1
|
Syring A, Wang Z, Molle J, Keese H, Wundrack S, Stosch R, Voss T. Confocal Raman Microscopy for the Analysis of the Three-Dimensional Shape of Polymeric Microsphere Layers. APPLIED SPECTROSCOPY 2022; 76:678-688. [PMID: 35259964 DOI: 10.1177/00037028211067827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reconstruction of the three-dimensional (3D) morphology of polymeric microsphere layers based on confocal Raman microscopy was studied. Refraction of the Raman laser beam at the curved surface of the spheres broadens the focus volume inside the sphere. Compared to planar layers, the focus gets trapped inside the spheres such that the measured depth profiles are shifted and broadened. Additionally, the Raman signal of the underlying substrate is already observed for nominal focus positions above the microsphere layer. The results are successfully modeled with ray-optical simulations that allow for a clear understanding of the relevant mechanisms that lead to the generation of the Raman signals in the complex three-dimensional structures.
Collapse
Affiliation(s)
- Alina Syring
- Institut für Halbleitertechnik, 26527Technische Universität Braunschweig, Braunschweig, Germany
- 26527Laboratory of Emerging Nanometrology (LENA) der Technischen Universität Braunschweig, Braunschweig, Germany
| | - Zunhao Wang
- 39428Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Julia Molle
- 39428Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Hendrik Keese
- Institut für Halbleitertechnik, 26527Technische Universität Braunschweig, Braunschweig, Germany
- 26527Laboratory of Emerging Nanometrology (LENA) der Technischen Universität Braunschweig, Braunschweig, Germany
| | - Stefan Wundrack
- 39428Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Rainer Stosch
- 39428Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Tobias Voss
- Institut für Halbleitertechnik, 26527Technische Universität Braunschweig, Braunschweig, Germany
- 26527Laboratory of Emerging Nanometrology (LENA) der Technischen Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Katznelson S, Cohn B, Sufrin S, Amit T, Mukherjee S, Kleiner V, Mohapatra P, Patsha A, Ismach A, Refaely-Abramson S, Hasman E, Koren E. Bright excitonic multiplexing mediated by dark exciton transition in two-dimensional TMDCs at room temperature. MATERIALS HORIZONS 2022; 9:1089-1098. [PMID: 35083477 DOI: 10.1039/d1mh01186c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D-semiconductors with strong light-matter interaction are attractive materials for integrated and tunable optical devices. Here, we demonstrate room-temperature wavelength multiplexing of the two-primary bright excitonic channels (Ab-, Bb-) in monolayer transition metal dichalcogenides (TMDs) arising from a dark exciton mediated transition. We present how tuning dark excitons via an out-of-plane electric field cedes the system equilibrium from one excitonic channel to the other, encoding the field polarization into wavelength information. In addition, we demonstrate how such exciton multiplexing is dictated by thermal-scattering by performing temperature dependent photoluminescence measurements. Finally, we demonstrate experimentally and theoretically how excitonic mixing can explain preferable decay through dark states in MoX2 in comparison with WX2 monolayers. Such field polarization-based manipulation of excitonic transitions can pave the way for novel photonic device architectures.
Collapse
Affiliation(s)
- Shaul Katznelson
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shmuel Sufrin
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tomer Amit
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Subhrajit Mukherjee
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Vladimir Kleiner
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Pranab Mohapatra
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Avinash Patsha
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Ariel Ismach
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Erez Hasman
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- Atomic-Scale Photonics Laboratory, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elad Koren
- Nanoscale Electronic Materials and Devices Laboratory, Faculty of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
- Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion - Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Lasch P, Noda I. Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved Vibrational Spectra. APPLIED SPECTROSCOPY 2019; 73:359-379. [PMID: 30488717 DOI: 10.1177/0003702818819880] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The last two decades have seen tremendous progress in the application of two-dimensional correlation spectroscopy (2D-COS) as a versatile analysis method for data series obtained using a large variety of different spectroscopic modalities, including infrared (IR) and Raman spectroscopy. The analysis technique is applicable to a series of spectra recorded under the influence of an external sample perturbation. Two-dimensional COS analysis is not only helpful to decipher correlations, which may exist between distinct spectral features, but can also be utilized to obtain the sequence of individual spectral changes. The focus of this review article is on the application of 2D-COS for analyzing spatially resolved data with special emphasis on hyperspectral imaging (HSI) study. In this review, we briefly introduce the fundamentals of the generalized 2D-COS analysis approach, discuss specific points of 2D-COS application to spatially resolved spectra and demonstrate essential aspects of data pre-processing for 2D-COS analysis of spatially resolved spectra. Based on illustrative examples, we show that 2D-COS is useful for spectral band assignment in HSI applications and demonstrate its utility for detecting subtle correlations between spectra features, or between features from different imaging modalities in the case of heterospectral (multimodal) HSI. Furthermore, a short overview on existing 2D-COS software tools is provided. It is hoped that this article represents not only a useful guideline for 2D-COS analyses of spatially resolved hyperspectral data but supports also further dissemination of the 2D-COS analysis method as a whole.
Collapse
Affiliation(s)
- Peter Lasch
- 1 Robert Koch-Institute, ZBS6-Proteomics and Spectroscopy, Berlin, Germany
| | - Isao Noda
- 2 Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Lasch P, Stämmler M, Zhang M, Baranska M, Bosch A, Majzner K. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Anal Chem 2018; 90:8896-8904. [DOI: 10.1021/acs.analchem.8b01024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Lasch
- ZBS6 Proteomics and Spectroscopy, Robert Koch-Institute, Seestrasse 10, Berlin, D-13353, Germany
| | - Maren Stämmler
- ZBS6 Proteomics and Spectroscopy, Robert Koch-Institute, Seestrasse 10, Berlin, D-13353, Germany
| | - Miao Zhang
- ZBS6 Proteomics and Spectroscopy, Robert Koch-Institute, Seestrasse 10, Berlin, D-13353, Germany
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-060 Krakow, Poland
| | - Alejandra Bosch
- CINDEFI,
CONICET-CCT
La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Katarzyna Majzner
- ZBS6 Proteomics and Spectroscopy, Robert Koch-Institute, Seestrasse 10, Berlin, D-13353, Germany
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-060 Krakow, Poland
| |
Collapse
|
5
|
Li Q, Ma X, Wang H, Wang Y, Zheng X, Chen D. Speeding up Raman spectral imaging by the three-dimensional low rank estimation method. OPTICS EXPRESS 2018; 26:525-530. [PMID: 29328329 DOI: 10.1364/oe.26.000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Raman spectral imaging has been widely used as a very important analytical tool in various fields. For obtaining the high spectral signal-to-noise ratio Raman images, the long integration time is necessary, which is placing a limit on the application of Raman spectral imaging. We introduce a simple and feasible numerical method of the Three-dimensional Low Rank Estimation (3D-LRE), which can speed up the data acquisition process of the Raman spectral imaging. The spectral signal-to-noise ratio of the Raman images can be increased by over 75 times and the speed of the data acquisition can be improved by over 30 times. By combining with line-scan or multifocus-scan techniques, the Raman images can be obtained in a few seconds.
Collapse
|
6
|
Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC, Maynard SA, Stevens MM. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun 2017; 8:14843. [PMID: 28327660 PMCID: PMC5364421 DOI: 10.1038/ncomms14843] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.
Collapse
Affiliation(s)
- Charalambos Kallepitis
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mads S. Bergholt
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Manuel M. Mazo
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Stacey C. Skaalure
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Stephanie A. Maynard
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, Schlattmann P, Popp J, Neugebauer U. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem 2015; 407:8343-52. [DOI: 10.1007/s00216-015-8912-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
|
8
|
Cu(0) nanoparticles deposited on nanoporous polymers: a recyclable heterogeneous nanocatalyst for Ullmann coupling of aryl halides with amines in water. Sci Rep 2015; 5:8294. [PMID: 25656598 PMCID: PMC4319161 DOI: 10.1038/srep08294] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
Cu(0) nanoparticles were deposited on a nanoporous polymer to develop a novel nanocatalyst (Cu-B) for carrying out Ullmann coupling of aryl halides with amines in water. Non-aqueous polymerization of a mixture of divinylbenzene and acrylic acid under hydrothermal conditions followed by the deposition of Cu(0) nanoparticles were adopted to afford the Cu-B nanocatalyst. In order to compare the catalytic activity of the Cu-B nanocatalyst in the Ullmann coupling reactions, another nanocatalyst, Cu(0) nanoparticle-loaded porous carbon (Cu-A), was also prepared. All the newly developed Cu(0) nanoparticle-based nanocatalysts were thoroughly characterized using several characterization techniques. The Ullmann coupling reactions were carried out in water only with 1.35 mol% loading of Cu as catalytically active sites in Cu-B. The Cu-B nanocatalyst exhibited higher catalytic activity as compared with Cu-A, and also showed a good catalytic recyclability with a high consistence in the catalytic activity. No Cu leaching from the nanocatalyst surface and the smooth nanocatalyst recovery confirm the true heterogeneity in these catalytic reactions.
Collapse
|
9
|
Dwivedi J, Kumar P, Kumar A, Sudama S, Singh VN, Singh BP, Dhawan SK, Shanker V, Gupta BK. A commercial approach for the fabrication of bulk and nano phosphors converted into highly efficient white LEDs. RSC Adv 2014. [DOI: 10.1039/c4ra11318g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A novel approach for the comparative study of bulk and nano phosphors converted into highly efficient white LEDs.
Collapse
Affiliation(s)
- Jaya Dwivedi
- Luminescent Materials and Devices Group
- Materials Physics and Engineering Division
- India
- CSIR - National Physical Laboratory
- New Delhi, India
| | - Pawan Kumar
- Luminescent Materials and Devices Group
- Materials Physics and Engineering Division
- India
- CSIR - National Physical Laboratory
- New Delhi, India
| | - Arun Kumar
- Luminescent Materials and Devices Group
- Materials Physics and Engineering Division
- India
- CSIR - National Physical Laboratory
- New Delhi, India
| | - Sudama Sudama
- CSIR - National Physical Laboratory
- New Delhi, India
- Optical Radiation Standards
- Apex Level Standards & Industrial Metrology
- India
| | - V. N. Singh
- CSIR - National Physical Laboratory
- New Delhi, India
- Electron and Ion Microscopy Section
- Sophisticated Analytical Instruments Division
| | - Bhanu Pratap Singh
- CSIR - National Physical Laboratory
- New Delhi, India
- Physics and Engineering of Carbon
- Materials Physics and Engineering Division
- India
| | - S. K. Dhawan
- CSIR - National Physical Laboratory
- New Delhi, India
- Polymeric and Soft Materials
- Materials Physics and Engineering Division
- India
| | - V. Shanker
- Luminescent Materials and Devices Group
- Materials Physics and Engineering Division
- India
- CSIR - National Physical Laboratory
- New Delhi, India
| | - Bipin Kumar Gupta
- Luminescent Materials and Devices Group
- Materials Physics and Engineering Division
- India
- CSIR - National Physical Laboratory
- New Delhi, India
| |
Collapse
|
10
|
Alexandrov T, Lasch P. Segmentation of confocal Raman microspectroscopic imaging data using edge-preserving denoising and clustering. Anal Chem 2013; 85:5676-83. [PMID: 23701523 DOI: 10.1021/ac303257d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, confocal Raman microspectroscopic (CRM) imaging has matured into a useful analytical tool to obtain spatially resolved chemical information on the molecular composition of biological samples and has found its way into histopathology, cytology, and microbiology. A CRM imaging data set is a hyperspectral image in which Raman intensities are represented as a function of three coordinates: a spectral coordinate λ encoding the wavelength and two spatial coordinates x and y. Understanding CRM imaging data is challenging because of its complexity, size, and moderate signal-to-noise ratio. Spatial segmentation of CRM imaging data is a way to reveal regions of interest and is traditionally performed using nonsupervised clustering which relies on spectral domain-only information with the main drawback being the high sensitivity to noise. We present a new pipeline for spatial segmentation of CRM imaging data which combines preprocessing in the spectral and spatial domains with k-means clustering. Its core is the preprocessing routine in the spatial domain, edge-preserving denoising (EPD), which exploits the spatial relationships between Raman intensities acquired at neighboring pixels. Additionally, we propose to use both spatial correlation to identify Raman spectral features colocalized with defined spatial regions and confidence maps to assess the quality of spatial segmentation. For CRM data acquired from midsagittal Syrian hamster ( Mesocricetus auratus ) brain cryosections, we show how our pipeline benefits from the complex spatial-spectral relationships inherent in the CRM imaging data. EPD significantly improves the quality of spatial segmentation that allows us to extract the underlying structural and compositional information contained in the Raman microspectra.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany.
| | | |
Collapse
|
11
|
Maturation of released spores is necessary for acquisition of full spore heat resistance during Bacillus subtilis sporulation. Appl Environ Microbiol 2011; 77:6746-54. [PMID: 21821751 DOI: 10.1128/aem.05031-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first ∼10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ∼24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca(2+) but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.
Collapse
|