chem B 2021; 125:757-770. [PMID: 33411528 DOI: 10.1021/acs.jpcb.0c09221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the results of high-level electronic structure and dynamics simulations of the photoactive protein Dreiklang. With the goal of understanding the details of the Dreiklang photocycle, we carefully characterize the excited states of the ON- and OFF-forms of Dreiklang. The key finding of our study is the existence of a low-lying excited state of a charge-transfer character in the neutral ON form and that population of this state, which is nearly isoenergetic with the locally excited bright state, initiates a series of steps that ultimately lead to the formation of the hydrated dark chromophore (OFF state). These results allow us to refine the mechanistic picture of Dreiklang's photocycle and photoactivation.
Collapse
Affiliation(s)
- Tirthendu Sen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Yingying Ma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|