1
|
Kopp J, Spadiut O. Inclusion Bodies: Status Quo and Perspectives. Methods Mol Biol 2023; 2617:1-13. [PMID: 36656513 DOI: 10.1007/978-1-0716-2930-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
2
|
Hrabarova E, Belkova M, Koszagova R, Nahalka J. Pull-Down Into Active Inclusion Bodies and Their Application in the Detection of (Poly)-Phosphates and Metal-Ions. Front Bioeng Biotechnol 2022; 10:833192. [PMID: 35299638 PMCID: PMC8921494 DOI: 10.3389/fbioe.2022.833192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion bodies are typically ignored as they are considered unwanted protein waste generated by prokaryotic host cells during recombinant protein production or harmful protein inclusions in human cell biology. However, these protein particles may have applications for in vivo immobilization in industrial biocatalysis or as cell-tolerable protein materials for the pharmaceuticals industry and clinical development. Thus, there is a need to in vivo “pull-down” (insolubilize) soluble enzymes and proteins into inclusion bodies. Accordingly, in this study, sequences from the short-chain polyphosphatase ygiF were used to design pull-down tags capable of detecting (poly)-phosphates and metal ions. These tags were compared with the entire CHAD domain from Escherichia coli ygiF and SACS2 CHAD from Saccharolobus solfataricus. The results demonstrated that highly soluble green fluorescent protein variants could be pulled down into the inclusion bodies and could have modified sensitivity to metals and di-/tri-inorganic phosphates.
Collapse
Affiliation(s)
- Eva Hrabarova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Martina Belkova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Romana Koszagova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
- *Correspondence: Jozef Nahalka,
| |
Collapse
|
3
|
Tu C, Zhou J, Peng L, Man S, Ma L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater Sci 2020; 8:648-656. [PMID: 31761913 DOI: 10.1039/c9bm00402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three SAP (self-assembling peptide)-tagged fluorinases (FLAs), namely, FLA-ELK16, FLA-L6KD and FLA-18A (named after the SAP used for tagging FLA) were successfully engineered. All three SAP-tagged FLAs could be highly over-expressed using engineered E. coli host cells despite being in the form of aggregates (inclusion bodies). It was noted that all three SAP-tagged FLAs exhibited enzymatic activity. It was also observed that all three SAP-tagged FLAs were capable of self-assembly to form nano-sized particles with different dimensions in aqueous solutions. Strikingly, one of the SAP-tagged FLA (FLA-L6KD) displayed improved enzyme activity, thermostability and reusability, which is potentially ideal for bio-transformation. FLA is an exotic enzyme that is capable of catalysing the formation of C-F bonds using inorganic fluorine ions as substrates. This significant feature enables it to incorporate [18F]-fluoride into different small molecules to generate radiopharmaceuticals in PET (positron emission tomography) labeling. In addition, fluorinase is greatly valuable in synthetic biology for incorporating the fluorine element into building blocks to produce non-natural organofluorines or as a biocatalyst for transforming non-native substrates. Our method would be a further step in making FLA-based biocatalysis even 'greener' by enhancing the enzymatic activity, thermostability and reusability of FLA through the introduction of nano-sized aggregates. Enzymes are such nontrivial biomaterials, which can be manifested in different scenarios. Our research expands their reach and tunes their properties by tagging SAP partners. Thus, this methodology can be put into the 'toolbox' of enzymologists, which can be further explored and generalised for others.
Collapse
Affiliation(s)
- Chunhao Tu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
4
|
Jäger VD, Kloss R, Grünberger A, Seide S, Hahn D, Karmainski T, Piqueray M, Embruch J, Longerich S, Mackfeld U, Jaeger KE, Wiechert W, Pohl M, Krauss U. Tailoring the properties of (catalytically)-active inclusion bodies. Microb Cell Fact 2019; 18:33. [PMID: 30732596 PMCID: PMC6367779 DOI: 10.1186/s12934-019-1081-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/30/2019] [Indexed: 01/02/2023] Open
Abstract
Background Immobilization is an appropriate tool to ease the handling and recycling of enzymes in biocatalytic processes and to increase their stability. Most of the established immobilization methods require case-to-case optimization, which is laborious and time-consuming. Often, (chromatographic) enzyme purification is required and stable immobilization usually includes additional cross-linking or adsorption steps. We have previously shown in a few case studies that the molecular biological fusion of an aggregation-inducing tag to a target protein induces the intracellular formation of protein aggregates, so called inclusion bodies (IBs), which to a certain degree retain their (catalytic) function. This enables the combination of protein production and immobilization in one step. Hence, those biologically-produced immobilizates were named catalytically-active inclusion bodies (CatIBs) or, in case of proteins without catalytic activity, functional IBs (FIBs). While this strategy has been proven successful, the efficiency, the potential for optimization and important CatIB/FIB properties like yield, activity and morphology have not been investigated systematically. Results We here evaluated a CatIB/FIB toolbox of different enzymes and proteins. Different optimization strategies, like linker deletion, C- versus N-terminal fusion and the fusion of alternative aggregation-inducing tags were evaluated. The obtained CatIBs/FIBs varied with respect to formation efficiency, yield, composition and residual activity, which could be correlated to differences in their morphology; as revealed by (electron) microscopy. Last but not least, we demonstrate that the CatIB/FIB formation efficiency appears to be correlated to the solvent-accessible hydrophobic surface area of the target protein, providing a structure-based rationale for our strategy and opening up the possibility to predict its efficiency for any given target protein. Conclusion We here provide evidence for the general applicability, predictability and flexibility of the CatIB/FIB immobilization strategy, highlighting the application potential of CatIB-based enzyme immobilizates for synthetic chemistry, biocatalysis and industry. Electronic supplementary material The online version of this article (10.1186/s12934-019-1081-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - R Kloss
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Multiscale Bioengineering, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - S Seide
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - D Hahn
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - T Karmainski
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - M Piqueray
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - J Embruch
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Longerich
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - K-E Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - W Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - M Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
5
|
Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Sci Rep 2018; 8:5856. [PMID: 29643457 PMCID: PMC5895699 DOI: 10.1038/s41598-018-24070-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
Sustainable and eco-efficient alternatives for the production of platform chemicals, fuels and chemical building blocks require the development of stable, reusable and recyclable biocatalysts. Here we present a novel concept for the biocatalytic production of 1,5-diaminopentane (DAP, trivial name: cadaverine) using catalytically active inclusion bodies (CatIBs) of the constitutive L-lysine decarboxylase from E. coli (EcLDCc-CatIBs) to process L-lysine-containing culture supernatants from Corynebacterium glutamicum. EcLDCc-CatIBs can easily be produced in E. coli followed by a simple purification protocol yielding up to 43% dry CatIBs per dry cell weight. The stability and recyclability of EcLDCc-CatIBs was demonstrated in (repetitive) batch experiments starting from L-lysine concentrations of 0.1 M and 1 M. EcLDC-CatIBs exhibited great stability under reaction conditions with an estimated half-life of about 54 h. High conversions to DAP of 87-100% were obtained in 30-60 ml batch reactions using approx. 180-300 mg EcLDCc-CatIBs, respectively. This resulted in DAP titres of up to 88.4 g l-1 and space-time yields of up to 660 gDAP l-1 d-1 per gram dry EcLDCc-CatIBs. The new process for DAP production can therefore compete with the currently best fermentative process as described in the literature.
Collapse
|
6
|
Hoffmann D, Ebrahimi M, Gerlach D, Salzig D, Czermak P. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Crit Rev Biotechnol 2017; 38:729-744. [DOI: 10.1080/07388551.2017.1398134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Hoffmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Doreen Gerlach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Ruan LT, Zheng RC, Zheng YG. A novel amidase from Brevibacterium epidermidis ZJB-07021: gene cloning, refolding and application in butyrylhydroxamic acid synthesis. ACTA ACUST UNITED AC 2016; 43:1071-83. [DOI: 10.1007/s10295-016-1786-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was overexpressed in Escherichia coli, and the resultant inclusion bodies were refolded and purified to homogeneity with a recovery of 22.6 %. Bami exhibited a broad substrate spectrum towards aliphatic, aromatic and heterocyclic amides, and showed the highest acyl transfer activity towards butyramide with specific activity of 1331.0 ± 24.0 U mg−1. Kinetic analysis demonstrated that purified Bami exhibited high catalytic efficiency (414.9 mM−1 s−1) for acyl transfer of butyramide, with turnover number (K cat) of 3569.0 s−1. Key parameters including pH, substrate/co-substrate concentration, reaction temperature and catalyst loading were investigated and the Bami showed maximum acyl transfer activity at 50 °C, pH 7.5. Enzymatic catalysis of 200 mM butyramide with 15 μg mL−1 purified Bami was completed in 15 min with a BHA yield of 88.1 % under optimized conditions. The results demonstrated the great potential of Bami for the production of a variety of hydroxamic acids.
Collapse
Affiliation(s)
- Li-Tao Ruan
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Ren-Chao Zheng
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Yu-Guo Zheng
- grid.469325.f 000000041761325X Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.469325.f 000000041761325X Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| |
Collapse
|
8
|
Wang X, Zhou B, Hu W, Zhao Q, Lin Z. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Fact 2015; 14:88. [PMID: 26077447 PMCID: PMC4467046 DOI: 10.1186/s12934-015-0270-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/08/2015] [Indexed: 11/25/2022] Open
Abstract
Background In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. Results In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0–7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. Conclusions The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a “pull-down” tag to produce purified soluble proteins with reasonable quantity and purity from active aggregates. Owing to the structural simplicity, strong hydrophobicity, and high aggregating efficiency, these peptides can be further explored for enzyme production and immobilization.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Bihong Zhou
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Weike Hu
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Qing Zhao
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| |
Collapse
|
9
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Xu Z, García-Fruitós E. General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 2015; 1258:1-24. [PMID: 25447856 DOI: 10.1007/978-1-4939-2205-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
10
|
A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies. Microb Cell Fact 2014; 13:68. [PMID: 24885571 PMCID: PMC4049505 DOI: 10.1186/1475-2859-13-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) were generally considered to be inactive protein deposits and did not hold any attractive values in biotechnological applications. Recently, some IBs of recombinant proteins were confirmed to show their functional properties such as enzyme activities, fluorescence, etc. Such biologically active IBs are not commonly formed, but they have great potentials in the fields of biocatalysis, material science and nanotechnology. RESULTS In this study, we characterized the IBs of DL4, a deletion variant of green fluorescent protein which forms active intracellular aggregates. The DL4 proteins expressed in Escherichia coli were exclusively deposited to IBs, and the IBs were estimated to be mostly composed of active proteins. The spectral properties and quantum yield of the DL4 variant in the active IBs were almost same with those of its native protein. Refolding and stability studies revealed that the deletion mutation in DL4 didn't affect the folding efficiency of the protein, but destabilized its structure. Analyses specific for amyloid-like structures informed that the inner architecture of DL4 IBs might be amorphous rather than well-organized. The diameter of fluorescent DL4 IBs could be decreased up to 100-200 nm by reducing the expression time of the protein in vivo. CONCLUSIONS To our knowledge, DL4 is the first GFP variant that folds correctly but aggregates exclusively in vivo without any self-aggregating/assembling tags. The fluorescent DL4 IBs have potentials to be used as fluorescent biomaterials. This study also suggests that biologically active IBs can be achieved through engineering a target protein itself.
Collapse
|
11
|
Lin Z, Zhou B, Wu W, Xing L, Zhao Q. Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discuss 2014; 166:243-56. [PMID: 24611280 DOI: 10.1039/c3fd00068k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We recently found that several self-assembling alpha, beta, or surfactant-like peptides, when terminally attached to proteins, can promote the in vivo assembly of active protein aggregates (or active inclusion bodies, AIBs) in Escherichia coil. In this work, we systematically examined the AIBs induced by an amphipathic alpha-helical peptide 18Awt (EWLKAFYEKVLEKLKELF) and its variants with altered ion pairs. Transmission electron microscopic and Fourier transform infrared spectroscopic analyses suggested that the AIBs appeared to adopt an amorphous mesh-like structure, and were likely induced by helical structures formed by the assembly of the 18A peptides. Confocal fluorescent micrographic analysis revealed that the AIBs resided around the periphery of the cell membrane or in the cytoplasm, depending on the distribution of ion pairs on the 18A peptides, which suggested that the association between the aggregates and the cell membrane was mediated by the lipid-18A interaction. Two of these 18A peptide variants were further used in constructing cleavable self-aggregating tags (cSAT) in conjunction with an intein molecule for protein purification, and verified using two model proteins. This extends the cSAT approach for laboratory and potentially industrial uses. Our study might also provide new insights into aggregation-related diseases.
Collapse
|
12
|
The fusions of elastin-like polypeptides and xylanase self-assembled into insoluble active xylanase particles. J Biotechnol 2014; 177:60-6. [PMID: 24613298 DOI: 10.1016/j.jbiotec.2014.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 11/23/2022]
Abstract
We fused the genes of elastin-like polypeptides (ELPs) and xylanase and then expressed them in Escherichia coli. Unexpectedly, the fusion proteins self-assembled into insoluble active particles as the ELPs underwent a hardly reversible phase transition. The specific activity of the particles was 92% of the native counterparts, which means it can act as a pull-down handler for converting soluble proteins into active aggregates. We evaluated the characterizations of the insoluble active xylanase particles in detail and the results were encouraging. The pH optimum (6.0) of the particles was the same as the free one, but the optimum pH range was 5-7, while the free xylanase was 6-7. The free xylanase had an optimum temperature of 50°C, whereas the insoluble active xylanase particles shifted to 70°C. The pH stability, thermostability and storage stability of the xylanase particles increased significantly when compared with the free xylanase. We also observed an increase of the Km values of the free xylanase from 0.374gL(-1) to 0.980gL(-1) at the insoluble state. The considerable higher activity and stability of the xylanase particles were much like immobilized xylanases and could be valuable for its industrial application.
Collapse
|
13
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang Z, Zhang C, Chen S, Ye F, Xing XH. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact 2013; 12:25. [PMID: 23497261 PMCID: PMC3608069 DOI: 10.1186/1475-2859-12-25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. RESULTS Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. CONCLUSIONS Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs.
Collapse
Affiliation(s)
- Ziliang Huang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
15
|
Talafová K, Hrabárová E, Chorvát D, Nahálka J. Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release. Microb Cell Fact 2013; 12:16. [PMID: 23391325 PMCID: PMC3614425 DOI: 10.1186/1475-2859-12-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023] Open
Abstract
Background Adhesins of pathogens recognise the glycans on the host cell and mediate adherence. They are also crucial for determining the tissue preferences of pathogens. Currently, glyco-nanomaterials provide potential tool for antimicrobial therapy. We demonstrate that properly glyco-tailored inclusion bodies can specifically bind pathogen adhesins and release therapeutic substances. Results In this paper, we describe the preparation of tailored inclusion bodies via the conjugation of indicator protein aggregated to form inclusion bodies with soluble proteins. Whereas the indicator protein represents a remedy, the soluble proteins play a role in pathogen recognition. For conjugation, glutaraldehyde was used as linker. The treatment of conjugates with polar lysine, which was used to inactivate the residual glutaraldehyde, inhibited unwanted hydrophobic interactions between inclusion bodies. The tailored inclusion bodies specifically interacted with the SabA adhesin from Helicobacter pylori aggregated to form inclusion bodies that were bound to the sialic acids decorating the surface of human erythrocytes. We also tested the release of indicator proteins from the inclusion bodies using sortase A and Ssp DNAB intein self-cleaving modules, respectively. Sortase A released proteins in a relatively short period of time, whereas the intein cleavage took several weeks. Conclusions The tailored inclusion bodies are promising “nanopills” for biomedical applications. They are able to specifically target the pathogen, while a self-cleaving module releases a soluble remedy. Various self-cleaving modules can be enabled to achieve the diverse pace of remedy release.
Collapse
Affiliation(s)
- Klaudia Talafová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK, 84538, Slovak Republic
| | | | | | | |
Collapse
|
16
|
Peternel Š. Bacterial cell disruption: a crucial step in protein production. N Biotechnol 2013; 30:250-4. [DOI: 10.1016/j.nbt.2011.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022]
|
17
|
Peternel Š, Komel R. Active protein aggregates produced in Escherichia coli. Int J Mol Sci 2011; 12:8275-87. [PMID: 22174663 PMCID: PMC3233469 DOI: 10.3390/ijms12118275] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 11/16/2022] Open
Abstract
Since recombinant proteins are widely used in industry and in research, the need for their low-cost production is increasing. Escherichia coli is one of the best known and most often used host organisms for economical protein production. However, upon over-expression, protein aggregates called inclusion bodies (IBs) are often formed. Until recently IBs formation represented a bottleneck in protein production as they were considered as deposits of inactive proteins. However, recent studies show that by choosing the appropriate host strain and designing an optimal production process, IBs composed from properly folded and biologically active recombinant proteins can be prepared. Such active protein particles can be further used for the isolation of pure proteins or as whole active protein particles in various biomedical and other applications. Therefore interest in understanding the mechanisms of their formation as well as their properties is increasing.
Collapse
Affiliation(s)
- Špela Peternel
- Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
- Medical Centre for Molecular Biology, Medical faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; E-Mail:
- Medical Centre for Molecular Biology, Medical faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Wu W, Xing L, Zhou B, Lin Z. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact 2011; 10:9. [PMID: 21320350 PMCID: PMC3045283 DOI: 10.1186/1475-2859-10-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/15/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. RESULTS In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. CONCLUSIONS This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for protein aggregation-related diseases.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, PR China
| | | | | | | |
Collapse
|
19
|
García-Fruitós E. Inclusion bodies: a new concept. Microb Cell Fact 2010; 9:80. [PMID: 21040537 PMCID: PMC2987918 DOI: 10.1186/1475-2859-9-80] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 11/01/2010] [Indexed: 01/10/2023] Open
Abstract
In the last decades, the understanding of inclusion body biology and consequently, of their properties and potential biotechnological applications have dramatically changed. Therefore, the development of new purification protocols aimed to preserve those properties is becoming a pushing demand.
Collapse
Affiliation(s)
- Elena García-Fruitós
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
20
|
Rodríguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, García-Fruitós E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact 2010; 9:71. [PMID: 20849629 PMCID: PMC2949796 DOI: 10.1186/1475-2859-9-71] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Results Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10-1 cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. Conclusions The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.
Collapse
Affiliation(s)
- Escarlata Rodríguez-Carmona
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 2009; 32:341-50. [PMID: 19943180 DOI: 10.1007/s10529-009-0173-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.
Collapse
|