1
|
Osakada K, Nishihara Y. Transmetalation of boronic acids and their derivatives: mechanistic elucidation and relevance to catalysis. Dalton Trans 2021; 51:777-796. [PMID: 34951434 DOI: 10.1039/d1dt02986j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Suzuki-Miyaura reaction (the cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as a useful synthetic organic reaction that forms a C(sp2)-C(sp2) bond. The catalytic cycle of the reaction involves the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. It migrates the aryl and alkenyl groups of boronic acid to Pd and produces a Pd-C bond. Many studies have investigated the mechanism of transmetalation. They elucidated the mechanism of the organometallic reaction and its role as a fundamental step in catalytic reactions. This perspective reviews studies on the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. Emphasis was laid on the structures and chemical properties of the intermediate Pd complexes and the effects of OH- on the pathways of the catalytic Suzuki-Miyaura reaction. The reactions of arylboronic acids with Rh(I)-OH complexes were investigated, which are relevant to the mechanism of Rh-catalysed addition of aryl boronic acids to enones and aldehydes. Recent studies on the transmetalation of boronic acids with other late transition metals such as Fe(II), Co(I), Pt(II), Au(III), and Au(I) are presented with the related catalytic reactions and their utilisation in the synthesis of aromatic molecules and π-conjugated materials.
Collapse
Affiliation(s)
- Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan. .,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Miller-Clark LA, Christ PE, Ren T. Diruthenium aryl compounds - tuning of electrochemical responses and solubility. Dalton Trans 2021; 51:580-586. [PMID: 34904616 DOI: 10.1039/d1dt03957a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein are the two new series of diruthenium aryl compounds: Ru2(DiMeOap)4(Ar) (1a-6a) (DiMeOap = 2-(3,5-dimethoxyanilino)pyridinate) and Ru2(m-iPrOap)4(Ar) (1b-5b) (m-iPrOap = 2-(3-iso-propoxyanilino)pyridinate), prepared through the lithium-halogen exchange reaction with a variety of aryl halides (Ar = C6H4-4-NMe2 (1), C6H4-4-tBu (2), C6H4-4-OMe (3), C6H3-3,5-(OMe)2 (4), C6H4-4-CF3 (5), C6H5 (6)). The molecular structures of these compounds were established with X-ray diffraction studies. Additionally, these compounds were characterized using electronic absorption and voltammetric techniques. Compounds 1a-6a and 1b-5b are all in the Ru25+ oxidation state, with a ground state configuration of σ2π4δ2(π*δ*)3 (S = 3/2). Use of the modified ap ligands (ap') resulted in moderate increases of product yield when compared to the unsubstituted Ru2(ap)4(Ar) (ap = 2-anilinopyridinate) series. Comparisons of the electrochemical properties of 1a-6a and 1b-5b against the Ru2(ap')Cl starting material reveals the addition of the aryl ligand cathodically shifted the Ru26+/5+ oxidation and Ru25+/4+ reduction potentials. These oxidation and reductions potentials are also strongly dependent on the p-substituent of the axial aryl ligands.
Collapse
Affiliation(s)
| | - Peter E Christ
- Department of Chemistry, Purdue University, West Lafayette, Indiana 4790, USA.
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 4790, USA.
| |
Collapse
|
3
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Raghavan A, Ren T. Bisaryl Diruthenium(III) Paddlewheel Complexes: Synthesis and Characterization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adharsh Raghavan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Raghavan A, Mash BL, Ren T. Forging Ru–Csp2 Bonds in Paddlewheel Complexes Using the Lithium–Halogen Exchange Reaction. Inorg Chem 2019; 58:2618-2626. [PMID: 30698963 DOI: 10.1021/acs.inorgchem.8b03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adharsh Raghavan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon L. Mash
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Warzecha E, Berto TC, Berry JF. Axial Ligand Coordination to the C-H Amination Catalyst Rh2(esp)2: A Structural and Spectroscopic Study. Inorg Chem 2015; 54:8817-24. [PMID: 26308773 DOI: 10.1021/acs.inorgchem.5b01532] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The compound Rh2(esp)2 (esp = α,α,α',α'-tetramethyl-1,3-benzenediproponoate) is the most generally effective catalyst for nitrenoid amination of C-H bonds. However, much of its fundamental coordination chemistry is unknown. In this work, we study the effects of axial ligand coordination to the catalyst Rh2(esp)2. We report here crystal structures, cyclic voltammetry, UV-vis, IR, Raman, and (1)H NMR spectra for the complexes Rh2(esp)2L2 where L = pyridine, 3-picoline, 2,6-lutidine, acetonitrile, and methanol. The compounds all show well-defined π* → σ* electronic transitions in the 16500 to 20500 cm(-1) range, and Rh-Rh stretching vibrations in the range from 304 to 322 cm(-1). Taking these data into account we find that the strength of axial ligand binding to Rh2(esp)2 increases in the series CH3OH ∼ 2,6-lutidine < CH3CN < 3-methylpyridine ∼ pyridine. Quasi-reversible Rh2(4+/5+) redox waves are only obtained when either acetonitrile or no axial ligand is present. In the presence of pyridines, irreversible oxidation waves are observed, suggesting that these ligands destabilize the Rh2 complex under oxidative conditions.
Collapse
Affiliation(s)
- Evan Warzecha
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Timothy C Berto
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Angelone D, Draksharapu A, Browne WR, Choudhuri M, Crutchley RJ, Xu X, Xu X, Doyle MP. Dinuclear compounds without a metal–metal bond. Dirhodium(III,III) carboxamidates. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Doyle MP, Shabashov D, Zhou L, Zavalij PY, Welch C, Pirzada Z. Does an Axial Propeller Shape on a Dirhodium(III,III) Core Affect Equatorial Ligand Chirality? Organometallics 2011. [DOI: 10.1021/om2003078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael P. Doyle
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Dmitry Shabashov
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lei Zhou
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y. Zavalij
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher Welch
- Merck Research Laboratories, Merck & Co., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Zainab Pirzada
- Merck Research Laboratories, Merck & Co., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
9
|
Partyka DV. Transmetalation of Unsaturated Carbon Nucleophiles from Boron-Containing Species to the Mid to Late d-Block Metals of Relevance to Catalytic C−X Coupling Reactions (X = C, F, N, O, Pb, S, Se, Te). Chem Rev 2011; 111:1529-95. [DOI: 10.1021/cr1002276] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- David V. Partyka
- Creative Chemistry LLC, 2074 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Amo‐Ochoa P, Jiménez‐Aparicio R, Torres MR, Urbanos FA, Gallego A, Gómez‐García CJ. MMX Chains and Molecular Species Containing Rh
2
n+
(
n
= 4, 5, and 6) Units: Electrical Conductivity in Crystal Phase of MMX Polymers. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Amo‐Ochoa
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain, Fax: +34‐1‐3944352
| | - Reyes Jiménez‐Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain, Fax: +34‐1‐3944352
| | - M. Rosario Torres
- Centro de asistencia a la investigación de rayos X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain, Fax: +34‐1‐3944352
| | - Francisco A. Urbanos
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain, Fax: +34‐1‐3944352
| | - A. Gallego
- Facultad de Ciencias Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid, Spain, Fax: +34‐1‐4974833
| | - Carlos J. Gómez‐García
- Instituto de Ciencia Molecular, Universidad de Valencia, Parque Científico, 46980 Paterna, Spain, Fax: +34‐963543273
| |
Collapse
|