1
|
Hossain KR, Turkewitz DR, Holt SA, Le Brun AP, Valenzuela SM. Sterol Structural Features' Impact on the Spontaneous Membrane Insertion of CLIC1 into Artificial Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3286-3300. [PMID: 36821411 DOI: 10.1021/acs.langmuir.2c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background: A membrane protein interaction with lipids shows distinct specificity in terms of the sterol structure. The structure of the sterol's polar headgroup, steroidal rings, and aliphatic side chains have all been shown to influence protein membrane interactions, including the initial binding and subsequent oligomerization to form functional channels. Previous studies have provided some insights into the regulatory role that cholesterol plays in the spontaneous membrane insertion of the chloride intracellular ion channel protein, CLIC1. However, the manner in which cholesterol interacts with CLIC1 is yet largely unknown. Method: In this study, the CLIC1 interaction with different lipid:sterol monolayers was studied using the Langmuir trough and neutron reflectometry in order to investigate the structural features of cholesterol essential for the spontaneous membrane insertion of the CLIC1 protein. Molecular docking simulations were also performed to study the binding affinities between CLIC1 and the different sterol molecules. Results: This study, for the first time, highlights the vital role of the free sterol 3β-OH group as an essential structural requirement for the interaction of CLIC1 with cholesterol. Furthermore, the presence of additional hydroxyl groups, methylation of the sterol skeleton, and the structure of the sterol alkyl side chain have also been shown to modulate the magnitude of CLIC1 interaction with sterols and hence their spontaneous membrane insertion. This study also reports the ability of CLIC1 to interact with other naturally existing sterol molecules. General Significance: Like the sterol molecules, CLIC proteins are evolutionarily conserved with almost all vertebrates expressing six CLIC proteins (CLIC1-6), and CLIC-like proteins are also present in invertebrates and have also been reported in plants. This discovery of CLIC1 protein interaction with other natural sterols and the sterol structural requirements for CLIC membrane insertion provide key information to explore the feasibility of exploiting these properties for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- Khondker R Hossain
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Daniel R Turkewitz
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low-Levels (IDEAL Hub), Faculty of Science, University of Technology Sydney, , Sydney, New South Wales 2007, Australia
| |
Collapse
|
2
|
Armanious A, Gerelli Y, Micciulla S, Pace HP, Welbourn RJL, Sjöberg M, Agnarsson B, Höök F. Probing the Separation Distance between Biological Nanoparticles and Cell Membrane Mimics Using Neutron Reflectometry with Sub-Nanometer Accuracy. J Am Chem Soc 2022; 144:20726-20738. [DOI: 10.1021/jacs.2c08456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonius Armanious
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Yuri Gerelli
- Institut Max von Laue-Paul Langevin (ILL), 38042Grenoble, France
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131Ancona, Italy
| | | | - Hudson P. Pace
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Rebecca J. L. Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OxonOX11 0QX, United Kingdom
| | - Mattias Sjöberg
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| |
Collapse
|
3
|
Indore NS, Karunakaran C, Jayas DS. Synchrotron tomography applications in agriculture and food sciences research: a review. PLANT METHODS 2022; 18:101. [PMID: 35964094 PMCID: PMC9375343 DOI: 10.1186/s13007-022-00932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 05/28/2023]
Abstract
Synchrotron imaging is widely used for research in many scientific disciplines. This article introduces the characteristics of synchrotron X-ray imaging and its applications in agriculture and food science research. The agriculture and food sector are a vast area that comprises of plants, seeds, animals, food and their products; soils with thriving microbial communities; and natural resources such as water, fertilizers, and organic matter. These entities have unique internal features, structures and compositions which differentiate them from each other in varieties, species, grades, and types. The use of a bright and tuneable monochromatic source of synchrotron imaging techniques enables researchers to study the internal features and compositions of plants, seeds, soil and food in a quick and non-destructive way to enhance their use, conservation and productivity. Synchrotron's different X-ray imaging techniques offer a wide domain of applications, which make them perfect to enhance the understanding of structures of raw and processed food products to promote food safety and security. Therefore, this paper summarizes the results of major experiments carried out with seeds, plants, soil, food and relevant areas of agricultural sciences with more emphasis on two synchrotron X-ray imaging techniques: absorption and phase-contrast imaging and computed tomography.
Collapse
Affiliation(s)
- Navnath S Indore
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Chithra Karunakaran
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
- Canadian Light Source Inc., Saskatoon, SK, S7N 2V3, Canada
| | - Digvir S Jayas
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| |
Collapse
|
4
|
Lakey JH, Paracini N, Clifton LA. Exploiting neutron scattering contrast variation in biological membrane studies. BIOPHYSICS REVIEWS 2022; 3:021307. [PMID: 38505417 PMCID: PMC10903484 DOI: 10.1063/5.0091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 03/21/2024]
Abstract
Biological membranes composed of lipids and proteins are central for the function of all cells and individual components, such as proteins, that are readily studied by a range of structural approaches, including x-ray crystallography and cryo-electron microscopy. However, the study of complex molecular mixtures within the biological membrane structure and dynamics requires techniques that can study nanometer thick molecular bilayers in an aqueous environment at ambient temperature and pressure. Neutron methods, including scattering and spectroscopic approaches, are useful since they can measure structure and dynamics while also being able to penetrate sample holders and cuvettes. The structural approaches, such as small angle neutron scattering and neutron reflectometry, detect scattering caused by the difference in neutron contrast (scattering length) between different molecular components such as lipids or proteins. Usually, the bigger the contrast, the clearer the structural data, and this review uses examples from our research to illustrate how contrast can be increased to allow the structures of individual membrane components to be resolved. Most often this relies upon the use of deuterium in place of hydrogen, but we also discuss the use of magnetic contrast and other elements with useful scattering length values.
Collapse
Affiliation(s)
- Jeremy H. Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolò Paracini
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, 21432 Malmö, Sweden
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
5
|
Holt SA, Oliver TE, Nelson ARJ. Using refnx to Model Neutron Reflectometry Data from Phospholipid Bilayers. Methods Mol Biol 2022; 2402:179-197. [PMID: 34854045 DOI: 10.1007/978-1-0716-1843-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neutron reflectometry has emerged as a powerful method for studying the structure of thin films in contact with solution at sub-molecular spatial resolution (Penfold and Thomas, J Phys Condens Matter 2:1369-1412, 1990). This type of experiment is undertaken at large international central facilities and experience in data analysis and interpretation is not always available "locally". Here, we describe the application of the refnx software suite (Nelson and Prescott, J Appl Crystallogr 52:193-200, 2019) to the analysis of a single phospholipid bilayer deposited at a silicon/buffer interface. The data is modeled such that the fitted parameters are readily interpretable by researchers working with lipid bilayers.
Collapse
Affiliation(s)
- Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia.
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Tara E Oliver
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee, NSW, Australia
| |
Collapse
|
6
|
Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochem Soc Trans 2021; 48:2139-2149. [PMID: 33005925 PMCID: PMC7609035 DOI: 10.1042/bst20200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
The use of neutrons as a scattering probe to investigate biological membranes has steadily grown in the past three decades, shedding light on the structure and behaviour of this ubiquitous and fundamental biological barrier. Meanwhile, the rise of antibiotic resistance has catalysed a renewed interest in understanding the mechanisms underlying the dynamics of antibiotics interaction with the bacterial cell envelope. It is widely recognised that the key reason behind the remarkable success of Gram-negative pathogens in developing antibiotic resistance lies in the effectiveness of their outer membrane (OM) in defending the cell from antibacterial compounds. Critical to its function, the highly asymmetric lipid distribution between the inner and outer bilayer leaflets of the OM, adds an extra level of complexity to the study of this crucial defence barrier. Here we review the opportunities offered by neutron scattering techniques, in particular reflectometry, to provide structural information on the interactions of antimicrobials with in vitro models of the OM. The differential sensitivity of neutrons towards hydrogen and deuterium makes them a unique probe to study the structure and behaviour of asymmetric membranes. Molecular-level understanding of the interactions between antimicrobials and the Gram-negative OM provides valuable insights that can aid drug development and broaden our knowledge of this critically important biological barrier.
Collapse
|
7
|
Unravelling the structural complexity of protein-lipid interactions with neutron reflectometry. Biochem Soc Trans 2021; 49:1537-1546. [PMID: 34240735 DOI: 10.1042/bst20201071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. In this brief review an introduction to the utilisation of NR in the study of protein-lipid interactions is given. Cold neutron beams penetrate matter deeply, have low energies, wavelengths in the Ångstrom regime and are sensitive to light elements. High differential hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic labelling to be utilised to enhance or diminish the scattering signal of individual components within complex biological structures. The combination of these effects means NR can probe buried structures such as those at the solid-liquid interface and encode molecular level structural information on interfacial protein-lipid complexes revealing the relative distribution of components as well as the overall structure. Model biological membrane sample systems can be structurally probed to examine phenomena such as antimicrobial mode of activity, as well as structural and mechanistic properties peripheral/integral proteins within membrane complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, detailing how changes in the protein/lipid distributions across the membrane before and after the protein interaction can be easily encoded using hydrogen isotope labelling.
Collapse
|
8
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Le Brun AP, Zhu S, Sani MA, Separovic F. The Location of the Antimicrobial Peptide Maculatin 1.1 in Model Bacterial Membranes. Front Chem 2020; 8:572. [PMID: 32733854 PMCID: PMC7358649 DOI: 10.3389/fchem.2020.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from the skin secretions of Australian tree frogs. In this work, the interaction of Mac1 with anionic phospholipid bilayers was investigated by NMR, circular dichroism (CD) spectroscopy, neutron reflectometry (NR) and molecular dynamics (MD). In buffer, the peptide is unstructured but in the presence of anionic (DPC/LMPG) micelles or (DMPC/DMPG/DHPC) bicelles adopts a helical structure. Addition of the soluble paramagnetic agent gadolinium (Gd-DTPA) into the Mac1-DPC/LMPG micelle solution showed that the N-terminus is more exposed to the hydrophilic Gd-DTPA than the C-terminus in micelles. 2H and 31P solid-state NMR showed that Mac1 had a greater effect on the anionic lipid (DMPG). A deuterium labeled Mac1 used in NR experiments indicated that the AMP spanned across anionic (PC/PG) bilayers, which was compatible with MD simulations. Simulations also showed that Mac1 orientation remained transmembrane in bilayers and wrapped on the surface of the micelles regardless of the lipid or detergent charge. Thus, the peptide orientation appears to be more susceptible to curvature than charged surface. These results support the formation of transmembrane pores by Mac1 in model bacterial membranes.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Luchini A, Tidemand FG, Johansen NT, Campana M, Sotres J, Ploug M, Cárdenas M, Arleth L. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations. Anal Chem 2019; 92:1081-1088. [DOI: 10.1021/acs.analchem.9b04125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | | | - Mario Campana
- ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom
| | - Javier Sotres
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32 Malmö, Sweden
| | - Michael Ploug
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32 Malmö, Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Clifton LA, Paracini N, Hughes AV, Lakey JH, Steinke NJ, Cooper JFK, Gavutis M, Skoda MWA. Self-Assembled Fluid Phase Floating Membranes with Tunable Water Interlayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13735-13744. [PMID: 31553881 DOI: 10.1021/acs.langmuir.9b02350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a reliable method for the fabrication of fluid phase, unsaturated lipid bilayers by self-assembly onto charged Self-Assembled Monolayer (SAM) surfaces with tunable membrane to surface aqueous interlayers. Initially, the formation of water interlayers between membranes and charged surfaces was characterized using a comparative series of bilayers deposited onto charged, self-assembled monolayers by sequential layer deposition. Using neutron reflectometry, a bilayer to surface water interlayer of ∼8 Å was found between the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane and an anionic carboxyl terminated grafted SAM with the formation of this layer attributed to bilayer repulsion by hydration water on the SAM surface. Furthermore, we found we could significantly reduce the technical complexity of sample fabrication through self-assembly of planar membranes onto the SAM coated surfaces. Vesicle fusion onto carboxyl-terminated monolayers yielded high coverage (>95%) bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) which floated on a 7-11 Å solution interlayer between the membrane and the surface. The surface to membrane distance was then tuned via the addition of 200 mM NaCl to the bulk solution immersing a POPC floating membrane, which caused the water interlayer to swell reversibly to ∼33 Å. This study reveals that biomimetic membrane models can be readily self-assembled from solution onto functionalized surfaces without the use of polymer supports or tethers. Once assembled, surface to membrane distance can be tailored to the experimental requirements using physiological concentrations of electrolytes. These planar bilayers only very weakly interact with the substrate and are ideally suited for use as biomimetic models for accurate in vitro biochemical and biophysical studies, as well as for technological applications, such as biosensors.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 OQX , U.K
| | - Nicoló Paracini
- Institute for Cell and Molecular Biosciences , Newcastle University , Framlington Place , Newcastle upon Tyne , NE2 4HH , United Kingdom
| | - Arwel V Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 OQX , U.K
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences , Newcastle University , Framlington Place , Newcastle upon Tyne , NE2 4HH , United Kingdom
| | - Nina-Juliane Steinke
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 OQX , U.K
| | - Joshaniel F K Cooper
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 OQX , U.K
| | - Martynas Gavutis
- Department of Nanoengineering , Center for Physical Sciences and Technology , Savanoriu ave 231 , LT-02300 Vilnius , Lithuania
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council , Rutherford Appleton Laboratory, Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 OQX , U.K
| |
Collapse
|
12
|
Wolff M, Devishvili A, Dura JA, Adlmann FA, Kitchen B, Pálsson GK, Palonen H, Maranville BB, Majkrzak CF, Toperverg BP. Nuclear Spin Incoherent Neutron Scattering from Quantum Well Resonators. PHYSICAL REVIEW LETTERS 2019; 123:016101. [PMID: 31386422 PMCID: PMC11135630 DOI: 10.1103/physrevlett.123.016101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/12/2019] [Indexed: 06/10/2023]
Abstract
We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable boundaries. Our results provide a pathway for the study of dynamics at surfaces and in ultrathin films using inelastic and/or quasielastic neutron scattering methods.
Collapse
Affiliation(s)
- Max Wolff
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
| | - Anton Devishvili
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
- Institut Laue Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Joseph A. Dura
- NIST Center for Neutron Research, National Institute for Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Franz A. Adlmann
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
| | - Brian Kitchen
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
| | - Gunnar K. Pálsson
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
| | - Heikki Palonen
- Department for Physics and Astronomy, Uppsala University, Regementsvägen 1, 75237 Uppsala, Sweden
| | - Brian B. Maranville
- NIST Center for Neutron Research, National Institute for Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Charles F. Majkrzak
- NIST Center for Neutron Research, National Institute for Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Boris P. Toperverg
- Petersburg Nuclear Physics Institute, Leningrad Oblast, 188300 Gatchina, Russia
- Institut Laue Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
13
|
Hughes AV, Patel DS, Widmalm G, Klauda JB, Clifton LA, Im W. Physical Properties of Bacterial Outer Membrane Models: Neutron Reflectometry & Molecular Simulation. Biophys J 2019; 116:1095-1104. [PMID: 30850116 DOI: 10.1016/j.bpj.2019.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer having phospholipids in the inner leaflet and lipopolysaccharides in the outer leaflet. This unique asymmetry and the complex carbohydrates in lipopolysaccharides make it a daunting task to study the asymmetrical OM structure and dynamics, its interactions with OM proteins, and its roles in translocation of substrates, including antibiotics. In this study, we combine neutron reflectometry and molecular simulation to explore the physical properties of OM mimetics. There is excellent agreement between experiment and simulation, allowing experimental testing of the conclusions from simulations studies and also atomistic interpretation of the behavior of experimental model systems, such as the degree of lipid asymmetry, the lipid component (tail, head, and sugar) profiles along the bilayer normal, and lateral packing (i.e., average surface area per lipid). Therefore, the combination of both approaches provides a powerful new means to explore the biological and biophysical behavior of the bacterial OM.
Collapse
Affiliation(s)
- Arwel V Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, United Kingdom.
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockhozlm, Sweden
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, Biophysics Program, University of Maryland, College Park, Maryland
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
14
|
Treece BW, Kienzle PA, Hoogerheide DP, Majkrzak CF, Lösche M, Heinrich F. Optimization of reflectometry experiments using information theory. J Appl Crystallogr 2019; 52:47-59. [PMID: 30800029 PMCID: PMC6362612 DOI: 10.1107/s1600576718017016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
A framework based on Bayesian statistics and information theory is developed to optimize the design of surface-sensitive reflectometry experiments. The method applies to model-based reflectivity data analysis, uses simulated reflectivity data and is capable of optimizing experiments that probe a sample under more than one condition. After presentation of the underlying theory and its implementation, the framework is applied to exemplary test problems for which the information gain ΔH is determined. Reflectivity data are simulated for the current generation of neutron reflectometers at the NIST Center for Neutron Research. However, the simulation can be easily modified for X-ray or neutron instruments at any source. With application to structural biology in mind, this work explores the dependence of ΔH on the scattering length density of aqueous solutions in which the sample structure is bathed, on the counting time and on the maximum momentum transfer of the measurement. Finally, the impact of a buried magnetic reference layer on ΔH is investigated.
Collapse
Affiliation(s)
- Bradley W. Treece
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Paul A. Kienzle
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
| | - Charles F. Majkrzak
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
| |
Collapse
|
15
|
Hossain KR, Holt SA, Le Brun AP, Al Khamici H, Valenzuela SM. X-ray and Neutron Reflectivity Study Shows That CLIC1 Undergoes Cholesterol-Dependent Structural Reorganization in Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12497-12509. [PMID: 29016141 DOI: 10.1021/acs.langmuir.7b02872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CLIC1 belongs to the ubiquitous family of chloride intracellular ion channel proteins that are evolutionarily conserved across species. The CLICs are unusual in that they exist mainly as soluble proteins but possess the intriguing property of spontaneous conversion from the soluble to an integral membrane-bound form. This conversion is regulated by the membrane lipid composition, especially by cholesterol, together with external factors such as oxidation and pH. However, the precise physiological mechanism regulating CLIC1 membrane insertion is currently unknown. In this study, X-ray and neutron reflectivity experiments were performed to study the interaction of CLIC1 with different phospholipid monolayers prepared using POPC, POPE, or POPS with and without cholesterol in order to better understand the regulatory role of cholesterol in CLIC1 membrane insertion. Our findings demonstrate for the first time two different structural orientations of CLIC1 within phospholipid monolayers, dependent upon the absence or presence of cholesterol. In phospholipid monolayers devoid of cholesterol, CLIC1 was unable to insert into the lipid acyl chain region. However, in the presence of cholesterol, CLIC1 showed significant insertion within the phospholipid acyl chains occupying an area per protein molecule of 6-7 nm2 with a total CLIC1 thickness ranging from ∼50 to 56 Å across the entire monolayer. Our data strongly suggests that cholesterol not only facilitates the initial docking or binding of CLIC1 to the membrane but also promotes deeper penetration of CLIC1 into the hydrophobic tails of the lipid monolayer.
Collapse
Affiliation(s)
- Khondker R Hossain
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
| | | | | |
Collapse
|
16
|
Dabkowska AP, Valldeperas M, Hirst C, Montis C, Pálsson GK, Wang M, Nöjd S, Gentile L, Barauskas J, Steinke NJ, Schroeder-Turk GE, George S, Skoda MWA, Nylander T. Non-lamellar lipid assembly at interfaces: controlling layer structure by responsive nanogel particles. Interface Focus 2017. [PMID: 28630677 DOI: 10.1098/rsfs.2016.0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biological membranes do not only occur as planar bilayer structures, but depending on the lipid composition, can also curve into intriguing three-dimensional structures. In order to fully understand the biological implications as well as to reveal the full potential for applications, e.g. for drug delivery and other biomedical devices, of such structures, well-defined model systems are required. Here, we discuss the formation of lipid non-lamellar liquid crystalline (LC) surface layers spin-coated from the constituting lipids followed by hydration of the lipid layer. We demonstrate that hybrid lipid polymer films can be formed with different properties compared with the neat lipid LC layers. The nanostructure and morphologies of the lipid films formed reflect those in the bulk. Most notably, mixed lipid layers, which are composed of glycerol monooleate and diglycerol monooleate with poly(N-isopropylacrylamide) nanogels, can form films of reverse cubic phases that are capable of responding to temperature stimulus. Owing to the presence of the nanogel particles, changing the temperature not only regulates the hydration of the cubic phase lipid films, but also the lateral organization of the lipid domains within the lipid self-assembled film. This opens up the possibility for new nanostructured materials based on lipid-polymer responsive layers.
Collapse
Affiliation(s)
- Aleksandra P Dabkowska
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden.,NanoLund, Lund University, PO Box 118, 22100 Lund, Sweden
| | - Maria Valldeperas
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Christopher Hirst
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Costanza Montis
- Department of Chemistry, University of Florence, Florence, Italy.,CSGI, Florence, Italy
| | - Gunnar K Pálsson
- Institut Laue Langevin, 38042 Grenoble, France.,Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden
| | - Meina Wang
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Sofi Nöjd
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Luigi Gentile
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden
| | - Justas Barauskas
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, 22379 Lund, Sweden.,Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Nina-Juliane Steinke
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire OX11 OQX, UK
| | - Gerd E Schroeder-Turk
- School of Engineering and Information Technology, Murdoch University, 10 South Street, 6500 Murdoch, WA, Australia
| | - Sebastian George
- Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire OX11 OQX, UK
| | - Tommy Nylander
- Division of Physical Chemistry, Lund University, PO Box 124, 22100 Lund, Sweden.,NanoLund, Lund University, PO Box 118, 22100 Lund, Sweden
| |
Collapse
|
17
|
Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria. Int J Mol Sci 2016; 17:ijms17122096. [PMID: 27983605 PMCID: PMC5187896 DOI: 10.3390/ijms17122096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide may participate in the regulation of mitochondrial membrane permeability. Herein, we report the effect of the synthetic CRAC peptide, VLNYYVW, on mitochondrial permeability transition pore (mPTP) opening. It was found that the CRAC peptide alone prevents the mPTP from opening, as well as the release of apoptotic factors (cytochrome c, AIF, and EndoG) in rat brain mitochondria (RBM). Co-incubation of CRAC, together with the TSPO drug ligand, PK 11195, resulted in the acceleration of mPTP opening and in the increase of apoptotic factor release. VLNYYVW did not induce swelling in rat liver mitochondria (RLM). 3,17,19-androsten-5-triol (19-Atriol; an inhibitor of the cholesterol-binding activity of the CRAC peptide) alone and in combination with the peptide was able to stimulate RLM swelling, which was Ca2+- and CsA-sensitive. Additionally, a combination of 19-Atriol with 100 nM PK 11195 or with 100 µM PK 11195 displayed the opposite effect: namely, the addition of 19-Atriol with 100 µM PK 11195 in a suspension of RLM suppressed the Ca2+-induced swelling of RLM by 40%, while the presence of 100 nM PK 11195 with 19-Atriol enhanced the swelling of RLM by 60%. Taken together, these data suggest the participation of the TSPO’s CRAC domain in the regulation of permeability transition.
Collapse
|
18
|
Lettieri R, Di Giorgio F, Colella A, Magnusson R, Bjorefors F, Placidi E, Palleschi A, Venanzi M, Gatto E. DPPTE Thiolipid Self-Assembled Monolayer: A Critical Assay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11560-11572. [PMID: 27689538 DOI: 10.1021/acs.langmuir.6b01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supported lipid membranes represent an elegant way to design a fluid interface able to mimic the physicochemical properties of biological membranes, with potential biotechnological applications. In this work, a diacyl phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE), functionalized with a thiol group, was immobilized on a gold surface. In this molecule, the thiol group, responsible for the Au-S bond (45 kJ/mol) is located on the phospholipid polar head, letting the hydrophobic chain protrude from the film. This system is widely used in the literature but is no less challenging, since its characterization is not complete, as several discordant data have been obtained. In this work, the film was characterized by cyclic voltammetry blocking experiments, to verify the SAM formation, and by reductive desorption measurements, to estimate the molecular density of DPPTE on the gold surface. This value has been compared to that obtained by quartz crystal microbalance measurements. Ellipsometry and impedance spectroscopy measurements have been performed to obtain information about the monolayer thickness and capacitance. The film morphology was investigated by atomic force microscopy. Finally, Monte Carlo simulations were carried out, in order to gain molecular information about the morphologies of the DPPTE SAM and compare them to the experimental results. We demonstrate that DPPTE molecules, incubated 18 h below the phase transition temperature (T = 41.1 ± 0.4 °C) in ethanol solution, are able to form a self-assembled monolayer on the gold surface, with domain structures of different order, which have never been reported before. Our results make possible rationalization of the scattered results so far obtained on this system, giving a new insight into the formation of phospholipids SAMs on a gold surface.
Collapse
Affiliation(s)
- Raffaella Lettieri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Floriana Di Giorgio
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Alessandra Colella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Roger Magnusson
- Department of Physics, Chemistry and Biology (IFM), University of Linköping , 581 83 Linköping, Sweden
| | - Fredrik Bjorefors
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 538, SE-75121 Uppsala, Sweden
| | - Ernesto Placidi
- Institute of Structure of Matter, CNR, Department of Physics, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Mariano Venanzi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| | - Emanuela Gatto
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata , 00133 Rome, Italy
| |
Collapse
|
19
|
Zieleniecki JL, Nagarajan Y, Waters S, Rongala J, Thompson V, Hrmova M, Köper I. Cell-Free Synthesis of a Functional Membrane Transporter into a Tethered Bilayer Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2445-2449. [PMID: 26910192 DOI: 10.1021/acs.langmuir.5b04059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eukaryotic cell-free synthesis was used to incorporate the large and complex multispan plant membrane transporter Bot1 in a functional form into a tethered bilayer lipid membrane. The electrical properties of the protein-functionalized tethered bilayer were measured using electrochemical impedance spectroscopy and revealed a pH-dependent transport of borate ions through the protein. The efficacy of the protein synthesis has been evaluated using immunoblot analysis.
Collapse
Affiliation(s)
- Julius L Zieleniecki
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| | - Yagnesh Nagarajan
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Shane Waters
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Jay Rongala
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Vanessa Thompson
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| |
Collapse
|
20
|
|
21
|
Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Heinrich F, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH. An accurate in vitro model of the E. coli envelope. Angew Chem Int Ed Engl 2015; 54:11952-5. [PMID: 26331292 PMCID: PMC4600229 DOI: 10.1002/anie.201504287] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Indexed: 11/05/2022]
Abstract
Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Stephen A Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)
| | - Arwel V Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Emma L Daulton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Wanatchaporn Arunmanee
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (UK)
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213 (USA).,National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899 (USA)
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ (UK)
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ (UK)
| | - Timothy R Charlton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - John R P Webster
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Christian J Kinane
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (UK).
| |
Collapse
|
22
|
Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Heinrich F, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH. An Accurate In Vitro Model of the E. coli Envelope. ACTA ACUST UNITED AC 2015; 127:12120-12123. [PMID: 27346898 PMCID: PMC4871320 DOI: 10.1002/ange.201504287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Indexed: 11/12/2022]
Abstract
Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Stephen A Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)
| | - Arwel V Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Emma L Daulton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Wanatchaporn Arunmanee
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (UK)
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213 (USA); National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899 (USA)
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ (UK)
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ (UK)
| | - Timothy R Charlton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - John R P Webster
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Christian J Kinane
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, Oxfordshire, OX11 OQX (UK)
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (UK)
| |
Collapse
|
23
|
McIntosh L, Whitelaw C, Rekas A, Holt SA, van der Walle CF. Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion. J R Soc Interface 2015; 12:rsif.2015.0164. [PMID: 25926699 DOI: 10.1098/rsif.2015.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The fibronectin fragment, 9th-10th-type III domains (FIII9-10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO2). How the extent of the cell attachment-spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9-10 mutants (both protonated and deuterated) adsorbed to TiO2 were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l(-1), the surface fraction of the less conformationally stable mutant (FIII9'10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9'10-H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l(-1), with the protein longitudinal orientation moving away from the plane of the TiO2 surface at high concentrations. Baby hamster kidney cells adherent to TiO2 surfaces coated with the proteins (100 mg l(-1)) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9'10 and FIII9'10-H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO2 surfaces.
Collapse
Affiliation(s)
- Lisa McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christine Whitelaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Agata Rekas
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Stephen A Holt
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Christopher F van der Walle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
24
|
Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 2015; 10:019014. [PMID: 25779088 DOI: 10.1116/1.4914948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 Å at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.
Collapse
|
25
|
Hughes AV, Holt SA, Daulton E, Soliakov A, Charlton TR, Roser SJ, Lakey JH. High coverage fluid-phase floating lipid bilayers supported by ω-thiolipid self-assembled monolayers. J R Soc Interface 2015; 11:20140245. [PMID: 25030385 PMCID: PMC4233693 DOI: 10.1098/rsif.2014.0447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Large area lipid bilayers, on solid surfaces, are useful in physical studies of biological membranes. It is advantageous to minimize the interactions of these bilayers with the substrate and this can be achieved via the formation of a floating supported bilayer (FSB) upon either a surface bound phospholipid bilayer or monolayer. The FSB's independence is enabled by the continuous water layer (greater than 15 Å) that remains between the two. However, previous FSBs have had limited stability and low density. Here, we demonstrate by surface plasmon resonance and neutron reflectivity, the formation of a complete self-assembled monolayer (SAM) on gold surfaces by a synthetic phosphatidylcholine bearing a thiol group at the end of one fatty acyl chain. Furthermore, a very dense FSB (more than 96%) of saturated phosphatidylcholine can be formed on this SAM by sequential Langmuir–Blodgett and Langmuir–Schaefer procedures. Neutron reflectivity used both isotopic and magnetic contrast to enhance the accuracy of the data fits. This system offers the means to study transmembrane proteins, membrane potential effects (using the gold as an electrode) and even model bacterial outer membranes. Using unsaturated phosphatidylcholines, which have previously failed to form stable FSBs, we achieved a coverage of 73%.
Collapse
Affiliation(s)
- Arwel V Hughes
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell OX11 0QX, UK
| | - Stephen A Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC 2001, New South Wales 2232, Australia
| | - Emma Daulton
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell OX11 0QX, UK Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andrei Soliakov
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Timothy R Charlton
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell OX11 0QX, UK
| | - Steven J Roser
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Le Brun AP, Soliakov A, Shah DSH, Holt SA, McGill A, Lakey JH. Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Biomed Microdevices 2015; 17:9951. [PMID: 25860669 PMCID: PMC4392172 DOI: 10.1007/s10544-015-9951-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integrating nanotechnology into useable devices requires a combination of bottom up and top down methodology. Often the techniques to measure and control these different components are entirely different, so methods that can analyse the nanoscale component in situ are of increasing importance. Here we describe a strategy that employs a self-assembling monolayer of engineered protein chimeras to display an array of oriented antibodies (IgG) on a microelectronic device for the label free detection of influenza nucleoprotein. The structural and functional properties of the bio-interface were characterised by a range of physical techniques including surface plasmon resonance, quartz-crystal microbalance and neutron reflectometry. This combination of methods reveals a 13.5 nm thick engineered-monolayer that (i) self-assembles on gold surfaces, (ii) captures IgG with high affinity in a defined orientation and (iii) specifically recognises the influenza A nucleoprotein. Furthermore we also show that this non-covalent self-assembled structure can render the dissociation of bound IgG irreversible by chemical crosslinking in situ without affecting the IgG function. The methods can thus describe in detail the transition from soluble engineered molecules with nanometre dimensions to an array that demonstrates the principles of a working influenza sensor.
Collapse
Affiliation(s)
- Anton P. Le Brun
- />Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 Australia
| | - Andrei Soliakov
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
- />Fujifilm Diosynth, Belasis Avenue, Billingham, Cleveland TS23 1LH UK
| | - Deepan S. H. Shah
- />Orla Protein Technologies Ltd, Biosciences Centre, International Centre for Life, Times Square, Newcastle upon Tyne, NE1 4EP UK
| | - Stephen A. Holt
- />Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 Australia
| | - Alison McGill
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
- />Fujifilm Diosynth, Belasis Avenue, Billingham, Cleveland TS23 1LH UK
| | - Jeremy H. Lakey
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
27
|
Nanda H, Heinrich F, Lösche M. Membrane association of the PTEN tumor suppressor: neutron scattering and MD simulations reveal the structure of protein-membrane complexes. Methods 2014; 77-78:136-46. [PMID: 25461777 DOI: 10.1016/j.ymeth.2014.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
Neutron reflection (NR) from planar interfaces is an emerging technology that provides unique and otherwise inaccessible structural information on disordered molecular systems such as membrane proteins associated with fluid bilayers, thus addressing one of the remaining challenges of structural biology. Although intrinsically a low-resolution technique, using structural information from crystallography or NMR allows the construction of NR models that describe the architecture of protein-membrane complexes at high resolution. In addition, a combination of these methods with molecular dynamics (MD) simulations has the potential to reveal the dynamics of protein interactions with the bilayer in atomistic detail. We review recent advances in this area by discussing the application of these techniques to the complex formed by the PTEN phosphatase with the plasma membrane. These studies provide insights in the cellular regulation of PTEN, its interaction with PI(4,5)P2 in the inner plasma membrane and the pathway by which its substrate, PI(3,4,5)P3, accesses the PTEN catalytic site.
Collapse
Affiliation(s)
- Hirsh Nanda
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
28
|
Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat Commun 2014; 5:5078. [PMID: 25341963 DOI: 10.1038/ncomms6078] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.
Collapse
|
29
|
Heinrich F, Lösche M. Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:2341-9. [PMID: 24674984 PMCID: PMC4082750 DOI: 10.1016/j.bbamem.2014.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 11/23/2022]
Abstract
Neutron reflectometry (NR) is an emerging experimental technique for the structural characterization of proteins interacting with fluid bilayer membranes under conditions that mimic closely the cellular environment. Thus, cellular processes can be emulated in artificial systems and their molecular basis studied by adding cellular components one at a time in a well-controlled environment while the resulting structures, or structural changes in response to external cues, are monitored with neutron reflection. In recent years, sample environments, data collection strategies and data analysis were continuously refined. The combination of these improvements increases the information which can be obtained from NR to an extent that enables structural characterization of protein-membrane complexes at a length scale that exceeds the resolution of the measurement by far. Ultimately, the combination of NR with molecular dynamics (MD) simulations can be used to cross-validate the results of the two techniques and provide atomic-scale structural models. This review discusses these developments in detail and demonstrates how they provide new windows into relevant biomedical problems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Frank Heinrich
- Physics Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.; NIST Center for Neutron Research, Gaithersburg, MD, U.S.A
| | - Mathias Lösche
- Physics Department, Carnegie Mellon University, Pittsburgh, PA, U.S.A.; NIST Center for Neutron Research, Gaithersburg, MD, U.S.A..
| |
Collapse
|
30
|
Molecular weight dependent vertical composition profiles of PCDTBT:PC₇₁BM blends for organic photovoltaics. Sci Rep 2014; 4:5286. [PMID: 24924096 PMCID: PMC4055896 DOI: 10.1038/srep05286] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/22/2014] [Indexed: 11/12/2022] Open
Abstract
We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer.
Collapse
|
31
|
Clifton LA, Skoda MWA, Daulton EL, Hughes AV, Le Brun AP, Lakey JH, Holt SA. Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic. J R Soc Interface 2013; 10:20130810. [PMID: 24132206 PMCID: PMC3808558 DOI: 10.1098/rsif.2013.0810] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/25/2013] [Indexed: 01/02/2023] Open
Abstract
The Gram-negative bacterial outer membrane (OM) is a complex and highly asymmetric biological barrier but the small size of bacteria has hindered advances in in vivo examination of membrane dynamics. Thus, model OMs, amenable to physical study, are important sources of data. Here, we present data from asymmetric bilayers which emulate the OM and are formed by a simple two-step approach. The bilayers were deposited on an SiO2 surface by Langmuir-Blodgett deposition of phosphatidylcholine as the inner leaflet and, via Langmuir-Schaefer deposition, an outer leaflet of either Lipid A or Escherichia coli rough lipopolysaccharides (LPS). The membranes were examined using neutron reflectometry (NR) to examine the coverage and mixing of lipids between the bilayer leaflets. NR data showed that in all cases, the initial deposition asymmetry was mostly maintained for more than 16 h. This stability enabled the sizes of the headgroups and bilayer roughness of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and Lipid A, Rc-LPS and Ra-LPS to be clearly resolved. The results show that rough LPS can be manipulated like phospholipids and used to fabricate advanced asymmetric bacterial membrane models using well-known bilayer deposition techniques. Such models will enable OM dynamics and interactions to be studied under in vivo-like conditions.
Collapse
Affiliation(s)
- Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 OQX, UK
| | - Maximilian W. A. Skoda
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 OQX, UK
| | - Emma L. Daulton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 OQX, UK
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Arwel V. Hughes
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 OQX, UK
| | - Anton P. Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Jeremy H. Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Stephen A. Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| |
Collapse
|
32
|
Le Brun A, Clifton LA, Halbert CE, Lin B, Meron M, Holden PJ, Lakey JH, Holt SA. Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules 2013; 14:2014-22. [PMID: 23617615 PMCID: PMC3679557 DOI: 10.1021/bm400356m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/18/2013] [Indexed: 12/29/2022]
Abstract
Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air-liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m(-1) and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m(-1), distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model.
Collapse
Affiliation(s)
- Anton
P. Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Luke A. Clifton
- ISIS Neutron Facility, STFC Rutherford
Appleton Laboratory, Didcot, Oxfordshire
OX11 0QX, United Kingdom
| | - Candice E. Halbert
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Binhua Lin
- Consortium
of Advanced Radiation
Sources (CARS), University of Chicago,
Chicago, Illinois 60637, United States
| | - Mati Meron
- Consortium
of Advanced Radiation
Sources (CARS), University of Chicago,
Chicago, Illinois 60637, United States
| | - Peter J. Holden
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Jeremy H. Lakey
- Institute for Cell and Molecular
Biosciences, Newcastle University, Framlington
Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen A. Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| |
Collapse
|
33
|
Saerbeck T, Klose F, Le Brun AP, Füzi J, Brule A, Nelson A, Holt SA, James M. Invited article: polarization "down under": the polarized time-of-flight neutron reflectometer PLATYPUS. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:081301. [PMID: 22938267 DOI: 10.1063/1.4738579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.
Collapse
Affiliation(s)
- T Saerbeck
- School of Physics, University of Western Australia, Crawley WA6009, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Self-assembly of protein monolayers engineered for improved monoclonal immunoglobulin G binding. Int J Mol Sci 2011; 12:5157-67. [PMID: 21954350 PMCID: PMC3179157 DOI: 10.3390/ijms12085157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/04/2011] [Accepted: 08/10/2011] [Indexed: 02/04/2023] Open
Abstract
Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG) to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.
Collapse
|
35
|
Lakey JH. Neutrons for biologists: a beginner's guide, or why you should consider using neutrons. J R Soc Interface 2009; 6 Suppl 5:S567-73. [PMID: 19656821 DOI: 10.1098/rsif.2009.0156.focus] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences.
Collapse
Affiliation(s)
- Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
| |
Collapse
|