1
|
Chastagnier L, Marquette C, Petiot E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol Adv 2023; 68:108211. [PMID: 37463610 DOI: 10.1016/j.biotechadv.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Various research fields use the transfection of mammalian cells with genetic material to induce the expression of a target transgene or gene silencing. It is a tool widely used in biological research, bioproduction, and therapy. Current transfection protocols are usually performed on 2D adherent cells or suspension cultures. The important rise of new gene therapies and regenerative medicine in the last decade raises the need for new tools to empower the in situ transfection of tissues and 3D cell cultures. This review will present novel in situ transfection methods based on a chemical or physical non-viral transfection of cells in tissues and 3D cultures, discuss the advantages and remaining gaps, and propose future developments and applications.
Collapse
Affiliation(s)
- Laura Chastagnier
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Christophe Marquette
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Emma Petiot
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France.
| |
Collapse
|
2
|
Roelse M, Henquet MGL, Verhoeven HA, de Ruijter NCA, Wehrens R, van Lenthe MS, Witkamp RF, Hall RD, Jongsma MA. Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System. SENSORS 2018; 18:s18020602. [PMID: 29462903 PMCID: PMC5855233 DOI: 10.3390/s18020602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Reverse-transfected cell arrays in microfluidic systems have great potential to perform large-scale parallel screening of G protein-coupled receptor (GPCR) activation. Here, we report the preparation of a novel platform using reverse transfection of HEK293 cells, imaging by stereo-fluorescence microscopy in a flowcell format, real-time monitoring of cytosolic calcium ion fluctuations using the fluorescent protein Cameleon and analysis of GPCR responses to sequential sample exposures. To determine the relationship between DNA concentration and gene expression, we analyzed cell arrays made with variable concentrations of plasmid DNA encoding fluorescent proteins and the Neurokinin 1 (NK1) receptor. We observed pronounced effects on gene expression of both the specific and total DNA concentration. Reverse transfected spots with NK1 plasmid DNA at 1% of total DNA still resulted in detectable NK1 activation when exposed to its ligand. By varying the GPCR DNA concentration in reverse transfection, the sensitivity and robustness of the receptor response for sequential sample exposures was optimized. An injection series is shown for an array containing the NK1 receptor, bitter receptor TAS2R8 and controls. Both receptors were exposed 14 times to alternating samples of two ligands. Specific responses remained reproducible. This platform introduces new opportunities for high throughput screening of GPCR libraries.
Collapse
Affiliation(s)
- Margriet Roelse
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maurice G L Henquet
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Harrie A Verhoeven
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Ron Wehrens
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Marco S van Lenthe
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Renger F Witkamp
- Human Nutrition and Health, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Robert D Hall
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maarten A Jongsma
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
3
|
Wlodkowic D, Cooper JM. Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics. Expert Rev Mol Diagn 2014; 10:521-30. [DOI: 10.1586/erm.10.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Yamaguchi S, Komiya S, Matsunuma E, Yamahira S, Kihara T, Miyake J, Nagamune T. Transfer printing of transfected cell microarrays from poly(ethylene glycol)-oleyl surfaces onto biological hydrogels. Biotechnol Bioeng 2013; 110:3269-74. [DOI: 10.1002/bit.25010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Yamaguchi
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Senori Komiya
- Department of Bioengineering; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Erika Matsunuma
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinya Yamahira
- Department of Bioengineering; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takanori Kihara
- Department of Mechanical Science and Bioengineering; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; Graduate School of Engineering; The University of Tokyo; 7-3-1, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
5
|
McCarthy A. Company profile: PGXIS Ltd. Pharmacogenomics 2011; 12:1253-6. [PMID: 21919604 DOI: 10.2217/pgs.11.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenomic Innovative Solutions Ltd (PGXIS) was established in 2007 by a group of pharmacogenomic (PGx) experts to make their expertise available to biotechnology and pharmaceutical companies. PGXIS has subsequently established a network of experts to broaden its access to relevant PGx knowledge and technologies. In addition, it has developed a novel multivariate analysis method called Taxonomy3 which is both a data integration tool and a targeting tool. Together with siRNA methodology from CytoPathfinder Inc., PGXIS now has an extensive range of diverse PGx methodologies focused on enhancing drug development.
Collapse
Affiliation(s)
- Alun McCarthy
- PGXIS Ltd, Aston Court, Kingsmead Business Park, Frederick Place, High Wycombe, Bucks HP111LA, UK.
| |
Collapse
|
6
|
Khoshmanesh K, Akagi J, Nahavandi S, Skommer J, Baratchi S, Cooper JM, Kalantar-Zadeh K, Williams DE, Wlodkowic D. Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. Anal Chem 2011; 83:2133-44. [PMID: 21344868 DOI: 10.1021/ac1029456] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantification of programmed and accidental cell death provides useful end-points for the anticancer drug efficacy assessment. Cell death is, however, a stochastic process. Therefore, the opportunity to dynamically quantify individual cellular states is advantageous over the commonly employed static, end-point assays. In this work, we describe the development and application of a microfabricated, dielectrophoretic (DEP) cell immobilization platform for the real-time analysis of cancer drug-induced cytotoxicity. Microelectrode arrays were designed to generate weak electro-thermal vortices that support efficient drug mixing and rapid cell immobilization at the delta-shape regions of strong electric field formed between the opposite microelectrodes. We applied this technology to the dynamic analysis of hematopoietic tumor cells that represent a particular challenge for real-time imaging due to their dislodgement during image acquisition. The present study was designed to provide a comprehensive mechanistic rationale for accelerated cell-based assays on DEP chips using real-time labeling with cell permeability markers. In this context, we provide data on the complex behavior of viable vs dying cells in the DEP fields and probe the effects of DEP fields upon cell responses to anticancer drugs and overall bioassay performance. Results indicate that simple DEP cell immobilization technology can be readily applied for the dynamic analysis of investigational drugs in hematopoietic cancer cells. This ability is of particular importance in studying the outcome of patient derived cancer cells, when exposed to therapeutic drugs, as these cells are often rare and difficult to collect, purify and immobilize.
Collapse
Affiliation(s)
- Khashayar Khoshmanesh
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wlodkowic D, Cooper JM. Microfabricated analytical systems for integrated cancer cytomics. Anal Bioanal Chem 2010; 398:193-209. [DOI: 10.1007/s00216-010-3722-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/29/2010] [Accepted: 04/03/2010] [Indexed: 01/09/2023]
|