1
|
He T, Zhao Y, Benetti D, Moss B, Tian L, Selim S, Li R, Fan F, Li Q, Wang X, Li C, Durrant JR. Facet-Engineered BiVO 4 Photocatalysts for Water Oxidation: Lifetime Gain Versus Energetic Loss. J Am Chem Soc 2024; 146:27080-27089. [PMID: 39305258 PMCID: PMC11450740 DOI: 10.1021/jacs.4c09219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
A limiting factor to the efficiency of water Oxygen Evolution Reaction (OER) in metal oxide nanoparticle photocatalysts is the rapid recombination of holes and electrons. Facet-engineering can effectively improve charge separation and, consequently, OER efficiency. However, the kinetics behind this improvement remain poorly understood. This study utilizes photoinduced absorption spectroscopy to investigate the charge yield and kinetics in facet-engineered BiVO4 (F-BiVO4) compared to a non-faceted sample (NF-BiVO4) under operando conditions. A significant influence of preillumination on hole accumulation is observed, linked to the saturation and, thus, passivation of deep and inactive hole traps on the BiVO4 surface. In DI-water, F-BiVO4 shows a 10-fold increase in charge accumulation (∼5 mΔOD) compared to NF-BiVO4 (∼0.5 mΔOD), indicating improved charge separation and stabilization. With the addition of Fe(NO3)3, an efficient electron acceptor, F-BiVO4 demonstrates a 30-fold increase in the accumulation of long-lived holes (∼45 mΔOD), compared to NF-BiVO4 (∼1.5 mΔOD) and an increased half-time, from 2 to 10 s. Based on a simple kinetic model, this increase in hole accumulation suggests that facet-engineering causes at least a 50-100 meV increase in band bending in BiVO4 particles, thereby stabilizing surface holes. This energetic stabilization/loss results in a retardation of OER relative to NF-BiVO4. This slower catalysis is, however, offset by the observed increase in density and lifetime of photoaccumulated holes. Overall, this work quantifies how surface faceting can impact the kinetics of long-lived charge accumulation on metal oxide photocatalysts, highlighting the trade-off between lifetime gain and energetic loss critical to optimizing photocatalytic efficiency.
Collapse
Affiliation(s)
- Tianhao He
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Yue Zhao
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Daniele Benetti
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Lei Tian
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Shababa Selim
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Rengui Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Fengtao Fan
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Qian Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Xiuli Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian National
Laboratory for Clean Energy, Dalian 116023, China
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
2
|
Muhaymin A, Mohamed HEA, Hkiri K, Safdar A, Azizi S, Maaza M. Green synthesis of magnesium oxide nanoparticles using Hyphaene thebaica extract and their photocatalytic activities. Sci Rep 2024; 14:20135. [PMID: 39210024 PMCID: PMC11362519 DOI: 10.1038/s41598-024-71149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Magnesium oxide nanoparticles (MgO NPs) represent an interesting inorganic material widely utilized across various fields including sensing, antimicrobial applications, optical coatings, water purification, fuel additives, absorbents, and catalysis, owing to their exceptional broad energy band gap, surface affinity, and strong chemical and thermal durability. In this investigation, MgO NPs were successfully synthesized through a green approach employing fruit extract from the gingerbread tree (Hyphaene thebaica). Analysis via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed their agglomerated quasi-spherical shape with a size range of 20-60 nm. The X-ray diffraction (XRD) pattern exhibited prominent peaks at planes (200) and (220), indicating the high crystallinity of MgO NPs with a crystallite size of 32.6 ± 5 nm while Energy-dispersive X-ray spectroscopy (EDS) analysis highlighted the composition comprises 40.47% Magnesium and 48.64% Oxygen by weight. Fourier transform infrared spectroscopy (FT-IR) revealed characteristic Mg-O bonds through peaks at 560 cm-1 and 866 cm-1, while Raman spectroscopy affirmed the cubic structure of MgO. Subsequently, the photocatalytic performance of MgO NPs under visible light irradiation was evaluated. Remarkably, the addition of 1 g/L of MgO nano-catalyst resulted in a degradation efficiency of 98% after 110 min on methylene blue dye, showcasing the high catalytic activity of MgO NPs. This remarkable photocatalytic efficiency emphasizes the potential of MgO NPs in environmental remediation.
Collapse
Affiliation(s)
- Abdul Muhaymin
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Hamza Elsayed Ahmed Mohamed
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa.
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa.
| | - Khaoula Hkiri
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Ammara Safdar
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
- Preston Institute of Nanoscience and Technology, Preston University Kohat, Islamabad Campus, Islamabad, Pakistan
| | - Shohreh Azizi
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Malik Maaza
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
- Material Research Department (MRD), Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| |
Collapse
|
3
|
Wagh SS, Chougale AS, Survase AA, Patil RS, Naik N, Naushad M, Pathan HM. Rapid photocatalytic dye degradation, enhanced antibacterial and antifungal activities of silver stacked zinc oxide garnished on carbon nanotubes. Sci Rep 2024; 14:14045. [PMID: 38890495 PMCID: PMC11189508 DOI: 10.1038/s41598-024-64746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A composite of Zinc oxide loaded with 5-weight % silver decorated on carbon nanotubes (Ag-loaded ZnO: CNT) was synthesized using a simple refluxed chemical method. The influence of deviation in the weight % of carbon nanotube loading on photocatalytic dye degradation (methylene blue and rose bengal) and antibiotic (antimicrobial and antifungal) performance was investigated in this study. The light capture ability of Ag-loaded ZnO:CNT in the visible region was higher in photocatalytic activity than that of Ag-loaded ZnO and ZnO:CNT. The bandgap of the Ag-loaded ZnO: CNT was tuned owing to the surface plasmon resonance effect. The photocatalytic degradation investigations were optimized by varying the wt% in CNTs, pH of dye solution, concentration of the dye solution, and amount of catalytic dose. Around 100% photocatalytic efficiency in 2 min against MB dye was observed for Ag doped ZnO with 10 wt% CNT composite at pH 9, at a rate constant 1.48 min-1. Bipolaris sorokiniana fungus was first time tested against a composite material, which demonstrated optimum fungal inhibition efficiency of 48%. They were also tested against the bacterial strains Staphylococcus aureus, Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium, which showed promising antibacterial activity compared to commercially available drugs. The composite of Ag doped ZnO with 5 wt% CNT has shown competitive zone inhibition efficacy of 21.66 ± 0.57, 15.66 ± 0.57, 13.66 ± 0.57 against bacterial strains Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium which were tested for the first time against Ag-loaded ZnO:CNT.
Collapse
Affiliation(s)
- Snehal S Wagh
- Department of Polytechnic, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
- PSGVPM's ASC College, Shahada, Maharashtra, 425409, India
| | - Akanksha S Chougale
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Avinash A Survase
- Department of Microbiology, Rayat Institute of Research and Development, Satara, Maharashtra, 415001, India
| | | | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Habib M Pathan
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
4
|
Khan S, Noor T, Iqbal N, Yaqoob L. Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS OMEGA 2024; 9:21751-21767. [PMID: 38799325 PMCID: PMC11112581 DOI: 10.1021/acsomega.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024]
Abstract
The elimination of dyes discharged from industrial wastewater into water bodies is crucial due to its detrimental effects on aquatic organisms and potential carcinogenic impact on human health. Various methods are employed for dye removal, but they often fall short in completely degrading the dyes and generating large amounts of suspended solids. Hence, there is a critical need for an efficient process that can achieve complete dye degradation with minimal waste emission. Among traditional water treatment approaches, photocatalysis stands out as a promising method for degrading diverse toxic and organic pollutants present in wastewater. In this review, the heterogeneous photocatalysis process is well explained for dye removal. This comprehensive review not only provides insightful illumination on the classification of dyes but also thoroughly explains various dye removal methods and the underlying mechanisms of photocatalysis. Furthermore, factors which effect the activity of the photocatalysis process are also explained in detail. Likewise, we categorized the heterogeneous photocatalyst in three generations and observed their activity for dye removal. This review also addresses the challenges and effectiveness of this promising field. Its primary aim is to offer a comprehensive overview of the photocatalytic degradation of pollution and to explore its potential for further future applications.
Collapse
Affiliation(s)
- Sadia Khan
- School
of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Tayyaba Noor
- School
of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Naseem Iqbal
- U.S.−Pakistan
Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad 44000, Pakistan
| | - Lubna Yaqoob
- School
of Natural Sciences (SNS), National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
6
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
7
|
Wu Y, Zhong W, Wang X, Wu W, Muddassir M, Daniel O, Raj Jayswal M, Prakash O, Dai Z, Ma A, Pan Y. New Transition Metal Coordination Polymers Derived from 2-(3,5-Dicarboxyphenyl)-6-carboxybenzimidazole as Photocatalysts for Dye and Antibiotic Decomposition. Molecules 2023; 28:7318. [PMID: 37959737 PMCID: PMC10648955 DOI: 10.3390/molecules28217318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(μ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Wenxu Zhong
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Weiping Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Omoding Daniel
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Madhav Raj Jayswal
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India; (O.D.); (M.R.J.)
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Aiqing Ma
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| |
Collapse
|
8
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
9
|
Karaca AE, Dincer I. Development of a new photoelectrochemical system for clean hydrogen production and a comparative environmental impact assessment with other production methods. CHEMOSPHERE 2023; 337:139367. [PMID: 37414294 DOI: 10.1016/j.chemosphere.2023.139367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Hydrogen is recognized as a critical substance for diversifying the global energy supply, providing new economic opportunities and realizing a carbon-free energy sector. In the current study, a life cycle assessment is conducted on a photoelectrochemical hydrogen production process of a newly developed photoelectrochemical reactor. With a photoactive electrode area of 870 cm2, the hydrogen production rate of the reactor is 47.1 μg/s while operating with the energy and exergy efficiencies of 6.3% and 6.31%, respectively. For a Faradaic efficiency of 96%, the produced current density is evaluated as 3.15 mA/cm2. A comprehensive study is conducted for a cradle-to-gate life cycle assessment of the proposed hydrogen photoelectrochemical production system. The life cycle assessment results of the proposed photoelectrochemical system are further evaluated within a comparative analysis by considering a total of four key hydrogen generation processes, namely steam-methane reforming, photovoltaics-based and wind electricity-driven proton exchange membrane water electrolysis and the current photoelectrochemical system and studying five environmental impact categories. The global warming potential of hydrogen production via the proposed photoelectrochemical cell is evaluated as 1.052 kg CO2 equivalent per kg of produced hydrogen. In the normalized comparative life cycle assessment results, the PEC-based hydrogen production is found to be the most nature-friendly option among the considered pathways.
Collapse
Affiliation(s)
- Ali Erdogan Karaca
- CERL, FEAS, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, Canada.
| | - Ibrahim Dincer
- CERL, FEAS, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, Canada.
| |
Collapse
|
10
|
Velmurugan G, Ganapathi Raman R, Sivaprakash P, Viji A, Cho SH, Kim I. Functionalization of Fluorine on the Surface of SnO 2-Mg Nanocomposite as an Efficient Photocatalyst for Toxic Dye Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2494. [PMID: 37687002 PMCID: PMC10489931 DOI: 10.3390/nano13172494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
This work reports on the photocatalytic activity of tin oxide (SnO2)-doped magnesium (Mg) and fluorine (F) nanoparticles for methyl orange and safranin dye degradation under sunlight irradiation. Nanocatalysis-induced dye degradation was examined using UV-visible spectroscopy and a pseudo-first-order kinetics model. The results indicate that the prepared nanoparticles exhibit superior photocatalytic activity, and the degradation of methyl orange (MO) dye is approximately 82%. In contrast, the degradation of safranin dye is 96% in the same time interval of 105 min. The calculated crystallite size of the SnO2-Mg-F nanocomposite is 29.5 nm, which respects the particle size found in the DLS analysis with a tetragonal structure and spherical morphology affirmed. The optical characteristics were assessed, and their respective bandgap energies were determined to be 3.6 eV. The influence of F in Mg and SnO2 is recognized with the XRD and FT-IR spectra of the prepared particles.
Collapse
Affiliation(s)
- G. Velmurugan
- Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari 629180, Tamil Nadu, India;
| | - R. Ganapathi Raman
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai 602105, Tamil Nadu, India
| | - P. Sivaprakash
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - A. Viji
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam 621215, Tamil Nadu, India;
| | - Shin Hum Cho
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
11
|
Routh K, Pradeep CP. Multifunctional Aryl Sulfonium Decavanadates: Tuning the Photochromic and Heterogeneous Oxidative Desulfurization Catalytic Properties Using Salicylaldehyde-type Functional Moieties on Counterions. Inorg Chem 2023; 62:13775-13792. [PMID: 37575023 DOI: 10.1021/acs.inorgchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
12
|
Daskalova D, Aguila Flores G, Plachetka U, Möller M, Wolters J, Wintgens T, Lemme MC. Combined Structural and Plasmonic Enhancement of Nanometer-Thin Film Photocatalysis for Solar-Driven Wastewater Treatment. ACS APPLIED NANO MATERIALS 2023; 6:15204-15212. [PMID: 37649834 PMCID: PMC10463218 DOI: 10.1021/acsanm.3c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Titanium dioxide (TiO2) thin films are commonly used as photocatalytic materials. Here, we enhance the photocatalytic activity of devices based on titanium dioxide (TiO2) by combining nanostructured glass substrates with metallic plasmonic nanostructures. We achieve a three-fold increase of the catalyst's surface area through nanoscale, three-dimensional patterning of periodic, conical grids, which creates a broadband optical absorber. The addition of aluminum and gold activates the structures plasmonically and increases the optical absorption in the TiO2 films to above 70% in the visible and NIR spectral range. We demonstrate the resulting enhancement of the photocatalytic activity with organic dye degradation tests under different light sources. Furthermore, the pharmaceutical drug Carbamazepine, a common water pollutant, is reduced in the aqueous solution by up to 48% in 360 min. Our approach is scalable and potentially enables future solar-driven wastewater treatment.
Collapse
Affiliation(s)
- Desislava Daskalova
- Advanced
Microelectronic Center Aachen, AMO GmbH, 52074 Aachen, Germany
- Chair
of Electronic Devices, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Ulrich Plachetka
- Advanced
Microelectronic Center Aachen, AMO GmbH, 52074 Aachen, Germany
| | - Michael Möller
- Advanced
Microelectronic Center Aachen, AMO GmbH, 52074 Aachen, Germany
| | - Julia Wolters
- Institute
of Environmental Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Thomas Wintgens
- Institute
of Environmental Engineering, RWTH Aachen
University, 52074 Aachen, Germany
| | - Max C. Lemme
- Advanced
Microelectronic Center Aachen, AMO GmbH, 52074 Aachen, Germany
- Chair
of Electronic Devices, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
13
|
Weon SH, Han J, Choi YK, Park S, Lee SH. Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes. Gels 2023; 9:630. [PMID: 37623085 PMCID: PMC10454056 DOI: 10.3390/gels9080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads exhibited a 7.0-fold increase in adsorption capacity for methylene blue (MB). In contrast, cellulose/chitosan/TiO2 beads showed a 4.8-fold increase in adsorption capacity for methyl orange (MO) compared with cellulose/TiO2 beads. In addition, cellulose/TiO2 microbeads were prepared through the sol-gel transition of the [Emim][Ac]-in-oil emulsion to enhance photodegradation activity. These microbeads displayed a 4.6-fold higher adsorption capacity and 2.8-fold higher photodegradation activity for MB than the millimeter-sized beads. Furthermore, they exhibited superior dye removal efficiencies for various dyes such as Congo red, MO, MB, crystal violet, and rhodamine B, surpassing the performance of larger beads. To expand the industrial applicability of the microbeads, biopolymer/TiO2 magnetic microbeads were developed by incorporating Fe2O3. These magnetic microbeads outperformed millimeter-sized beads regarding the efficiency and time required for MB removal from aqueous solutions. Furthermore, the physicochemical properties of magnetic microbeads can be easily controlled by adjusting the type of biopolymer modifier, the TiO2 and magnetic particle content, and the ratio of each component based on the target molecule. Therefore, biopolymer-based photocatalytic magnetic microbeads have great potential not only in environmental fields but also in biomedical fields.
Collapse
Affiliation(s)
- Seung Hyeon Weon
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| | - Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
- R&D Center, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
- R&D Center, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.W.); (J.H.); (Y.-K.C.)
| |
Collapse
|
14
|
Wu C, Tang Q, Zhang S, Lv K, Fuku X, Wang J. Surface Modification of TiO 2 by Hyper-Cross-Linked Polymers for Efficient Visible-Light-Driven Photocatalytic NO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307316 DOI: 10.1021/acsami.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the removal of air pollutants such as nitric oxides without chemical addition. However, the low specific surface area and adsorption capacity of common photocatalysts restrict the surface reactions with NO at the ppb-level. In this study, imidazolium-based hyper-cross-linked polymer (IHP) was introduced to modify the surface of TiO2 to construct a porous TiO2/IHP composite photocatalyst. The as-prepared composite with hierarchical porous structure achieves a larger specific surface area as 309 m2/g than that of TiO2 (119 m2/g). Meanwhile, the wide light absorption range of the polymer has brought about the strong visible-light absorption of the TiO2/IHP composite. In consequence, the composite photocatalyst exhibits excellent performance toward NO oxidation at a low concentration of 600 ppb under visible-light irradiation, reaching a removal efficiency of 51.7%, while the generation of the toxic NO2 intermediate was suppressed to less than 1 ppb. The enhanced NO adsorption and the suppressed NO2 generation on the TiO2/IHP surface were confirmed by in situ monitoring technology. This work demonstrates that the construction of a porous structure is an effective approach for efficient NO adsorption and photocatalytic oxidation.
Collapse
Affiliation(s)
- Can Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sushu Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan 430074, P.R. China
| | - Xolile Fuku
- College of Science, Engineering and Technology, University of South Africa, Pretoria 1710, South Africa
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Strach A, Dulski M, Wasilkowski D, Metryka O, Nowak A, Matus K, Dudek K, Rawicka P, Kubacki J, Waloszczyk N, Mrozik A, Golba S. Microwave Irradiation vs. Structural, Physicochemical, and Biological Features of Porous Environmentally Active Silver–Silica Nanocomposites. Int J Mol Sci 2023; 24:ijms24076632. [PMID: 37047604 PMCID: PMC10095382 DOI: 10.3390/ijms24076632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Jerzy Kubacki
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
16
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
17
|
Wang H, Hailili R, Jiang X, Yuan G, Bahnemann DW, Wang X. Boosting photocatalytic performances of lamellar BiVO 4by constructing S-scheme heterojunctions with AgBr for efficient charge transfer. NANOTECHNOLOGY 2023; 34:215703. [PMID: 36780669 DOI: 10.1088/1361-6528/acbb7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVO4which was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVO4ratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.85 times higher than that of pure BiVO4) and high stability after four cycles. The unique photocatalytic mechanism of S-scheme carrier migration was investigated on the bases of radical trapping tests and photo/electrochemical characterizations. Results showed that the enhanced migration strategy and intimately interfacial collaboration guaranteed the effective charge carriers separation/transfer, leading to magnificent photocatalytic performance as well as excellent stability.
Collapse
Affiliation(s)
- Haoran Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
| | - Reshalaiti Hailili
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaoyu Jiang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Detlef W Bahnemann
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Hannover D-30167, Germany
| | - Xiong Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
18
|
Deng G, Rong J, Yang Y, Hong X, Liu G. Red anatase TiO 2 microspheres with exposed major {001} facets and boron-stabilized hydrogen-occupied oxygen vacancies for visible-light-responsive water oxidation. J Colloid Interface Sci 2023; 640:211-219. [PMID: 36863178 DOI: 10.1016/j.jcis.2023.02.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
In pursuit of efficient solar energy to chemical energy conversion through band engineering of wide-bandgap photocatalysts such as TiO2, a compromise occurs between a narrow bandgap and high-redox-capacity photo-induced charge carriers, which impairs the potential advantages associated with the widened absorption range. The key to this compromise is an integrative modifier that can simultaneously modulate both the bandgap and band edge positions. Herein, we theoretically and experimentally demonstrate that oxygen vacancies occupied by boron-stabilized hydrogen pairs (OVBH) serve as an integrative band modifier. Compared to hydrogen-occupied oxygen vacancies (OVH), which require the aggregation of nanosized anatase TiO2 particles, oxygen vacancies coupled with boron (OVBH) can be easily introduced into large and highly crystalline TiO2 particles, as shown by density functional theory (DFT) calculations. The coupling with interstitial boron facilitates the introduction of paired hydrogen atoms. The red-colored {001} faceted anatase TiO2 microspheres with OVBH benefit from the narrowed bandgap of 1.84 eV and the down-shifted band position. These microspheres not only absorb long-wavelength visible light up to 674 nm but also enhance visible-light-driven photocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Guoqiang Deng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| | - Xingxing Hong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
19
|
Singh S, Rawat S, Patidar R, Lo SL. Development of Bi 2WO 6 and Bi 2O 3 - ZnO heterostructure for enhanced photocatalytic mineralization of Bisphenol A. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3248-3263. [PMID: 36579882 DOI: 10.2166/wst.2022.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Present study proposed the synthesis of mixed p-type and n-type nanocomposite heterostructures by co-precipitation method. The as-synthesized heterostructures were characterized through different characterization techniques. The as-synthesized Bi2WO6 and Bi2O3-ZnO heterostructures were tested as photocatalysts during the photodegradation of Bisphenol A (BPA). The Bi2O3-ZnO heterostructure nanocomposite was found to be a more effective photocatalyst than Bi2WO6. The effect of operating parameters including catalytic dose (0.02-0.15 gL-1), initial BPA concentration (5-20 mgL-1), temperature change (5-20 °C) and solution pH changes (4, 5, 7, and 8) were evaluated with Bi2O3-ZnO under UV-light irradiation by selecting a 300 W Xe lamp. More than 90% BPA was degraded with 0.15 gL-1 Bi2O3-ZnO, keeping 1.0 mM H2O2 concentration fixed in 250 mL of reaction suspension. The HPLC and GC-MS were used to detect the reaction intermediates and final products. A plausible degradation pathway was proposed on the basis of the identification of reaction intermediates. Repeatability test analysis confirmed that the as-synthesized catalyst showed superb catalytic performance on its removal trend. The kinetics of degradation of BPA were well fitted by the power laws model. With the order of reaction being 0.6, 0.9, 1.2, and 1.3 for different operating parameters, i.e., catalyst dose, initial pH, temperature, and initial BPA concentration.
Collapse
Affiliation(s)
- Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India; Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou - Shan Rd., Taipei, Taiwan, Roc
| | - Sameeksha Rawat
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Ritesh Patidar
- Department of Petroleum Engineering, Rajasthan Technical University, Kota 324010, Rajasthan, India E-mail:
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou - Shan Rd., Taipei, Taiwan, Roc; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Photocatalytic properties of two new isostructural cobalt(II) and nickel(II) complexes having terphenyl-3,3″,4,4″-teteacarboxylic acid. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
22
|
Ag3PO4 and Ag3PO4–based visible light active photocatalysts: Recent progress, synthesis, and photocatalytic applications. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Pan F, Wu CC, Chen YL, Kung PY, Su YH. Machine learning ensures rapid and precise selection of gold sea-urchin-like nanoparticles for desired light-to-plasmon resonance. NANOSCALE 2022; 14:13532-13541. [PMID: 36004452 DOI: 10.1039/d2nr03727k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustainable energy strategies, particularly solar-to-hydrogen production, are anticipated to overcome the global reliance on fossil fuels. Thereby, materials enabling the production of green hydrogen from water and sunlight are continuously designed, e.g., ZnO nanostructures coated by gold sea-urchin-like nanoparticles, which employ the light-to-plasmon resonance to realize photoelectrochemical water splitting. But such light-to-plasmon resonance is strongly impacted by the size, the species, and the concentration of the metal nanoparticles coating on the ZnO nanoflower surfaces. Therefore, a precise prediction of the surface plasmon resonance is crucial to achieving an optimized nanoparticle fabrication of the desired light-to-plasmon resonance. To this end, we synthesized a substantial amount of metal (gold) nanoparticles of different sizes and species, which are further coated on ZnO nanoflowers. Subsequently, we utilized a genetic algorithm neural network (GANN) to obtain the synergistically trained model by considering the light-to-plasmon conversion efficiencies and fabrication parameters, such as multiple metal species, precursor concentrations, surfactant concentrations, linker concentrations, and coating times. In addition, we integrated into the model's training the data of nanoparticles due to their inherent complexity, which manifests the light-to-plasmon conversion efficiency far from the coupling state. Therefore, the trained model can guide us to obtain a rapid and automatic selection of fabrication parameters of the nanoparticles with the anticipated light-to-plasmon resonance, which is more efficient than an empirical selection. The capability of the method achieved in this work furthermore demonstrates a successful projection of the light-to-plasmon conversion efficiency and contributes to an efficient selection of the fabrication parameters leading to the anticipated properties.
Collapse
Affiliation(s)
- Fei Pan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
- Physics Department, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Chia-Chen Wu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yu-Lin Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Po-Yen Kung
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yen-Hsun Su
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
24
|
Li S, Fu Q, Meng L, Wan X, Ding L, Lu G, Lu G, Yao Z, Li C, Chen Y. Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO‐Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angew Chem Int Ed Engl 2022; 61:e202207397. [DOI: 10.1002/anie.202207397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shitong Li
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Qiang Fu
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Lingxian Meng
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xiangjian Wan
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China
| | - Guanyu Lu
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi An Shi, Xi'an 710054 China
| | - Guanghao Lu
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi An Shi, Xi'an 710054 China
| | - Zhaoyang Yao
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Chenxi Li
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Yongsheng Chen
- State Key Laboratory of Elemento-Organic Chemistry The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Wang X, Wan L, Wang Z, Liu X, Gao Y, Wang L, Liu J, Guo Q, Hu W, Yang J. Identifying Photocatalytic Active Sites of C 2H 6 C-H Bond Activation on TiO 2 via Combining First-Principles Ground-State and Excited-State Electronic Structure Calculations. J Phys Chem Lett 2022; 13:6532-6540. [PMID: 35829739 DOI: 10.1021/acs.jpclett.2c01100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The activation of C-H bonds at low temperatures has attracted widespread interest in heterogeneous catalysis, which involves complex thermocatalytic and photocatalytic reaction processes. Herein, we systematically investigate the photothermal catalytic process of C-H bond activation in C2H6 dehydrogenation on rutile TiO2(110). We demonstrate that the photochemical activity of the C2H6 molecule adsorbed on TiO2(110) is site-sensitive and that C2H6 is more easily adsorbed at the Ti5c site with a lower dehydrogenation energy barrier. The first C-H bond activation of the C2H6 adsorbed at the Ti5c site tends to occur in the ground state, whereas Obr-adsorbed C2H6 is more photoactive during the initial adsorption. During the dehydrogenation of C2H6, the photogenerated electrons are always located at the Ti4+ sites of the TiO2 substrate while the photogenerated holes can be captured by C2H6 to activate the C-H bond.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zijian Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunzhi Gao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Wang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Wei Hu
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Bhatti MA, Almaani KF, Shah AA, Tahira A, Chandio AD, Mugheri AQ, Bhatti AL, Waryani B, Medany SS, Nafady A, Ibupoto ZH. Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02069-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Li S, Fu Q, Meng L, Wan X, Ding L, Lu G, Lu G, Yao Z, Li C, Chen Y. Achieving over 18% Efficiency Organic Solar Cell Enabled by a ZnO‐Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shitong Li
- Nankai University College of Chemistry CHINA
| | - Qiang Fu
- Nankai University College of Chemistry CHINA
| | | | | | - Liming Ding
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Guanyu Lu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Guanghao Lu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | | | - Chenxi Li
- Nankai University College of Chemistry CHINA
| | - Yongsheng Chen
- Nankai University Institute of Polymer Chemistry,College of Chemistry Weijin Rd 94 300071 Tianjin CHINA
| |
Collapse
|
28
|
Li F, Chen JF, Gong XQ, Hu P, Wang D. Subtle Structure Matters: The Vicinity of Surface Ti 5c Cations Alters the Photooxidation Behaviors of Anatase and Rutile TiO 2 under Aqueous Environments. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jian-Fu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - P. Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Dong Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Soni V, Singh AN, Singh P, Gupta A. Photocatalytic dye-degradation activity of nano-crystalline Ti 1-x M x O 2-δ (M =Ag, Pd, Fe, Ni and x = 0, 0.01) for water pollution abatement. RSC Adv 2022; 12:18794-18805. [PMID: 35873333 PMCID: PMC9244643 DOI: 10.1039/d2ra02847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Nanocrystalline metal-ion (M = Fe, Ni, Ag, and Pd) doped and undoped anatase-TiO2 powders were prepared using a solution combustion method. The photocatalytic degradation of different dyes such as methylene blue (MB), rhodamine B (RB), rhodamine B base (RBB), and thionine acetate (TA) was investigated under UV exposure. The degradation rate of the dyes were found to be better in the case of Ag+ and Pd2+ doped TiO2, whereas Fe3+ and Ni2+ doped TiO2 showed lower photocatalytic activity compared to undoped TiO2 nanoparticles. Combustion synthesized catalysts exhibited much better activity compared to the commercial Degussa P25 (75% anatase + 25% rutile) TiO2 photocatalyst. The intermediate states created in the band gap of the TiO2 photocatalyst due to doping of first row transition metal ions (such as Fe3+ and Ni2+) into the TiO2 lattice act as recombination centres and the electrons present in the d-orbital quench the photogenerated holes by indirect recombination, hence increasing e--h+ recombination rates. As a result, a decrease in the photocatalytic activity of TiO2 doped with first row transition metal ions is observed. However, in the case of noble metal ions (such as Ag+ and Pd2+) in TiO2, photoreduction of Ag+ and Pd2+ ions occurs upon UV irradiation, hence the noble metal-ions act as electron scavengers. Consequently, the lifetime of the holes (h+) increases and hence higher photocatalytic oxidation activity of the dyes is observed. A novel strategy of electron scavenging is envisaged here to develop Ag+ and Pd2+ doped TiO2 to increase the photocatalytic oxidation of organic dyes for the development of better water pollution abatement catalysts. Redox-pair stabilization in the TiO2 lattice similar to photo-chromic glasses play a defining role in enhancing the photocatalytic activity of the catalyst and is a key finding for the development of superior photocatalysts. With the help of UV-vis and fluorescence spectroscopy, the mechanisms of the superior oxidation activity of Pd2+ and Ag+ doped TiO2 nanoparticles are explained.
Collapse
Affiliation(s)
- Vaishali Soni
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi-221005 India +91 6390363140
| | - Abhay Narayan Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Preetam Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Asha Gupta
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi-221005 India +91 6390363140
| |
Collapse
|
30
|
Aravindraj K, Mohana Roopan S. WO 3-based materials as heterogeneous catalysts for diverse organic transformations: a mini-review. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2089588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kumar Aravindraj
- Chemistry of Heterocycles & Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
31
|
Xu Y, Zhang T, Li Z, Liu X, Zhu Y, Zhao W, Chen H, Xu J. Photoelectrochemical Cytosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiang‐Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuan‐Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Ma L, Feng X, Cai F, Sun C, Ding H. Cobalt-doped UiO-66 nanoparticle as a photo-assisted Fenton-like catalyst for the degradation of rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Moscow S, Kavinkumar V, Sriramkumar M, Kalaikathir SPR, Jothivenkatachalam K, Fu Y, Anandan S. Synthesis of Sn and Zr‐Doped BiVO
4
Nanocatalyst with Enhanced Photocatalytic and Photoelectrochemical Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Subramanian Moscow
- Department of Chemistry Materials Research Laboratory for Energy and Environmental Applications Anna University- BIT Campus Tiruchirappalli 620 024 Tamilnadu India
| | - Veerappan Kavinkumar
- Department of Chemistry Materials Research Laboratory for Energy and Environmental Applications Anna University- BIT Campus Tiruchirappalli 620 024 Tamilnadu India
| | - Masilamani Sriramkumar
- Department of Chemistry Materials Research Laboratory for Energy and Environmental Applications Anna University- BIT Campus Tiruchirappalli 620 024 Tamilnadu India
| | | | - Kandasamy Jothivenkatachalam
- Department of Chemistry Materials Research Laboratory for Energy and Environmental Applications Anna University- BIT Campus Tiruchirappalli 620 024 Tamilnadu India
| | - Yen‐Pei Fu
- Department of Materials Science and Engineering National Dong Hwa University, Shou-Feng Hualien 97401 Taiwan
| | - Srinivasan Anandan
- Center for Nano-materials,International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Bolapur (P.O.) Hyderabad 500 005 Andhra Pradesh India
| |
Collapse
|
34
|
Zhang X, Wang H, Gao M, Zhao P, Xia W, Yang R, Huang Y, Wang L, Liu M, Wei T, Wang L, Yao R, Li X, Fan Z. Template-directed synthesis of pomegranate-shaped zinc oxide@zeolitic imidazolate framework for visible light photocatalytic degradation of tetracycline. CHEMOSPHERE 2022; 294:133782. [PMID: 35093425 DOI: 10.1016/j.chemosphere.2022.133782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The development of photocatalysts for efficient tetracycline (TC) degradation under visible light is urgently needed yet remains a great challenge. Most semiconductor photocatalysts with low specific surface area are easy to agglomerate in solution and unfavorable for enriching pollutants. Herein, we present the preparation of pomegranate-shaped zinc oxide@zeolitic imidazolate framework (ZnO@ZIF-8) by in situ growth of ZIF-8 on a petal-shaped ZnO template that enhances the adsorption and photocatalytic degradation of TC. ZnO@ZIF-8 exhibits an excellent photostability and a TC photodegradation efficiency of 91% under visible light (λ > 420 nm) in 50 min at room temperature, which can be recycled over five times without any loss of activity. Moreover, the plausible photocatalysis reaction mechanism and the degradation intermediates are elucidated with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. This study offers new insights into the design of antibiotic degradation photocatalysts and the development of photocatalysts with broad-spectrum responses for efficient TC elimination.
Collapse
Affiliation(s)
- Xingmao Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Hang Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China.
| | - Mingming Gao
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Pengfei Zhao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Wenli Xia
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Ruile Yang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Yichao Huang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Lin Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Mingxu Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Lu Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, Shanxi, PR China
| | - Xiang Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, PR China
| | - Zhuangjun Fan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China.
| |
Collapse
|
35
|
Ma Q, Yan C, Lv W, Mei Y, Peng H, Du J, Zheng B, Guo Y. Coexisting Chloride Ion for Boosting the Photoelectrocatalytic Degradation Efficiency of Organic Dyes. Catal Letters 2022. [DOI: 10.1007/s10562-022-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
36
|
Long Z, Wang H, Huang K, Zhang G, Xie H. Di-functional Cu 2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127554. [PMID: 34736196 DOI: 10.1016/j.jhazmat.2021.127554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic oxidation of contaminants in water has recently gained extensive attentions. In this study, Cu2+-doped BiOCl microsphere photocatalysts were prepared using solvothermal method. The effects of Cu2+ doping ratio on the morphological structures and photoelectric and photocatalytic properties of BiOCl were studied in detail. Results showed that Cu2+ doping affected the particle size of BiOCl microspheres. The introduction of Cu2+ ions gradually increased the light absorption range and decreased the electron recombination rate of photocatalysts as shown by ultraviolet-visible diffuse reflection and photoluminescence spectra. The best doping ratio was 0.25 Cu2+-BiOCl, showing the highest photocatalytic activity for rhodamine B (14.25 time higher than BiOCl) and a good inhibition of algal growth. The main reactants in the photocatalytic system were·OH and h+ (electron holes). Density functional theory (DFT) calculations further demonstrated that the doping of Cu2+ ions made the photogenerated carriers in BiOCl easier to generate and ensured the charge was transferred more rapidly. In conclusion, a novel high-efficiency multifunctional photocatalyst is proposed for the efficient organic pollutants removal and algae growth inhibition from water.
Collapse
Affiliation(s)
- Zeqing Long
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China; School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Hongliang Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Kaiwen Huang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Hangzhou 310003, China.
| |
Collapse
|
37
|
He H, Zhao T, Ma Q, Yang X, Yue Q, Huang B, Pan X. Photoelectrocatalytic coupling system synergistically removal of antibiotics and antibiotic resistant bacteria from aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127553. [PMID: 34736195 DOI: 10.1016/j.jhazmat.2021.127553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in the reclaimed water, posing a potential threat to human and ecological health. Nowadays, the reuse technology of reclaimed water has been widely concerned, but the removal of antibiotics, ARB and ARGs in reclaimed water has not been sufficiently studied. This study used TiO2 nanotube arrays (TNTs) decorated with Ag/SnO2-Sb nanoparticles (TNTs-Ag/SnO2-Sb) as the anode and Ti-Pd/SnO2-Sb as the cathode to construct an efficient photoelectrocatalytic (PEC) system. In this system, 99.9% of ARB was inactivated in 20 min, meanwhile, ARGs was removed within 30 min, and antibiotics were almost completely degraded within 1 h. Furthermore, the effects of system parameters on the removals of antibiotics, ARB and ARGs were also studied. The redox performance of the system was verified by adding persulfate. Escherichia coli, as a representative microorganism in aquatic environments, was used to evaluate the ecotoxicity of PEC treated chloramphenicol (CAP) solution. The ecotoxicity of CAP solution was significantly reduced after being treated by PEC. In addition, transformation intermediates of CAP were identified using liquid chromatography-tandems mass spectrometry (LC-MS/MS) and the possible degradation pathways were proposed. This study could provide a potential alternative method for controlling antibiotic resistance and protecting the quality of reclaimed water.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianguo Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qicheng Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingsong Yue
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| |
Collapse
|
38
|
BiOCl microspheres with controllable oxygen vacancies: Synthesis and their enhanced photocatalytic performance. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
TiO2/SnO2 nano-composite: New insights in synthetic, structural, optical and photocatalytic aspects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Brito JFD, Bessegato GG, Perini JAL, Torquato LDDM, Zanoni MVB. Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Qi K, Song M, Xie X, Wen Y, Wang Z, Wei B, Wang Z. CQDs/biochar from reed straw modified Z-scheme MgIn 2S 4/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water. CHEMOSPHERE 2022; 287:132192. [PMID: 34517240 DOI: 10.1016/j.chemosphere.2021.132192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The application of environmental-friendly and sustainable green materials in constructing photocatalysts to degrade pharmaceuticals and personal care products (PPCPs) attracts more attention. Herein, biochar (BC) or biomass carbon quantum dots (CQDs) were used to modify MgIn2S4/BiOCl (MB) heterojunction photocatalyst with Z-scheme structure, and improved the photocatalytic degradation performance for carbamazepine (CBZ) in the aqueous solution. Both BC and CQDs could form electron transfer interface with MB heterojunction, resulting in the photodegradation rate of MgIn2S4/BiOCl/CQDs (MBC, 96.43%) and MgIn2S4/BiOCl/BC (MBB, 88.09%) to CBZ within 120 min visible-light irradiation, which were significantly higher than that of MB (65.84%). Moreover, photoelectrochemical and photoluminescence tests verified that CQDs could act as a bridge for storing and transferring electrons in the entire Z-scheme system. Thence, compared with MBB, MBC could produce more •OH and •O2- under the visible light, which was indicated by the results of radical quenching experiments and electron paramagnetic resonance. Interestingly, under the natural sunlight, the photocatalytic performance of MBC to CBZ was even better than under laboratory conditions. In addition, the TOC removal efficiencies of MBB and MBC could reach 85.09% and 93.79% respectively, and ECOSAR program was utilized to further evaluate the eco-toxicity of CBZ and the intermediates towards fish, daphnid, and green algae, indicating that the photocatalytic process involving MBB and MBC showed outstanding toxicity reduction performance. Finally, compared with other composites, MBB and MBC showed higher photocatalytic performance and lower energy consumption, which would provide a green strategy for biochar materials in the photocatalytic treatment of PPCPs in water.
Collapse
Affiliation(s)
- Kemin Qi
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Mengxi Song
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China.
| | - Yuan Wen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Zirun Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Bin Wei
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| |
Collapse
|
42
|
Sultana S, Paramanik L, Mansingh S, Parida K. Robust Photoelectrochemical Route for the Ambient Fixation of Dinitrogen into Ammonia over a Nanojunction Assembled from Ceria and an Iron Boride/Phosphide Cocatalyst. Inorg Chem 2021; 61:131-140. [PMID: 34936349 DOI: 10.1021/acs.inorgchem.1c02504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitrogen reduction reaction is of great scientific significance as a hydrogen fuel carrier as well as a source of value-added products; in context to this, photoelectrochemical (PEC) nitrogen fixation emerges as an effective and environmentally benign strategy to meet the need. Hence, the current work reports an effective catalytic system containing a low-cost iron boride-based cocatalyst onto the CeO2 nanosheet matrix for photoelectrochemical nitrogen reduction reaction. The harmonized electronic property and the ensemble effect of phosphorus and boron in FeB/P with unsaturated metal sites make it a site-selective cocatalyst for nitrogen adsorption and its polarization. Furthermore, the low Fermi level of iron borophosphide enhances the trapping of photogenerated electrons from CeO2 and productively provides it to the adsorbed nitrogen species. The observed peculiar photocurrent behavior confirms the interaction of photogenerated electrons with adsorbed nitrogen species and its subsequent reduction by the surrounding protonic environment. The optimized CeO2-FeB/P photoelectrocatalyst exhibited an excellent NH3 yield velocity, i.e., 9.54 μg/h/cm2 at -0.12 V vs RHE with a solar-to-chemical conversion efficiency of 0.046% under ambient conditions. The same catalyst is also very active under near-zero biasing conditions and possesses impressive durability even after multiple uses. This work might strategically direct a promising way for the exploration of new photoelectrocatalytic systems for effective PEC-nitrogen reduction reaction.
Collapse
Affiliation(s)
- Sabiha Sultana
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Lekha Paramanik
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Sriram Mansingh
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| |
Collapse
|
43
|
Náfrádi M, Alapi T, Farkas L, Bencsik G, Kozma G, Hernádi K. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO 2 and ZnO Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2021; 15:49. [PMID: 35009197 PMCID: PMC8745830 DOI: 10.3390/ma15010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 05/04/2023]
Abstract
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Luca Farkas
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Klára Hernádi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, C/2-5 Building 209, H-3515 Miskolc-Egyetemvaros, Hungary;
| |
Collapse
|
44
|
Maridevaru MC, Anandan S, Aljafari B, Wu JJ. LaCo xFe 1-XO 3 (0≤x≤1) spherical nanostructures prepared via ultrasonic approach as photocatalysts. ULTRASONICS SONOCHEMISTRY 2021; 80:105824. [PMID: 34763211 PMCID: PMC8591478 DOI: 10.1016/j.ultsonch.2021.105824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 05/02/2023]
Abstract
To harvest the photon energy, a sequenceof perovskite-type oxides of LaCoxFe1-xO3 (0 ≤x≤1) nanostructures with distinct 'Cobalt' doping at the position of B-site are successfully prepared via a simple ultrasonic approach as photocatalyst. The crystallinity, phase identification, microstructure, and morphology of perovskite nanocomposites were analyzed to better understand their physicochemical properties. The catalytic efficiency was assessedusing Congo Red (CR) dye by visible light irradiation for 30 min. Applying terephthalic acid as a probe molecule, the formation of hydroxyl radicals during the processes was investigated. The photocatalytic efficacy was measured by varying different Co/Fe stoichiometric molar ratios and noticed the order of sequence is 0.2 > 0.6 > 0.4 > 0.8 > 0.5 > 0 > 1 after 30 min of reaction time. Finally using LaCo0.2Fe0.8O3 nanostructures, cycling studies (n = 3) were performed to determine its photostability and reusability. The photocatalytic methodology proposed in this study was discussed extensively.
Collapse
Affiliation(s)
- Madappa C Maridevaru
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620015, India
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620015, India.
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Jerry J Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
| |
Collapse
|
45
|
Development of a three-dimensional photoelectrocatalytic reactor packed with granular sludge carbon photoelectrocatalyst for efficient wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings. Catalysts 2021. [DOI: 10.3390/catal11121424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we report the results of comparative studies of the photostimulated hydrophilic behavior of heterostructured TiO2/BiVO4 and ZnO/BiVO4, and monocomponent TiO2 and ZnO nanocoating surfaces. The chemical composition and morphology of the synthesized nanocoatings were characterized by XPS, SEM, and AFM methods. The electronic energy structure of the heterostructure components (band gap, top of the valence band, bottom of the conduction band, and Fermi level position) was determined on the basis of experimental results obtained by XPS, UV-V absorption spectroscopy and Kelvin probe methods. According to their electronic energy structure, the ZnO/BiVO4 and TiO2/BiVO4 heterostructures correspond to type I and type II heterostructures, respectively. The difference in the type of heterostructures causes the difference in the charge transfer behavior at heterojunctions: the type II TiO2/BiVO4 heterostructure favors and the type I ZnO/BiVO4 heterostructure prevents the photogenerated hole transfer from BiVO4 to the outer layer of the corresponding metal oxide. The results of the comparative studies show that the interaction of the photogenerated holes with surface hydroxy-hydrated multilayers is responsible for the superhydrophilic surface conversion accompanying the increase of the surface free energy and work function. The formation of the type II heterostructure leads to the spectral sensitization of the photostimulated surface superhydrophilic conversion.
Collapse
|
47
|
Ye S, Feng C, Wang J, Tang L. Preparation and application of defective graphite phase carbon nitride photocatalysts. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2020-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Cheng M, Xiao C, Xie Y. Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007891. [PMID: 34476865 DOI: 10.1002/adma.202007891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3 ) and nitrates are essential for human society because of their widespread utilization for producing medicines, fibers, fertilizers, etc. In recent years, the development on nitrogen fixation under mild reaction conditions has attracted much attention. However, the very low conversion efficiency and ambiguous catalytic mechanism remain the major hurdles for the research of nitrogen fixation. This review aims to clarify the role of chemical bond in catalytic nitrogen fixation by summarizing and analyzing the recent development of nitrogen fixation research. In detail, the atomic-scale mechanism of nitrogen fixation reaction, the various methods to improve the nitrogen fixation performance, and the computational investigation of nitrogen fixation are discussed, all from a chemical bond perspective. It is hoped that this review could trigger more profound pondering and deeper exploration in the field of catalytic nitrogen fixation.
Collapse
Affiliation(s)
- Ming Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
49
|
Abstract
TiO2 is a semiconductor material with high chemical stability and low toxicity. It is widely used in the fields of catalysis, sensing, hydrogen production, optics and optoelectronics. However, TiO2 photocatalyst is sensitive to ultraviolet (UV) light; this is why its photocatalytic activity and quantum efficiency are reduced. To enhance the photocatalytic efficiency in the visible light range as well as to increase the number of the active sites on the crystal surface or inhibit the recombination rate of photogenerated electron–hole pairs electrons, various metal ions were used to modify TiO2. This review paper comprehensively summarizes the latest progress on the modification of TiO2 photocatalyst by a variety of metal ions. Lastly, the future prospects of the modification of TiO2 as a photocatalyst are proposed.
Collapse
|
50
|
Mustafa E, Adam RE, Rouf P, Willander M, Nur O. Solar-Driven Photoelectrochemical Performance of Novel ZnO/Ag 2WO 4/AgBr Nanorods-Based Photoelectrodes. NANOSCALE RESEARCH LETTERS 2021; 16:133. [PMID: 34417906 PMCID: PMC8380224 DOI: 10.1186/s11671-021-03586-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient photoelectrochemical (PEC) water oxidation under solar visible light is crucial for water splitting to produce hydrogen as a source of sustainable energy. Particularly, silver-based nanomaterials are important for PEC performance due to their surface plasmon resonance which can enhance the photoelectrochemical efficiency. However, the PEC of ZnO/Ag2WO4/AgBr with enhanced visible-light water oxidation has not been studied so far. Herein, we present a novel photoelectrodes based on ZnO/Ag2WO4/AgBr nanorods (NRs) for PEC application, which is prepared by the low-temperature chemical growth method and then by successive ionic layer adsorption and reaction (SILAR) method. The synthesized photoelectrodes were investigated by several characterization techniques, emphasizing a successful synthesis of the ZnO/Ag2WO4/AgBr heterostructure NRs with excellent photocatalysis performance compared to pure ZnO NRs photoelectrode. The significantly enhanced PEC was due to improved photogeneration and transportation of electrons in the heterojunction due to the synergistic effect of the heterostructure. This study is significant for basic understanding of the photocatalytic mechanism of the heterojunction which can prompt further development of novel efficient photoelectrochemical-catalytic materials.
Collapse
Affiliation(s)
- Elfatih Mustafa
- Department of Sciences and Technology, Linköping University, Campus Norrköping, 601 74, Norrköping, Sweden.
| | - Rania E Adam
- Department of Sciences and Technology, Linköping University, Campus Norrköping, 601 74, Norrköping, Sweden
| | - Polla Rouf
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Magnus Willander
- Department of Sciences and Technology, Linköping University, Campus Norrköping, 601 74, Norrköping, Sweden
| | - Omer Nur
- Department of Sciences and Technology, Linköping University, Campus Norrköping, 601 74, Norrköping, Sweden
| |
Collapse
|