1
|
Mariyappan K, Tandon A, Park S, Kokkiligadda S, Lee J, Jo S, Komarala EP, Yoo S, Chopade P, Choi HJ, Lee CW, Jeon S, Jeong JH, Park SH. Nanomaterial-Embedded DNA Films on 2D Frames. ACS APPLIED BIO MATERIALS 2022; 5:2812-2818. [PMID: 35543024 DOI: 10.1021/acsabm.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, 3D printing has provided opportunities for designing complex structures with ease. These printed structures can serve as molds for complex materials such as DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA that have easily tunable functionalities via the embedding of various nanomaterials such as ions, nanoparticles, fluorophores, and proteins. Herein, we develop a simple and efficient method for constructing DNA flat and curved films containing water-soluble/thermochromatic dyes and di/trivalent ions and CTMA-modified DNA films embedded with organic light-emitting molecules (OLEM) with the aid of 2D/3D frames made by a 3D printer. We study the Raman spectra, current, and resistance of Cu2+-doped and Tb3+-doped DNA films and the photoluminescence of OLEM-embedded CTMA-modified DNA films to better understand the optoelectric characteristics of the samples. Compared to pristine DNA, ion-doped DNA films show noticeable variation of Raman peak intensities, which might be due to the interaction between the ion and phosphate backbone of DNA and the intercalation of ions in DNA base pairs. As expected, ion-doped DNA films show an increase of current with an increase in bias voltage. Because of the presence of metallic ions, DNA films with embedded ions showed relatively larger current than pristine DNA. The photoluminescent emission peaks of CTMA-modified DNA films with OLEMRed, OLEMGreen, and OLEMBlue were obtained at the wavelengths of 610, 515, and 469 nm, respectively. Finally, CIE color coordinates produced from CTMA-modified DNA films with different OLEM color types were plotted in color space. It may be feasible to produce multilayered DNA films as well. If so, multilayered DNA films embedded with different color dyes, ions, fluorescent materials, nanoparticles, proteins, and drug molecules could be used to realize multifunctional physical devices such as energy harvesting and chemo-bio sensors in the near future.
Collapse
Affiliation(s)
- Karthikeyan Mariyappan
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Anshula Tandon
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Samanth Kokkiligadda
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Jayeon Lee
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Soojin Jo
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Eswaravara Prasadarao Komarala
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sanghyun Yoo
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Prathamesh Chopade
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Hee Jin Choi
- Institute of Advanced Optics and Photonics, Department of Applied Optics, Hanbat National University, Daejeon 34158, Korea
| | - Chang-Won Lee
- Institute of Advanced Optics and Photonics, Department of Applied Optics, Hanbat National University, Daejeon 34158, Korea
| | - Sohee Jeon
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea
| | - Jun-Ho Jeong
- Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Korea.,Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung Ha Park
- Department of Physics, Institute of Basic Science, and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
2
|
Mariyappan K, Park S, Nanda SS, Kokkiligadda S, Jo S, Lee J, Tandon A, Yi DK, Park SH. Fibres and films made from DNA and CTMA-modified DNA embedded with gold nanorods and organic light-emitting materials. Colloids Surf B Biointerfaces 2021; 211:112291. [PMID: 34954515 DOI: 10.1016/j.colsurfb.2021.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
The scaffolding of deoxyribonucleic acid (DNA) makes DNA molecules effective templates for hosting various types of nanomaterials. Recently, electrospun fibres formed by a variety of polymers have begun to see use in a number of applications, such as filtration in energy applications, insulation in thermodynamics and protein scaffolding in biomedicine. In this study, we constructed electrospun fibres and thin films made of DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) embedded with dyes, organic light-emitting materials (OLEMs), and gold nanorods (GNRs). These materials provide significant advantages, including selectivity of dimensionality, solubility in organic and inorganic solvents, and functionality enhancement. In addition, coaxial fibres made of CDNA were constructed to demonstrate the feasibility of constructing relatively complex fibres with an electrospinner. To determine the basic physical characteristics of the fibres and thin films containing GNRs and OLEMs, we conducted current measurements, photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The currents in DNA and CDNA were found to exhibit Ohmic behaviour, while the PL emission could be controlled by OLEMs. In addition, the XPS provided the chemical configuration of samples, and the UV-Vis spectra revealed the plasmon resonance of GNR. Due to their simple fabrication and enhanced functionality, these DNA and CDNA fibres and thin films could be used in various devices (e.g., filters or blocking layers) and sensors (e.g., gas detectors and bio sensors) in a number of industries.
Collapse
Affiliation(s)
- Karthikeyan Mariyappan
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | | | - Samanth Kokkiligadda
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Soojin Jo
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Jayeon Lee
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Anshula Tandon
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Korea.
| | - Sung Ha Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
3
|
Kalkan Z, Yence M, Turk F, Bektas TU, Ozturk S, Surdem S, Yildirim‐Tirgil N. Boronic Acid Substituted Polyaniline Based Enzymatic Biosensor System for Catechol Detection. ELECTROANAL 2021. [DOI: 10.1002/elan.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zeycan Kalkan
- Materials Engineering Faculty of Engineering and Natural Sciences Ankara Yıldırım Beyazıt University Ankara Turkey
| | - Merve Yence
- TENMAK Boron Research Institute Ankara Turkey
| | - Fatih Turk
- Materials Engineering Faculty of Engineering and Natural Sciences Ankara Yıldırım Beyazıt University Ankara Turkey
| | - Tamer U. Bektas
- Materials Engineering Faculty of Engineering and Natural Sciences Ankara Yıldırım Beyazıt University Ankara Turkey
| | | | | | - Nimet Yildirim‐Tirgil
- Materials Engineering Faculty of Engineering and Natural Sciences Ankara Yıldırım Beyazıt University Ankara Turkey
- Biomedical Engineering Faculty of Engineering and Natural Sciences Ankara Yıldırım Beyazıt University Ankara Turkey
| |
Collapse
|
4
|
Prajapati DG, Kandasubramanian B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. MACROMOL CHEM PHYS 2019; 220:1800561. [PMID: 32327916 PMCID: PMC7168478 DOI: 10.1002/macp.201800561] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Biosensors are analytical devices which find extensive applications in fields such as the food industry, defense sector, environmental monitoring, and in clinical diagnosis. Similarly, intrinsically conducting polymers (ICPs) and their composites have lured immense interest in bio-sensing due to their various attributes like compatibility with biological molecules, efficient electron transfer upon biochemical reactions, loading of bio-reagent, and immobilization of biomolecules. Further, they are proficient in sensing diverse biological species and compounds like glucose (detection limit ≈0.18 nm), DNA (≈10 pm), cholesterol (≈1 µm), aptamer (≈0.8 pm), and also cancer cells (≈5 pm mL-1) making them a potential candidate for biological sensing functions. ICPs and their composites have been extensively exploited by researchers in the field of biosensors owing to these peculiarities; however, no consolidated literature on the usage of conducting polymer composites for biosensing functions is available. This review extensively elucidates on ICP composites and doped conjugated polymers for biosensing functions of copious biological species. In addition, a brief overview is provided on various forms of biosensors, their sensing mechanisms, and various methods of immobilizing biological species along with the life cycle assessment of biosensors for various biosensing applications, and their cost analysis.
Collapse
Affiliation(s)
- Deepak G. Prajapati
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| | - Balasubramanian Kandasubramanian
- Nano Texturing LaboratoryDepartment of Metallurgical and Materials EngineeringDefence Institute of Advanced TechnologyMinistry of DefenceGirinagarPune411025India
| |
Collapse
|
5
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
6
|
Ďorďovič V, Vojtová J, Jana S, Uchman M. Charge reversal and swelling in saccharide binding polyzwitterionic phenylboronic acid-modified poly(4-vinylpyridine) nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py00938h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present the synthesis and characterization of zwitterionic poly(4-vinylpyridine) nanoparticles quaternized with phenylboronic acid (QxPVP-PBA) whose size and surface charge can be tuned by varying the saccharide and the degree of quaternization.
Collapse
Affiliation(s)
- Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Jana Vojtová
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Somdeb Jana
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University
- 128 40 Prague 2
- Czech Republic
| |
Collapse
|
7
|
DNA and DNA–CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Arjomandi J, Lee JY, Movafagh R, Moghanni-Bavil-Olyaei H, Parvin MH. Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:541-547. [PMID: 28204854 DOI: 10.1007/s00249-017-1200-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/12/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH2 groups (CONH2-SWNT) exhibited very strong interactions between the CONH2-SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.
Collapse
|
10
|
Sahoo G, Sarkar N, Sahu D, Swain SK. Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications. RSC Adv 2017. [DOI: 10.1039/c6ra26930c] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, a simple one step synthetic protocol was adopted to fabricate nano gold decorated reduced graphene oxide (r-GO) wrapped polymethyl methacrylate nanohybrids (PMMA/r-GO/Au) for symmetric supercapacitor applications.
Collapse
Affiliation(s)
- Gyanaranjan Sahoo
- Department of Chemistry
- Veer Surendra Sai University of Technology
- Sambalpur-768018
- India
| | - Niladri Sarkar
- Department of Chemistry
- Veer Surendra Sai University of Technology
- Sambalpur-768018
- India
| | - Deepak Sahu
- Department of Chemistry
- Veer Surendra Sai University of Technology
- Sambalpur-768018
- India
| | - Sarat K. Swain
- Department of Chemistry
- Veer Surendra Sai University of Technology
- Sambalpur-768018
- India
| |
Collapse
|
11
|
Quenching of fluorene fluorescence by single-walled carbon nanotube dispersions with surfactants: application for fluorene quantification in wastewater. Anal Bioanal Chem 2015; 407:4671-82. [DOI: 10.1007/s00216-015-8669-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 01/25/2023]
|
12
|
Umemura K. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:321-350. [PMID: 28347014 PMCID: PMC5312852 DOI: 10.3390/nano5010321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan.
| |
Collapse
|
13
|
Zhang W, Zheng J, Shi J, Lin Z, Huang Q, Zhang H, Wei C, Chen J, Hu S, Hao A. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal Chim Acta 2014; 853:285-290. [PMID: 25467470 DOI: 10.1016/j.aca.2014.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA.
Collapse
Affiliation(s)
- Wuxiang Zhang
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jianzhong Zheng
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jiangu Shi
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Zhongqiu Lin
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qitong Huang
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Hanqiang Zhang
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Chan Wei
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jianhua Chen
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, PR China
| | - Shirong Hu
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, PR China; School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Aiyou Hao
- School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
14
|
Müter D, Bock H. Interactions between nanofibers in fiber-surfactant suspensions: theory of corresponding distances. PHYSICAL REVIEW LETTERS 2014; 112:128301. [PMID: 24724682 DOI: 10.1103/physrevlett.112.128301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/03/2023]
Abstract
We present the theory of corresponding distances for interactions mediated by soft nanostructures in fibrous materials. Based on the fundamental understanding of the mechanism that determines the internal structure of the soft component, our theory allows us to predict the entire force field mediated by the soft component for any angle and distance between the fibers from a single simulation or a single experiment. This replaces hundreds of simulations by just one which enables the routine computation of complete fiber-soft-fiber force fields by high-level methods, such as atomistic simulations, and thereby amounts to a true step advancement for soft nanotechnology.
Collapse
Affiliation(s)
- Dirk Müter
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| | - Henry Bock
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, United Kingdom
| |
Collapse
|
15
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|
16
|
Karchemsky F, Drug E, Mashiach-Farkash E, Fadeev L, Wolfson HJ, Gozin M, Regev O. Diameter-selective dispersion of carbon nanotubes by β-lactoglobulin whey protein. Colloids Surf B Biointerfaces 2013; 112:16-22. [DOI: 10.1016/j.colsurfb.2013.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/20/2022]
|
17
|
Ates M, Eren N, Osken I, Baslilar S, Ozturk T. Poly(2,6-di(thiophene-2-yl)-3,5bis(4-(thiophene-2-yl)phenyl)dithieno [3,2-b;2',3'-d]thiophene)/carbon nanotube composite for capacitor applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.40061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murat Ates
- Department of Chemistry; Faculty of Arts and Sciences; Namik Kemal University; Degirmenalti Campus 59030 Tekirdag Turkey
| | - Nuri Eren
- Department of Chemistry; Faculty of Arts and Sciences; Namik Kemal University; Degirmenalti Campus 59030 Tekirdag Turkey
| | - Ipek Osken
- Department of Chemistry; Faculty of Arts and Sciences; Istanbul Technical University; Maslak Istanbul Turkey
| | - Suzan Baslilar
- Department of Chemistry; Faculty of Arts and Sciences; Istanbul Technical University; Maslak Istanbul Turkey
| | - Turan Ozturk
- Department of Chemistry; Faculty of Arts and Sciences; Istanbul Technical University; Maslak Istanbul Turkey
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK UME; PBox 54, 41470 Gebze-Kocaeli Turkey
| |
Collapse
|
18
|
Müter D, Bock H. Torsional Forces Mediated by Surfactant Aggregates on Carbon Nanotube Junctions. J Phys Chem B 2013; 117:5585-93. [DOI: 10.1021/jp3122209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dirk Müter
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom
| | - Henry Bock
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
19
|
Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. NANOSCALE 2013; 5:1727-52. [PMID: 23381727 DOI: 10.1039/c3nr33560g] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flexible electronics offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and conformable RFID tags. Carbon nanotubes (CNTs) are a promising material for flexible electronics, both as the channel material in field-effect transistors (FETs) and as transparent electrodes, due to their high intrinsic carrier mobility, conductivity, and mechanical flexibility. In this feature article, we review the recent progress of CNTs in flexible electronics by describing both the processing and the applications of CNT-based flexible devices. To employ CNTs as the channel material in FETs, single-walled carbon nanotubes (SWNTs) are used. There are generally two methods of depositing SWNTs on flexible substrates-transferring CVD-grown SWNTs or solution-depositing SWNTs. Since CVD-grown SWNTs can be highly aligned, they often outperform solution-processed SWNT films that are typically in the form of random network. However, solution-based SWNTs can be printed at a large-scale and at low-cost, rendering them more appropriate for manufacturing. In either case, the removal of metallic SWNTs in an effective and a scalable manner is critical, which must still be developed and optimized. Nevertheless, promising results demonstrating SWNT-based flexible circuits, displays, RF-devices, and biochemical sensors have been reported by various research groups, proving insight into the exciting possibilities of SWNT-based FETs. In using carbon nanotubes as transparent electrodes (TEs), two main strategies have been implemented to fabricate highly conductive, transparent, and mechanically compliant films-superaligned films of CNTs drawn from vertically grown CNT forests using the "dry-drawing" technique and the deposition or embedding of CNTs onto flexible or stretchable substrates. The main challenge for CNT based TEs is to fabricate films that are both highly conductive and transparent. These CNT based TEs have been used in stretchable and flexible pressure, strain, and chemical and biological sensors. In addition, they have also been used as the anode and cathode in flexible light emitting diodes, solar cells, and supercapacitors. In summary, there are a number of challenges yet to overcome to optimize the processing and performance of CNT-based flexible electronics; nonetheless, CNTs remain a highly suitable candidate for various flexible electronic applications in the near future.
Collapse
Affiliation(s)
- Steve Park
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
20
|
Xiao F, Li Y, Gao H, Ge S, Duan H. Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens Bioelectron 2013; 41:417-23. [DOI: 10.1016/j.bios.2012.08.062] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/13/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
|
21
|
Gu H, Guo J, Wei H, Huang Y, Zhao C, Li Y, Wu Q, Haldolaarachchige N, Young DP, Wei S, Guo Z. Giant magnetoresistance in non-magnetic phosphoric acid doped polyaniline silicon nanocomposites with higher magnetic field sensing sensitivity. Phys Chem Chem Phys 2013; 15:10866-75. [DOI: 10.1039/c3cp50698c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Müter D, Angelikopoulos P, Bock H. Angular Dependence of Surfactant-Mediated Forces Between Carbon Nanotubes. J Phys Chem B 2012; 116:14869-75. [DOI: 10.1021/jp309074c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dirk Müter
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Panagiotis Angelikopoulos
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, United Kingdom
- Computational Science & Engineering Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Henry Bock
- Department of Chemical Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
23
|
|
24
|
Gao C, Guo Z, Liu JH, Huang XJ. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. NANOSCALE 2012; 4:1948-63. [PMID: 22337209 DOI: 10.1039/c2nr11757f] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Since the discovery of carbon nanotubes (CNTs), they have drawn considerable research attention and have shown great potential application in many fields due to their unique structural, mechanical, and electronic properties. However, their native insolubility severely holds back the process of application. In order to overcome this disadvantage and broaden the scope of their application, chemical functionalization of CNTs has attracted great interest over the past several decades and produced various novel hybrid materials with specific applications. Notably, the rapid development of functionalized CNTs used as electrochemical sensors has been successfully witnessed. In this featured article, the recent progress of electrochemical sensors based on functionalized CNTs is discussed and classified according to modifiers covering organic (oxygen functional groups, small organic molecules, polymers, DNA, protein, etc.), inorganic (metal nanoparticles, metal oxide, etc.) and organic-inorganic hybrids. By employing some representative examples, it will be demonstrated that functionalized CNTs as templates, carriers, immobilizers and transducers are promising for the construction of electrochemical sensors.
Collapse
Affiliation(s)
- Chao Gao
- Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| | | | | | | |
Collapse
|
25
|
Xiao F, Song J, Gao H, Zan X, Xu R, Duan H. Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes. ACS NANO 2012; 6:100-10. [PMID: 22133497 DOI: 10.1021/nn202930m] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals.
Collapse
Affiliation(s)
- Fei Xiao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | | | |
Collapse
|
26
|
Li P, Liu H, Ding Y, Wang Y, Chen Y, Zhou Y, Tang Y, Wei H, Cai C, Lu T. Synthesis of water-soluble phosphonate functionalized single-walled carbon nanotubes and their applications in biosensing. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31350b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Llanes-Pallas A, Yoosaf K, Traboulsi H, Mohanraj J, Seldrum T, Dumont J, Minoia A, Lazzaroni R, Armaroli N, Bonifazi D. Modular Engineering of H-Bonded Supramolecular Polymers for Reversible Functionalization of Carbon Nanotubes. J Am Chem Soc 2011; 133:15412-24. [DOI: 10.1021/ja2011516] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Llanes-Pallas
- Università di Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche and INSTM UdR di Trieste, Italy
| | - K. Yoosaf
- Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR−ISOF), Bologna, Italy
| | | | - John Mohanraj
- Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR−ISOF), Bologna, Italy
| | | | | | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), Mons, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), Mons, Belgium
| | - Nicola Armaroli
- Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR−ISOF), Bologna, Italy
| | - Davide Bonifazi
- Università di Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche and INSTM UdR di Trieste, Italy
- Department of Chemistry
| |
Collapse
|
28
|
|
29
|
Shi J, Cha TG, Claussen JC, Diggs AR, Choi JH, Porterfield DM. Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites. Analyst 2011; 136:4916-24. [PMID: 21858297 DOI: 10.1039/c1an15179g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications.
Collapse
Affiliation(s)
- Jin Shi
- Physiological Sensing Facility, Purdue University, West Lafayette, IN 47907-2057, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nepal D, Minus ML, Kumar S. Lysozyme Coated DNA and DNA/SWNT Fibers by Solution Spinning. Macromol Biosci 2011; 11:875-81. [DOI: 10.1002/mabi.201000490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Indexed: 11/11/2022]
|
31
|
Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11434d] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Hoa LQ, Yoshikawa H, Saito M, Tamiya E. Co-assembled conducting polymer for enhanced ethanol electrooxidation on Pt-based catalysts. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04513f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Jäkle F. Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications. Chem Rev 2010; 110:3985-4022. [DOI: 10.1021/cr100026f] [Citation(s) in RCA: 953] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102
| |
Collapse
|
34
|
Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 2010; 62:633-49. [PMID: 20338203 DOI: 10.1016/j.addr.2010.03.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/03/2010] [Indexed: 12/25/2022]
Abstract
The identification of disease-related genes and their complete nucleotide sequence through the human genome project provides us with a remarkable opportunity to combat a large number of diseases with designed genes as medicine. However, gene therapy relies on the efficient and nontoxic transport of therapeutic genetic medicine through the cell membranes, and this process is very inefficient. Carbon nanotubes, due to their large surface areas, unique surface properties, and needle-like shape, can deliver a large amount of therapeutic agents, including DNA and siRNAs, to the target disease sites. In addition, due to their unparalleled optical and electrical properties, carbon nanotubes can deliver DNA/siRNA not only into cells, which include difficult transfecting primary-immune cells and bacteria, they can also lead to controlled release of DNA/siRNA for targeted gene therapy. Furthermore, due to their wire shaped structure with a diameter matching with that of DNA/siRNA and their remarkable flexibility, carbon nanotubes can impact on the conformational structure and the transient conformational change of DNA/RNA, which can further enhance the therapeutic effects of DNA/siRNA. Synergistic combination of the multiple capabilities of carbon nanotubes to deliver DNA/siRNAs will lead to the development of powerful multifunctional nanomedicine to treat cancer or other difficult diseases. In this review, we summarized the current studies in using CNT as unique vehicles in the field of gene therapy.
Collapse
|