1
|
Marlton SJP, Liu C, Bieske EJ. Bond dissociation energy of FeCr+ determined through threshold photodissociation in a cryogenic ion trap. J Chem Phys 2024; 160:034301. [PMID: 38226822 DOI: 10.1063/5.0188157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
The bond dissociation energy of FeCr+ is measured using resonance enhanced photodissociation spectroscopy in a cryogenic ion trap. The onset for FeCr+ → Fe + Cr+ photodissociation occurs well above the lowest Cr+(6S, 3d5) + Fe(5D, 3d64s2) dissociation limit. In contrast, the higher energy FeCr+ → Fe+ + Cr photodissociation process exhibits an abrupt onset at the energy of the Cr(7S, 3d54s1) + Fe+(6D, 3d64s1) limit, enabling accurate dissociation energies to be extracted: D(Fe-Cr+) = 1.655 ± 0.006 eV and D(Fe+-Cr) = 2.791 ± 0.006 eV. The measured D(Fe-Cr+) bond energy is 10%-20% larger than predictions from accompanying CAM (Coulomb Attenuated Method)-B3LYP and NEVPT2 and coupled cluster singles, doubles, and perturbative triples electronic structure calculations, which give D(Fe-Cr+) = 1.48, 1.40, and 1.35 eV, respectively. The study emphasizes that an abrupt increase in the photodissociation yield at threshold requires that the molecule possesses a dense manifold of optically accessible, coupled electronic states adjacent to the dissociation asymptote. This condition is not met for the lowest Cr+(6S, 3d5) + Fe(5D, 3d64s2) dissociation limit of FeCr+ but is satisfied for the higher energy Cr(7S, 3d54s1) + Fe+(6D, 3d64s1) dissociation limit.
Collapse
Affiliation(s)
- Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Chang Liu
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Gabbani A, Taddeucci A, Bertuolo M, Pineider F, Aronica LA, Di Bari L, Pescitelli G, Zinna F. Magnetic Circular Dichroism Elucidates Molecular Interactions in Aggregated Chiral Organic Materials. Angew Chem Int Ed Engl 2024; 63:e202313315. [PMID: 37962845 DOI: 10.1002/anie.202313315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Chiral materials formed by aggregated organic compounds play a fundamental role in chiral optoelectronics, photonics and spintronics. Nonetheless, a precise understanding of the molecular interactions involved remains an open problem. Here we introduce magnetic circular dichroism (MCD) as a new tool to elucidate molecular interactions and structural parameters of a supramolecular system. A detailed analysis of MCD together with electronic circular dichroism spectra combined to ab initio calculations unveils essential information on the geometry and energy levels of a self-assembled thin film made of a carbazole di-bithiophene chiral molecule. This approach can be extended to a generality of chiral organic materials and can help rationalizing the fundamental interactions leading to supramolecular order. This in turn could enable a better understanding of structure-property relationships, resulting in a more efficient material design.
Collapse
Affiliation(s)
- Alessio Gabbani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Current affiliation: Diamond Light Source Ltd., Fermi Avenue, Chilton, Didcot OX11 0DE, UK
| | - Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, via Sansone 1, 50019, Sesto Fiorentino, FI, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
3
|
Bruder F, Franzke YJ, Holzer C, Weigend F. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration. J Chem Phys 2023; 159:194117. [PMID: 37987521 DOI: 10.1063/5.0175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
An efficient implementation of zero-field splitting parameters based on the work of Schmitt et al. [J. Chem. Phys. 134, 194113 (2011)] is presented. Seminumerical integration techniques are used for the two-electron spin-dipole contribution and the response equations of the spin-orbit perturbation. The original formulation is further generalized. First, it is extended to meta-generalized gradient approximations and local hybrid functionals. For these functional classes, the response of the paramagnetic current density is considered in the coupled-perturbed Kohn-Sham equations for the spin-orbit perturbation term. Second, the spin-orbit perturbation is formulated within relativistic exact two-component theory and the screened nuclear spin-orbit (SNSO) approximation. The accuracy of the implementation is demonstrated for transition-metal and diatomic main-group compounds. The efficiency is assessed for Mn and Mo complexes. Here, it is found that coarse integration grids for the seminumerical schemes lead to drastic speedups while introducing clearly negligible errors. In addition, the SNSO approximation substantially reduces the computational demands and leads to very similar results as the spin-orbit mean field Ansatz.
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
4
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
5
|
Foglia NO, Maganas D, Neese F. Going beyond the Electric-Dipole Approximation in the Calculation of Absorption and (Magnetic) Circular Dichroism Spectra including Scalar Relativistic and Spin-Orbit Coupling Effects. J Chem Phys 2022; 157:084120. [DOI: 10.1063/5.0094709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a time-dependent density functional theory (TD-DFT) scheme for computing optical spectroscopic properties in the framework of linearly and circularly polarized light is presented. The scheme is based on a previously formulated theory for predicting optical absorption and magnetic circular dichroism (MCD) spectra. The scheme operates in the framework of the full semi-classical field-matter interaction operator, thus generating a powerful and general computational scheme capable of computing the absorption (ABS), circular dichroism (CD), and MCD spectra. In addition, our implementation includes the treatment of relativistic effects in the framework of quasidegenerate perturbation theory, which accounts for scalar relativistic effects (in the self-consistent field step) and spin-orbit coupling (in the TD-DFT step), as well as external magnetic field perturbations. Hence, this formalism is also able to probe spin-forbidden transitions. The random orientations of molecules are taken into account by a semi-numerical approach involving a Lebedev numerical quadrature alongside analytical integration. It is demonstrated the numerical quadrature requires as few as 14 points for satisfactory converged results thus leading to a highly efficient scheme, while the calculation of the exact transition moments creates no computational bottlenecks. It is demonstrated that at zero magnetic field, the CD spectrum is recovered while the sum of left and right circularly polarized light contributions provides the linear absorption spectrum. The virtues of this efficient and general protocol are demonstrated on a selected set of organic molecules where the various contributions to the spectral intensities have been analyzed in detail.
Collapse
Affiliation(s)
- Nicolas Oscar Foglia
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| | | | - Frank Neese
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| |
Collapse
|
6
|
Jaworski A, Hedin N. Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts. Phys Chem Chem Phys 2022; 24:15230-15244. [PMID: 35703010 DOI: 10.1039/d2cp01206e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic structure calculations are fundamentally important for the interpretation of nuclear magnetic resonance (NMR) spectra from paramagnetic systems that include organometallic and inorganic compounds, catalysts, or metal-binding sites in proteins. Prediction of induced paramagnetic NMR shifts requires knowledge of electron paramagnetic resonance (EPR) parameters: the electronic g tensor, zero-field splitting D tensor, and hyperfine A tensor. The isotropic part of A, called the hyperfine coupling constant (HFCC), is one of the most troublesome properties for quantum chemistry calculations. Yet, even relatively small errors in calculations of HFCC tend to propagate into large errors in the predicted NMR shifts. The poor quality of A tensors that are currently calculated using density functional theory (DFT) constitutes a bottleneck in improving the reliability of interpretation of the NMR spectra from paramagnetic systems. In this work, electron correlation effects in calculations of HFCCs with a hierarchy of ab initio methods were assessed, and the applicability of different levels of DFT approximations and the coupled cluster singles and doubles (CCSD) method was tested. These assessments were performed for the set of selected test systems comprising an organic radical, and complexes with transition metal and rare-earth ions, for which experimental data are available. Severe deficiencies of DFT were revealed but the CCSD method was able to deliver good agreement with experimental data for all systems considered, however, at substantial computational costs. We proposed a more computationally tractable alternative, where the A was computed with the coupled cluster theory exploiting locality of electron correlation. This alternative is based on the domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) method. In this way the robustness and reliability of the coupled cluster theory were incorporated into the modern formalism for the prediction of induced paramagnetic NMR shifts, and became applicable to systems of chemical interest. This approach was verified for the bis(cyclopentadienyl)vanadium(II) complex (Cp2V; vanadocene), and the metal-binding site of the Zn2+ → Co2+ substituted superoxide dismutase (SOD) metalloprotein. Excellent agreement with experimental NMR shifts was achieved, which represented a substantial improvement over previous theoretical attempts. The effects of vibrational corrections to orbital shielding and hyperfine tensor were evaluated and discussed within the second-order vibrational perturbation theory (VPT2) framework.
Collapse
Affiliation(s)
- Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Bone AN, Widener CN, Moseley DH, Liu Z, Lu Z, Cheng Y, Daemen LL, Ozerov M, Telser J, Thirunavukkuarasu K, Smirnov D, Greer SM, Hill S, Krzystek J, Holldack K, Aliabadi A, Schnegg A, Dunbar KR, Xue ZL. Applying Unconventional Spectroscopies to the Single-Molecule Magnets, Co(PPh 3 ) 2 X 2 (X=Cl, Br, I): Unveiling Magnetic Transitions and Spin-Phonon Coupling. Chemistry 2021; 27:11110-11125. [PMID: 33871890 DOI: 10.1002/chem.202100705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/11/2022]
Abstract
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3 )2 X2 (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.
Collapse
Affiliation(s)
- Alexandria N Bone
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Chelsea N Widener
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Duncan H Moseley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Zhiming Liu
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, Illinois, 60605, USA
| | | | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Samuel M Greer
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.,Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA.,Department of Physics, Florida State University, Tallahassee, Florida, 32306, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Tallahassee, Florida, 32310, USA
| | - Karsten Holldack
- Helmholtz-Zentrum Berlin für Materialien und Energie Gmbh, Institut für Methoden und Instrumente der Forschung mit Synchrotronstrahlung, 12489, Berlin, Germany
| | - Azar Aliabadi
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Nanospektroskopie, Berlin Joint EPR Laboratory, 12489, Berlin, Germany
| | - Alexander Schnegg
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Nanospektroskopie, Berlin Joint EPR Laboratory, 12489, Berlin, Germany.,Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas, 77842, USA
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
8
|
Ostrovsky S, Tomkowicz Z, Foro S, Reedijk J, Haase W. Magneto-optical study of the zero-field splitting in a mononuclear tetrahedrally coordinated Co(II) compound with a mixed ligand surrounding. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
10
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Farahmand S, Ghiaci M, Vatanparast M, Razavizadeh JS. One-step hydroxylation of benzene to phenol over Schiff base complexes incorporated onto mesoporous organosilica in the presence of different axial ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj00928h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid-phase hydroxylation of benzene to phenol using Schiff base complexes anchored on a mesoporous organosilica support was investigated in various solvents when molecular oxygen was utilized as a green oxidant.
Collapse
Affiliation(s)
| | - Mehran Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - Morteza Vatanparast
- Department of Chemistry
- Amirkabir University of Technology
- Tehran Polytechnic
- Tehran
- Iran
| | | |
Collapse
|
12
|
Heit YN, Sergentu DC, Autschbach J. Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions. Phys Chem Chem Phys 2019; 21:5586-5597. [DOI: 10.1039/c8cp07849a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiconfigurational restricted active space (RAS) self-consistent field (SCF) or configuration interaction (CI) approaches, augmented with a treatment of spin–orbit coupling by state interaction, were used to calculate the magnetic circular dichroism , , and/or for closed- and open-shell transition metal complexes.
Collapse
Affiliation(s)
- Yonaton N. Heit
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| | | | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| |
Collapse
|
13
|
Mondal AK, Jover J, Ruiz E, Konar S. Single-ion magnetic anisotropy in a vacant octahedral Co(ii) complex. Dalton Trans 2018; 48:25-29. [PMID: 30417181 DOI: 10.1039/c8dt03862g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a pentacoordinate CoII single-ion magnet based on a P-donor ligand with vacant octahedral coordination geometry is reported here. Thorough magnetic measurements reveal the presence of field induced slow relaxation behavior with an easy-plane magnetic anisotropy. The combined theoretical and experimental studies disclose that direct and quantum tunneling processes become dominant at low temperature to relax the magnetization; however, from the thermal dependence of relaxation time it can be observed that the optical or acoustic Raman processes become important to the overall relaxation process.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | | | | | | |
Collapse
|
14
|
Mareš J, Vaara J. Ab initio paramagnetic NMR shifts via point-dipole approximation in a large magnetic-anisotropy Co(ii) complex. Phys Chem Chem Phys 2018; 20:22547-22555. [PMID: 30141806 DOI: 10.1039/c8cp04123g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transition metal complexes can possess a large magnetic susceptibility anisotropy, facilitating applications such as paramagnetic tags or shift agents in nuclear magnetic resonance (NMR) spectroscopy. Due to its g-shift and zero-field splitting (ZFS) we demonstrate on a Co(ii) clathrochelate with an aliphatic 16-carbon chain, a modern approach for ab initio calculation of paramagnetic susceptibility. Due to its large anisotropy, large linear dimension but relatively low number of atoms, the chosen complex is especially well-suited for testing the long-range point-dipole approximation (PDA) for the pseudocontact shifts (PCSs) of paramagnetic NMR. A static structure of the complex is used to compare the limiting long-distance PDA with full first-principles quantum-mechanical calculation. A non-symmetric formula for the magnetic susceptibility tensor is necessary to be consistent with the latter. Comparison with experimental shifts is performed by conformational averaging over the chain dynamics using Monte Carlo simulation. We observe satisfactory accuracy from the rudimentary simulation and, more importantly, demonstrate the fast applicability of the ab initio PDA.
Collapse
Affiliation(s)
- Jiří Mareš
- NMR Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland.
| | | |
Collapse
|
15
|
Gupta T, Rajaraman G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem Commun (Camb) 2018; 52:8972-9008. [PMID: 27366794 DOI: 10.1039/c6cc01251e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Chemistry, IIT Powai, Mumbai-400076, India.
| | | |
Collapse
|
16
|
Mondal AK, Sundararajan M, Konar S. A new series of tetrahedral Co(ii) complexes [CoLX2] (X = NCS, Cl, Br, I) manifesting single-ion magnet features. Dalton Trans 2018; 47:3745-3754. [DOI: 10.1039/c7dt04007e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of ligand field strength on the magnetic anisotropy of a series of isostructural tetrahedral CoII complexes has been investigated by using a combined experimental and theoretical approach.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| |
Collapse
|
17
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Evidence of a Tetrahedrally Coordinated Divalent Transition Metal Cofactor with Cysteine Ligation. Biochemistry 2017; 56:364-375. [PMID: 28045498 DOI: 10.1021/acs.biochem.6b00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Iannuzzi TE, Gao Y, Baker TM, Deng L, Neidig ML. Magnetic circular dichroism and density functional theory studies of electronic structure and bonding in cobalt(ii)–N-heterocyclic carbene complexes. Dalton Trans 2017; 46:13290-13299. [DOI: 10.1039/c7dt01748k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The combination of simple cobalt salts and N-heterocyclic carbene (NHC) ligands has been highly effective in C–H functionalization, hydroarylation and cross-coupling catalysis, though displaying a strong dependence on the identity of the NHC ligand.
Collapse
Affiliation(s)
| | - Yafei Gao
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Tessa M. Baker
- Department of Chemistry
- University of Rochester
- Rochester
- USA
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | | |
Collapse
|
19
|
Wallace AJ, Williamson BE, Crittenden DL. CASSCF-based explicit ligand field models clarify the ground state electronic structures of transition metal phthalocyanines (MPc; M = Mn, Fe, Co, Ni, Cu, Zn). CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multireference electronic structure methods are used to assign ground state electronic configurations for a series of metallophthalocyanines. Ligand orbital occupancies remain constant across the period and are consistent with a formal 2– charge on the ligand. The d electron configurations of some metallophthalocyanines are straightforward and can be unambiguously assigned, (dxy)2(dxz,dyz)2,2( [Formula: see text])2([Formula: see text])n, with n = 2, 1, 0, respectively, for ZnPc, CuPc, and NiPc. Controversies over ground state electronic structure assignments for other metallophthalocyanines arise due to multiple complicating factors: accidental near-degeneracies, environmental effects, and different ligand field models used in interpreting experimental spectra. We demonstrate that explicit ligand field models provide more reliable and consistent interpretations of experimental data than implicit, parameterized alternatives. On this basis, we assign gas-phase electronic ground states for MnPc, (dxy)2(dxz,dyz)1,1([Formula: see text])1 and CoPc, (dxy)2(dxz,dyz)2,2([Formula: see text])1, and show that the ground state of FePc cannot be resolved to a single state, with two near-degenerate states that are likely spin-orbit coupled: (dxy)2(dxz,dyz)1,1( [Formula: see text])2 and (dxy)2(dxz,dyz)2,1([Formula: see text])1. Remaining differences between computational predictions and experimental observations are small and may be ascribed primarily to environmental effects but are also partly due to incomplete modelling of electron correlation.
Collapse
Affiliation(s)
- Andrew J. Wallace
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Bryce E. Williamson
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Deborah L. Crittenden
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
20
|
Benda L, Mareš J, Ravera E, Parigi G, Luchinat C, Kaupp M, Vaara J. Pseudo-Contact NMR Shifts over the Paramagnetic Metalloprotein CoMMP-12 from First Principles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ladislav Benda
- Institut für Chemie, Theoretische Chemie; Technische Universität Berlin; Sekr. C7, Straße des 17. Juni 135 10623 Berlin Germany
- Institut des Sciences Analytiques; UMR 5280 CNRS/ ENS Lyon/ UCB Lyon 1; 5 rue de la Doua 69100 Villeurbanne France
| | - Jiří Mareš
- NMR Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| | - Enrico Ravera
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
| | - Giacomo Parigi
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Sesto Fiorentino Italy
| | - Claudio Luchinat
- Magnetic Resonance Center; University of Florence and; Interuniversity Consortium for Magnetic Resonance of Metalloproteins; Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Sesto Fiorentino Italy
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie; Technische Universität Berlin; Sekr. C7, Straße des 17. Juni 135 10623 Berlin Germany
| | - Juha Vaara
- NMR Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| |
Collapse
|
21
|
Benda L, Mareš J, Ravera E, Parigi G, Luchinat C, Kaupp M, Vaara J. Pseudo-Contact NMR Shifts over the Paramagnetic Metalloprotein CoMMP-12 from First Principles. Angew Chem Int Ed Engl 2016; 55:14713-14717. [PMID: 27781358 DOI: 10.1002/anie.201608829] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/08/2022]
Abstract
Long-range pseudo-contact NMR shifts (PCSs) provide important restraints for the structure refinement of proteins when a paramagnetic metal center is present, either naturally or introduced artificially. Here we show that ab initio quantum-chemical methods and a modern version of the Kurland-McGarvey approach for paramagnetic NMR (pNMR) shifts in the presence of zero-field splitting (ZFS) together provide accurate predictions of all PCSs in a metalloprotein (high-spin cobalt-substituted MMP-12 as a test case). Computations of 314 13 C PCSs using g- and ZFS tensors based on multi-reference methods provide a reliable bridge between EPR-parameter- and susceptibility-based pNMR formalisms. Due to the high sensitivity of PCSs to even small structural differences, local structures based either on X-ray diffraction or on various DFT optimizations could be evaluated critically by comparing computed and experimental PCSs. Many DFT functionals provide insufficiently accurate structures. We also found the available 1RMZ PDB X-ray structure to exhibit deficiencies related to binding of a hydroxamate inhibitor. This has led to a newly refined PDB structure for MMP-12 (5LAB) that provides a more accurate coordination arrangement and PCSs.
Collapse
Affiliation(s)
- Ladislav Benda
- Institut für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin, Germany.,Institut des Sciences Analytiques, UMR 5280 CNRS/ ENS Lyon/ UCB Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jiří Mareš
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center, University of Florence and, Interuniversity Consortium for Magnetic Resonance of Metalloproteins, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
22
|
Ye S, Kupper C, Meyer S, Andris E, Navrátil R, Krahe O, Mondal B, Atanasov M, Bill E, Roithová J, Meyer F, Neese F. Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex. J Am Chem Soc 2016; 138:14312-14325. [PMID: 27682505 DOI: 10.1021/jacs.6b07708] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biology, high valent oxo-iron(IV) species have been shown to be pivotal intermediates for functionalization of C-H bonds in the catalytic cycles of a range of O2-activating iron enzymes. This work details an electronic-structure investigation of [FeIV(O)(LNHC)(NCMe)]2+ (LNHC = 3,9,14,20-tetraaza-1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene, complex 1) using helium tagging infrared photodissociation (IRPD), absorption, and magnetic circular dichroism (MCD) spectroscopy, coupled with DFT and highly correlated wave function based multireference calculations. The IRPD spectrum of complex 1 reveals the Fe-O stretching vibration at 832 ± 3 cm-1. By analyzing the Franck-Condon progression, we can determine the same vibration occurring at 616 ± 10 cm-1 in the E(dxy → dxz,yz) excited state. Both values are similar to those measured for [FeIV(O)(TMC)(NCMe)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). The low-temperature MCD spectra of complex 1 exhibit three pseudo A-term signals around 12 500, 17 000, and 24 300 cm-1. We can unequivocally assign them to the ligand field transitions of dxy → dxz,yz, dxz,yz → dz2, and dxz,yz → dx2-y2, respectively, through direct calculations of MCD spectra and independent determination of the MCD C-term signs from the corresponding electron donating and accepting orbitals. In comparison with the corresponding transitions observed for [FeIV(O) (SR-TPA)(NCMe)]2+ (SR-TPA = tris(3,5-dimethyl-4-methoxypyridyl-2-methy)amine), the excitations within the (FeO)2+ core of complex 1 have similar transition energies, whereas the excitation energy for dxz,yz → dx2-y2 is significantly higher (∼12 000 cm-1 for [FeIV(O)(SR-TPA)(NCMe)]2+). Our results thus substantiate that the tetracarbene ligand (LNHC) of complex 1 does not significantly affect the bonding in the (FeO)2+ unit but strongly destabilizes the dx2-y2 orbital to eventually lift it above dz2. As a consequence, this unusual electron configuration leads to an unprecedentedly larger quintet-triplet energy separation for complex 1, which largely rules out the possibility that the H atom transfer reaction may take place on the quintet surface and hence quenches two-state reactivity. The resulting mechanistic implications are discussed.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Claudia Kupper
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Steffen Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Oliver Krahe
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Bhaskar Mondal
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mihail Atanasov
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Halogen atom effect on the magnetic anisotropy of pseudotetrahedral Co(II) complexes with a quinoline ligand. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Sadhu B, Sundararajan M, Bandyopadhyay T. Selectivity of a Singly Permeating Ion in Nonselective NaK Channel: Combined QM and MD Based Investigations. J Phys Chem B 2015; 119:12783-97. [DOI: 10.1021/acs.jpcb.5b05996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division and ‡Theoretical Chemistry
Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Mahesh Sundararajan
- Radiation Safety Systems Division and ‡Theoretical Chemistry
Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tusar Bandyopadhyay
- Radiation Safety Systems Division and ‡Theoretical Chemistry
Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
25
|
Sundararajan M, Neese F. Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters. Inorg Chem 2015; 54:7209-17. [DOI: 10.1021/acs.inorgchem.5b00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahesh Sundararajan
- Theoretical Chemistry
Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Ye S, Xue G, Krivokapic I, Petrenko T, Bill E, Que Jr L, Neese F. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes. Chem Sci 2015; 6:2909-2921. [PMID: 26417426 PMCID: PMC4583211 DOI: 10.1039/c4sc03268c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2-10 K are dominated by a broad positive C-term band between 12000 and 18000 cm-1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Genqiang Xue
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Itana Krivokapic
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Taras Petrenko
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Lawrence Que Jr
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| |
Collapse
|
27
|
First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.10.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Sadhu B, Sundararajan M, Bandyopadhyay T. Water-Mediated Differential Binding of Strontium and Cesium Cations in Fulvic Acid. J Phys Chem B 2015; 119:10989-97. [DOI: 10.1021/acs.jpcb.5b01659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Sadhu
- Radiation
Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Mahesh Sundararajan
- Theoretical
Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tusar Bandyopadhyay
- Theoretical
Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
29
|
Vaidya S, Upadhyay A, Singh SK, Gupta T, Tewary S, Langley SK, Walsh JPS, Murray KS, Rajaraman G, Shanmugam M. A synthetic strategy for switching the single ion anisotropy in tetrahedral Co(ii) complexes. Chem Commun (Camb) 2015; 51:3739-42. [DOI: 10.1039/c4cc08305a] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have shown for the first time, by simply exploiting the hard/soft nature of ligands, single ion magnetic anisotropy of Co(ii) tetrahedral complexes can be switched (+ve to −ve orvice versa) rationally.
Collapse
Affiliation(s)
- Shefali Vaidya
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Apoorva Upadhyay
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | | - Tulika Gupta
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Subrata Tewary
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | | | | | | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | |
Collapse
|
30
|
Verma PK, Pathak PN, Kumari N, Sadhu B, Sundararajan M, Aswal VK, Mohapatra PK. Effect of successive alkylation of N,N-dialkyl amides on the complexation behavior of uranium and thorium: solvent extraction, small angle neutron scattering, and computational studies. J Phys Chem B 2014; 118:14388-96. [PMID: 25422857 DOI: 10.1021/jp5074285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated. These studies show that the extraction of Th(IV) is significantly suppressed compared to that of U(VI) with increased branching at the Cα atom adjacent to the carbonyl group. Small angle neutron scattering (SANS) studies showed an increased aggregation tendency in the presence of nitric acid and metal ions. D2EHAA showed more aggregation compared to its branched homologues, which explains its capacity for higher extraction of metal ions. These experimental observations were further supported by density function theory calculations, which provided structural evidence of differential binding affinities of these extractants for uranyl cations. The complexation process is primarily controlled by steric and electronic effects. Quantum chemical calculations showed that local hardness and polarizability can be extremely useful inputs for designing novel extractants relevant to a nuclear fuel cycle.
Collapse
Affiliation(s)
- Parveen Kumar Verma
- Radiochemistry Division, ‡Radiation Safety Systems Division, §Theoretical Chemistry Section, and ∥Solid State Physics Division, Bhabha Atomic Research Centre , Trombay, Mumbai 400085, India
| | | | | | | | | | | | | |
Collapse
|
31
|
How strongly are the magnetic anisotropy and coordination numbers correlated in lanthanide based molecular magnets? J CHEM SCI 2014. [DOI: 10.1007/s12039-014-0691-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Idešicová M, Titiš J, Krzystek J, Boča R. Zero-Field Splitting in Pseudotetrahedral Co(II) Complexes: a Magnetic, High-Frequency and -Field EPR, and Computational Study. Inorg Chem 2013; 52:9409-17. [DOI: 10.1021/ic400980b] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monika Idešicová
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - Ján Titiš
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - J. Krzystek
- National High
Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Roman Boča
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| |
Collapse
|
33
|
Westphal A, Klinkebiel A, Berends HM, Broda H, Kurz P, Tuczek F. Electronic Structure and Spectroscopic Properties of Mononuclear Manganese(III) Schiff Base Complexes: A Systematic Study on [Mn(acen)X] Complexes by EPR, UV/vis, and MCD Spectroscopy (X = Hal, NCS). Inorg Chem 2013; 52:2372-87. [DOI: 10.1021/ic301889e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Westphal
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Arne Klinkebiel
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Hans-Martin Berends
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Henning Broda
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Philipp Kurz
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Felix Tuczek
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| |
Collapse
|
34
|
Kubica A, Kowalewski J, Kruk D, Odelius M. Zero-field splitting in nickel(II) complexes: A comparison of DFT and multi-configurational wavefunction calculations. J Chem Phys 2013; 138:064304. [DOI: 10.1063/1.4790167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Maganas D, Krzystek J, Ferentinos E, Whyte AM, Robertson N, Psycharis V, Terzis A, Neese F, Kyritsis P. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry. Inorg Chem 2012; 51:7218-31. [PMID: 22697407 DOI: 10.1021/ic300453y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ye S, Neese F. How Do Heavier Halide Ligands Affect the Signs and Magnitudes of the Zero-Field Splittings in Halogenonickel(II) Scorpionate Complexes? A Theoretical Investigation Coupled to Ligand-Field Analysis. J Chem Theory Comput 2012; 8:2344-51. [PMID: 26588967 DOI: 10.1021/ct300237f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work presents a detailed analysis of the physical origin of the zero-field splittings (ZFSs) in a series of high-spin (S = 1) nickel(II) scorpionate complexes Tp*NiX (Tp* = hydrotris(3,5-dimethylpyrazole)borate, X = Cl, Br, I) using quantum chemical approaches. High-frequency and -field electron paramagnetic resonance studies have shown that the complexes with heavier halide ligands (Br, I) have greater magnitudes but opposite signs of the ZFSs compared with the chloro congener (Desrochers, P. J.; Telser, J.; Zvyagin, S. A.; Ozarowski, A.; Krzystek, J.; Vicic, D. A. Inorg. Chem.2006, 45, 8930-8941). To rationalize the experimental findings, quantum chemical calculations of the ZFSs in this Ni(II) halide series have been conducted. The computed ZFS using wave-function-based ab initio methods (state-averaged CASSCF, NEVPT2, and SORCI) are in good agreement with the experiment. For comparison, density functional theory was only marginally successful. The ligand-field analysis demonstrates that the signs and magnitudes of the ZFSs are subtly determined by the trade-off between the negative contributions from the (1,3)A1(1e→2e) transitions relative to the positive contributions from the remaining d-d excited states. The term from (1,3)A1(1e→2e) stems from the structural feature that the metal center displaces out of the equatorial plane, and gains the importance when heavier halide ligand is involved.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institute for Bioinorganic Chemistry , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute for Bioinorganic Chemistry , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Westphal A, Broda H, Kurz P, Neese F, Tuczek F. Magnetic Circular Dichroism Spectrum of the Molybdenum(V) Complex [Mo(O)Cl3dppe]: C-Term Signs and Intensities for Multideterminant Excited Doublet States. Inorg Chem 2012; 51:5748-63. [DOI: 10.1021/ic300201t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Westphal
- Institut für
Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Henning Broda
- Institut für
Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Philipp Kurz
- Institut für
Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Frank Neese
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim
an der Ruhr, Germany
| | - Felix Tuczek
- Institut für
Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| |
Collapse
|
38
|
Application of magnetically-perturbed time-dependent density functional theory to magnetic circular dichroism. IV. The influence of zero-field splitting on the spectra of S>1/2 molecules. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Kjærgaard T, Coriani S, Ruud K. Ab initio
calculation of magnetic circular dichroism. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Kjærgaard
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, Oslo, Norway
| | - Sonia Coriani
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, Oslo, Norway
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Kenneth Ruud
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, , University of Tromsø, Tromsø, Norway
| |
Collapse
|
40
|
Misochko EY, Akimov AV, Korchagin DV, Masitov AA, Shavrin KN. Matrix isolation ESR spectroscopy and quantum chemical calculations on 5-methylhexa-1,2,4-triene-1,3-diyl, a highly delocalized triplet “hybrid” carbene. Phys Chem Chem Phys 2012; 14:2032-9. [DOI: 10.1039/c2cp22853j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Rokob TA, Srnec M, Rulíšek L. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives. Dalton Trans 2012; 41:5754-68. [DOI: 10.1039/c2dt12423h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Wojciechowska A, Daszkiewicz M, Staszak Z, Trusz-Zdybek A, Bieńko A, Ozarowski A. Synthesis, Crystal Structure, Spectroscopic, Magnetic, Theoretical, and Microbiological Studies of a Nickel(II) Complex of l-Tyrosine and Imidazole, [Ni(Im)2(l-tyr)2]·4H2O. Inorg Chem 2011; 50:11532-42. [PMID: 22010795 DOI: 10.1021/ic201471f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Marek Daszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | | | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Andrzej Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
43
|
Maganas D, Sottini S, Kyritsis P, Groenen EJJ, Neese F. Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S4 Complexes, Using Density Functional Theory and Correlated ab initio Methods. Inorg Chem 2011; 50:8741-54. [DOI: 10.1021/ic200299y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Silvia Sottini
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Edgar J. J. Groenen
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Frank Neese
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| |
Collapse
|
44
|
Micera G, Garribba E. Is the spin-orbit coupling important in the prediction of the 51V hyperfine coupling constants of V(IV) O2+ species? ORCA versus Gaussian performance and biological applications. J Comput Chem 2011; 32:2822-35. [PMID: 21735449 DOI: 10.1002/jcc.21862] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 05/15/2011] [Indexed: 01/26/2023]
Abstract
Density functional theory calculations of the (51)V hyperfine coupling (HFC) tensor A, have been completed for eighteen V(IV)O(2+) complexes with different donor set, electric charge and coordination geometry. A tensor was calculated with ORCA software with several functionals and basis sets taking into account the spin-orbit coupling contribution. The results were compared with those obtained with Gaussian 03 software using the half-and-half functional BHandHLYP and 6-311g(d,p) basis set. The order of accuracy of the functionals in the prediction of A(iso), A(z) and dipolar term A(z,anis) is BHandHLYP > PBE0 >> B3PW > TPSSh >> B3LYP >> BP86 > VWN5 (for A(iso)), BHandHLYP > PBE0 >> B3PW > TPSSh > B3LYP >> BP86 > VWN5 (for A(z)), B3LYP > PBE0 ∼ B3PW ∼ BHandHLYP >> TPSSh > BP86 ∼ VWN5 (for A(z,anis)). The good agreement in the prediction of A(z) with BHandHLYP is due to a compensation between the overestimation of A(iso) and underestimation of A(z,anis) (A(z) = A(iso) + A(z,anis)), whereas among the hybrid functionals PBE0 performs better than the other ones. BHandHLYP functional and Gaussian software are recommended when the V(IV)O(2+) species contains only V-O and/or V-N bonds, whereas PBE0 functional and ORCA software for V(IV)O(2+) complexes with one or more V-S bonds. Finally, the application of these methods to the coordination environment of V(IV)O(2+) ion in V-proteins, like vanadyl-substituted insulin, carbonic anhydrase, collagen and S-adenosylmethionine synthetase, was discussed.
Collapse
Affiliation(s)
- Giovanni Micera
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | | |
Collapse
|
45
|
Pietrzyk P, Srebro M, Radoń M, Sojka Z, Michalak A. Spin ground state and magnetic properties of cobalt(II): relativistic DFT calculations guided by EPR measurements of bis(2,4-acetylacetonate)cobalt(II)-based complexes. J Phys Chem A 2011; 115:2316-24. [PMID: 21351791 DOI: 10.1021/jp109524t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spin ground state of the core ion and structure of the bis(2,4-acetylacetonate)cobalt(II) model complex and its synthetic aqua and ethanol derivatives, Co(acac)(2)L(n), (L = EtOH, H(2)O), were examined by means of density functional theory (DFT) calculations supported by electron paramagnetic resonance (EPR) measurements. Geometry optimizations were carried out for low-spin (doublet) and high-spin (quartet) states. For the Co(acac)(2) complex two possible conformations, a square-planar and a tetrahedral one, were taken into account. For all structures relative energies were calculated with both "pure" and hybrid functionals. The calculated data were complemented with the results of the EPR investigations carried out at liquid helium temperature, allowing for definite assignment of the high-spin state for the Co(acac)(2)(EtOH)(2) complex. However, because of the unresolved spectral features, only effective g-values could be assessed, whereas the zero-field splitting parameters (ZFS) were calculated by means of the spin-orbit mean field (SOMF) relativistic DFT method for which direct spin-spin (SS) and spin-orbit coupling (SOC) contributions were quantified.
Collapse
Affiliation(s)
- Piotr Pietrzyk
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland.
| | | | | | | | | |
Collapse
|
46
|
Duboc C, Ganyushin D, Sivalingam K, Collomb MN, Neese F. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. J Phys Chem A 2011; 114:10750-8. [PMID: 20828179 DOI: 10.1021/jp107823s] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents a detailed evaluation of the performance of density functional theory (DFT) as well as complete active space self-consistent field (CASSCF)-based methods (CASSCF and second-order N-electron valence state perturbation theory, NEVPT2) to predict the zero-field splitting (zfs) parameters for a series of coordination complexes containing the Mn(III) ion. The physical origin of the experimentally determined zfs's was investigated by studying the different contributions to these parameters. To this end, a series of mononuclear Mn(III) complexes was chosen for which the structures have been resolved by X-ray diffraction and the zfs parameters have been accurately determined by high-field EPR spectroscopy. In a second step, small models have been constructed to allow for a systematic assessment of the factors that dominate the variations in the observed zfs parameters and to establish magnetostructural correlations. Among the tested functionals, the best predictions have been obtained with B3LYP, followed by the nonhybrid BP86 functional, which in turn is more successful than the meta-hybrid GGA functional TPSSh. For the estimation of the spin-orbit coupling (SOC) part of the zfs, it was found that the coupled perturbed SOC approach CP is more successful than the Pederson-Khanna method. Concerning the spin-spin interaction (SS), the restricted open-shell Kohn-Sham (ROKS) approach led to a slightly better agreement with the experiment than the unrestricted KS (UKS) approach. The ab initio state-averaged CASSCF (SA-CASSCF) method with a minimal active space and the most recent implementation that treats the SOC and SS contributions on an equal footing provides the best predictions for the zfs. The analysis demonstrates that the major contribution to the axial zfs parameter (D) originates from the SOC interaction but that the SS part is far from being negligible (between 10 and 20% of D). Importantly, the various excited triplet ligand field states account for roughly half of the value of D, contrary to popular ligand field models. Despite covering dynamic correlation contributions to the transition energies, NEVPT2 does not lead to large improvements in the results as the excitation energies of the Mn(III) d-d transitions are already fairly accurate at the SA-CASSCF level. For a given type of coordination sphere (e.g., elongated or compressed octahedron), the magnetic anisotropy of the Mn(III) ion, D, does not appear to be highly sensitive to the nature of the ligands, while the E/D ratio is notably affected by all octahedral distortions. Furthermore, the introduction of different halides into the coordination sphere of Mn(III) only leads to small effects on D. Nevertheless, it appears that oxygen-based ligands afford larger D values than nitrogen-based ligands.
Collapse
Affiliation(s)
- Carole Duboc
- Département de Chimie Moléculaire, UMR-5250, Laboratoire de Chimie Inorganique Redox, Institut de Chimie Moléculaire de Grenoble FR- CNRS-2607, Université Joseph Fourier Grenoble 1/CNRS, BP-53, 38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
47
|
Sundararajan M, Solomon RV, Ghosh SK, Venuvanalingam P. Elucidating the structures and binding of halide ions bound to cucurbit[6]uril, hemi-cucurbit[6]uril and bambus[6]uril using DFT calculations. RSC Adv 2011. [DOI: 10.1039/c1ra00266j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T. Ab initio and DFT studies of the spin–orbit and spin–spin contributions to the zero-field splitting tensors of triplet nitrenes with aryl scaffolds. Phys Chem Chem Phys 2011; 13:6970-80. [DOI: 10.1039/c0cp02809f] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lin SY, Xu GF, Zhao L, Tang J, Liu GX. Structure and Magnetic Properties of A μ-Phenoxido-bridged Dinuclear Cobalt(II) Complex. Z Anorg Allg Chem 2010. [DOI: 10.1002/zaac.201000398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Ferentinos E, Maganas D, Raptopoulou CP, Terzis A, Psycharis V, Robertson N, Kyritsis P. Conversion of tetrahedral to octahedral structures upon solvent coordination: studies on the M[(OPPh2)(SePPh2)N]2 (M = Co, Ni) and [Ni{(OPPh2)(EPPh2)N}2(dmf)2] (E = S, Se) complexes. Dalton Trans 2010; 40:169-80. [PMID: 21076739 DOI: 10.1039/c0dt00928h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis of the M[(OPPh(2))(SePPh(2))N](2), M = Co (1), Ni (2) complexes was accomplished by metathetical reactions between the corresponding M(II) salts and the deprotonated form of the dichalcogenated imidodiphosphinato ligand [(OPPh(2))(SePPh(2))N](-). X-Ray crystallography revealed a pseudo-tetrahedral MO(2)Se(2) coordination sphere, owing to the asymmetric (O,Se) nature of the chelating ligand. Slow diffusion of the coordinating solvent dimethylformamide into dichloromethane solutions of Ni[(OPPh(2))(SPPh(2))N](2) or 2, afforded the pseudo-octahedral trans-[Ni{(OPPh(2))(EPPh(2))N}(2)(dmf)(2)], E = S (3), Se (4) complexes, respectively. UV-vis spectra provided evidence that, in solution, complexes 3 and 4 revert to the corresponding pseudo-tetrahedral complexes, most likely due to the removal of the dmf molecules from the coordination sphere. The IR spectra of all complexes reflect the structural features observed by X-ray crystallography. The magnetic properties of the S = 3/2 complex 1, as well as the S = 1 complexes 2, 3 and 4, were extensively studied, and the magnitude of their g and zero-field splitting D parameters was estimated. The reported structures establish a structural transformation of tetrahedral to octahedral geometry of Ni(II) complexes bearing asymmetric imidodiphosphinate ligands, upon recrystallization from coordinating solvents. The structural correlations between the Ni(II) coordination spheres are aided by DFT and ab initio multi-configuration MCSCF calculations, which investigate the corresponding interconversion pathways. In addition, the calculations provide descriptions of the bonding interactions in the octahedral Ni(II) complexes, as well as predictions of their D values.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|