1
|
Abbass EM, El-Rayyes A, Khalil Ali A, El-Farargy AF, Kozakiewicz-Piekarz A, Ramadan RM. Catalyzed syntheses of novel series of spiro thiazolidinone derivatives with nano Fe 2O 3: spectroscopic, X-ray, Hirshfeld surface, DFT, biological and docking evaluations. Sci Rep 2024; 14:18773. [PMID: 39138211 PMCID: PMC11322538 DOI: 10.1038/s41598-024-65282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Twelve spiro thiazolidinone compounds (A-L) were synthesized via either conventional thermal or ultrasonication techniques using Fe2O3 nanoparticles. The modification of the traditional procedure by using Fe2O3 nanoparticles led to enhancement of the yield of the desired candidates to 78-93% in approximately half reaction time compared with 58-79% without catalyst. The products were fully characterized using different analytical and spectroscopic techniques. The structure of the two derivatives 4-phenyl-1-thia-4-azaspirodecan-3-one (A) and 4-(p-tolyl)-1-thia-4-azaspirodecan-3-one (B) were also determined using single crystal X-ray diffraction and Hirshfeld surface analysis. The two compounds (A and B) were crystallized in the orthorhombic system with Pbca and P212121 space groups, respectively. In addition, the crystal packing of compounds revealed the formation of supramolecular array with a net of intermolecular hydrogen bonding interactions. The energy optimized geometries of some selected derivatives were performed by density functional theory (DFT/B3LYP). The reactivity descriptors were also calculated and correlated with their biological properties. All the reported compounds were screened for antimicrobial inhibitions. The two derivatives, F and J, exhibited the highest levels of bacterial inhibition with an inhibition zone of 10-17 mm. Also, the two derivatives, F and J, displayed the most potent fungal inhibition with an inhibition zone of 15-23 mm. Molecular docking investigations of some selected derivatives were performed using a B-DNA (PDB: 1BNA) as a macromolecular target. Structure and activity relationship of the reported compounds were correlated with the data of antimicrobial activities and the computed reactivity parameters.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024:10.1007/s11030-023-10801-9. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
3
|
Farrokhpour H, Hassanjani K, Najafi Chermahini A, Eskandari K. Theoretical Spectroscopic Study of Normal Raman and Charge Transfer Surface-Enhanced Raman Scattering (SERS) Spectra of the Adsorbed l- and d-Cysteine on the Chiral Au 34 and Ag 4@Au 30 Nanoclusters: Chirality Discrimination. J Phys Chem A 2024; 128:3285-3300. [PMID: 38632874 DOI: 10.1021/acs.jpca.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In this work, the discrimination of the enantiomers of cysteine (l- and d-CYS) using the chiral Au34 and Ag4@Au30 clusters was theoretically investigated in the gas phase and water. Two modes were considered for the interaction of each enantiomer with the clusters (via only its S atom or its S atom and NH2 group, simultaneously). The interaction energy (Eint) and adsorption energy (Ead) for the complexation of each enantiomer with the clusters for each interaction mode were calculated. Considering the calculated interaction energies, the interaction of d-CYS with Au34 is stronger than that of l-CYS with the same cluster. Also, it was observed that the substitution of the Au4 core of the Au34 cluster with the Ag4 cluster caused the increase of the interaction energy of l-CYS with the Ag4@Au30 cluster compared to the Au34 cluster, while the reverse trend was observed for d-CYS. Quantum theory of atoms in molecules (QTAIM) analysis was employed to calculate the interaction paths and their related bond critical points (BCPs) between the CYS enantiomers and the clusters to explain the difference between the interaction energy of the enantiomers with the clusters. The IR, normal Raman (NR), and surface-enhanced Raman scattering (SERS) spectra of the enantiomers interacting with the Au34 and Ag4@Au30 clusters were calculated, and the discrimination between l-CYS and d-CYS using the calculated spectra was explained. It was found that the discrimination of the enantiomers based on their interaction with the clusters is controlled by the charge transfer between the enantiomers and the clusters.
Collapse
Affiliation(s)
- Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Kousar Hassanjani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Kiamars Eskandari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
4
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Primitivo L, De Angelis M, Necci A, Di Pietro F, Ricelli A, Caschera D, Pilloni L, Suber L, Righi G. Silver thiolate nanoclusters as support for chiral ligands: application in heterogeneous phase asymmetric catalysis. NANOSCALE ADVANCES 2023; 5:627-632. [PMID: 36756516 PMCID: PMC9890582 DOI: 10.1039/d2na00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Silver thiolate nanoclusters have been functionalized with a chiral amino alcohol ligand that has previously shown high catalytic efficiency in different asymmetric reactions. The as-developed nanostructured catalyst, which can be easily recovered by simple centrifugation, has been tested in the addition of nitromethane to aromatic aldehydes, showing the same catalytic activity as the homogeneous ligand. Moreover, it was reused for two further recycling cycles without loss of efficiency. To the best of our knowledge, this is the first example of silver nanoclusters employed as a support for chiral ligands for heterogeneous phase asymmetric catalysis.
Collapse
Affiliation(s)
- Ludovica Primitivo
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Martina De Angelis
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Andrea Necci
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Federica Di Pietro
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Alessandra Ricelli
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- CNR-IBPM-c/o Dep. Chemistry, Sapienza University of Rome 00185 Rome Italy
| | | | - Luciano Pilloni
- ENEA SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre 00123 Rome Italy
| | - Lorenza Suber
- CNR-ISM Via Salaria km 29,300, 00015 Monterotondo St. Italy
| | - Giuliana Righi
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- CNR-IBPM-c/o Dep. Chemistry, Sapienza University of Rome 00185 Rome Italy
| |
Collapse
|
6
|
Heyvaert W, Pedrazo-Tardajos A, Kadu A, Claes N, González-Rubio G, Liz-Marzán LM, Albrecht W, Bals S. Quantification of the Helical Morphology of Chiral Gold Nanorods. ACS MATERIALS LETTERS 2022; 4:642-649. [PMID: 35400146 PMCID: PMC8986031 DOI: 10.1021/acsmaterialslett.2c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 05/26/2023]
Abstract
Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.
Collapse
Affiliation(s)
- Wouter Heyvaert
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | | | - Ajinkya Kadu
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Nathalie Claes
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Guillermo González-Rubio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Physical Chemistry Department, University of Konstanz, Universitätsstraße 10, Box 714, 78457 Konstanz, Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Wiebke Albrecht
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
7
|
Abuaf M, Mastai Y. Electrospinning of polymer nanofibers based on chiral polymeric nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan Israel
| |
Collapse
|
8
|
Baruah MJ, Bora TJ, Gogoi G, Hoque N, Gour NK, Bhargava SK, Guha AK, Nath JK, Das B, Bania KK. Chirally modified cobalt-vanadate grafted on battery waste derived layered reduced graphene oxide for enantioselective photooxidation of 2-naphthol: Asymmetric induction through non-covalent interaction. J Colloid Interface Sci 2022; 608:1526-1542. [PMID: 34742071 DOI: 10.1016/j.jcis.2021.10.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The cobalt oxide-vanadium oxide (Co3O4-V2O5) combined with reduced graphene oxide (rGO) having band gap of ∼ 3.3 eV appeared as a suitable photocatalyst for selective oxidation of 2-naphthol to BINOL. C2-symmetric BINOL was achieved with good yield using hydrogen peroxide as the oxidant under UV-light irradiation. The same catalyst was chirally modified with cinchonidine and a newly synthesized chiral Schiff base ligand having a sigma-hole center. The strong interaction of the chiral modifiers with the cobalt-vanadium oxide was truly evident from various spectroscopic studies and DFT calculations. The chirally modified mixed metal oxide transformed the oxidative CC coupling reaction with high enantioselectivity. High enantiomeric excess upto 92 % of R-BINOL was obtained in acetonitrile solvent and hydrogen peroxide as the oxidant. A significant achievement was the formation of S-BINOL in the case of the cinchonidine modified catalyst and R-BINOL with the Schiff base ligand anchored chiral catalyst. The UV-light induced catalytic reaction was found to involve hydroxyl radical as the active reactive species. The spin trapping ESR and fluorescence experiment provided relevant evidence for the formation of such species through photodecomposition of hydrogen peroxide on the catalyst surface. The chiral induction to the resultant product was found to induce through supramolecular interaction like OH…π, H…Br interaction. The presence of sigma hole center was believed to play significant role in naphtholate ion recognition during the catalytic cycle.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Tonmoy J Bora
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nand K Gour
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ankur K Guha
- Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Jayanta K Nath
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati 781007, Assam, India
| | - Biraj Das
- Department of Chemistry, Dakha Devi Rasiwasia College, Dibrugarh, Assam 786184, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
9
|
Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Aboul-Enein HY, Bounoua N, Rebizi M, Wagdy H. Application of nanoparticles in chiral analysis and chiral separation. Chirality 2021; 33:196-208. [PMID: 33646601 DOI: 10.1002/chir.23303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/07/2022]
Abstract
Chiral molecules in relation to particular biological roles are stereoselective. Enantiomers differ significantly in their biochemical responses in biological environment. Despite the current advancement in drug discovery and pharmaceutical biotechnology, the chiral separation of some racemic mixtures continues to be one of the greatest challenges, because the available techniques are too costly and time consuming for the assessment of therapeutic drugs in the early stages of development worldwide. Various nanoparticles became one of the most investigated and explored nanotechnology-derived nanostructures especially in chirality where several studies are reported to improve enantiomeric separation of different racemic mixtures. The production of surface-modified nanoparticles has contributed to these limitations in terms of sensitivity, accuracy, and enantioselectivity that can be optimized and therefore makes these surface-modified nanoparticles convenient for enantiomeric identification and separation.
Collapse
Affiliation(s)
- Hassan Y Aboul-Enein
- Department of Medicinal and Pharmaceutical Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Nadia Bounoua
- Department of Exact Sciences, National Higher School of Bechar, Bechar, Algeria
| | - Mohamed Rebizi
- Organic Chemistry and Natural Substances Laboratory, University of Zian Achor, Djelfa, Algeria
| | - Hebatallah Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
11
|
CoFe2O4/Cu(OH)2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Ripani G, Flachmüller A, Peter C, Palleschi A. Coarse-Grained Simulation of the Adsorption of Water on Au(111) Surfaces Using a Modified Stillinger-Weber Potential. ACS OMEGA 2020; 5:31055-31059. [PMID: 33324813 PMCID: PMC7726742 DOI: 10.1021/acsomega.0c04071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
For reproducing the behavior of water molecules adsorbed on gold surfaces in terms of density of both bulk and interfacial water and in terms of structuring of water on top of gold atoms, the implementation of a multibody potential is necessary, thus the Stillinger-Weber potential was tested. The goal is using a single nonbonded potential for coarse-grained models, without the usage of explicit charges. In order to modify the angular part of the Stillinger-Weber potential from a single cosine to a piecewise function accounting for multiple equilibrium angles, employed for Au-Au-Au and Au-Au-water triplets, it is necessary to create a version of the simulation package LAMMPS that supports the assignment of multiple favored angles. This novel approach is able to reproduce the data obtained using quantum mechanical calculations and density profiles of both bulk and adsorbed water molecules obtained using classical polarizable force fields.
Collapse
Affiliation(s)
- Giorgio Ripani
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Alexander Flachmüller
- Theoretical
Chemistry, University of Konstanz, Konstanz 78547, Baden-Württemberg, Germany
| | - Christine Peter
- Theoretical
Chemistry, University of Konstanz, Konstanz 78547, Baden-Württemberg, Germany
| | - Antonio Palleschi
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
13
|
Rhodium Nanoparticles Stabilized by PEG-Tagged Imidazolium Salts as Recyclable Catalysts for the Hydrosilylation of Internal Alkynes and the Reduction of Nitroarenes. Catalysts 2020. [DOI: 10.3390/catal10101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PEGylated imidazolium (bromide and tetrafluoroborate) and tris-imidazolium (bromide) salts containing triazole linkers have been used as stabilizers for the preparation of water-soluble rhodium(0) nanoparticles by reduction of rhodium trichloride with sodium borohydride in water at room temperature. The nanomaterials have been characterized (Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron Spectroscopy, Inductively Coupled Plasma-Optical Emission Spectroscopy). They proved to be efficient and recyclable catalysts for the stereoselective hydrosilylation of internal alkynes, in the presence or absence of solvent, and in the reduction of nitroarenes to anilines with ammonia-borane as hydrogen donor in aqueous medium (1:4 tetrahydrofuran/water).
Collapse
|
14
|
|
15
|
Assessing the Recyclability of Supramolecularly Assembled Organocatalytic Species: A Theoretical Insight. Isr J Chem 2020. [DOI: 10.1002/ijch.201900178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Reusable shuttles for exchangeable functional cargos: Reversibly assembled, magnetically powered organocatalysts for asymmetric aldol reactions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019; 24:E1007. [PMID: 30871182 PMCID: PMC6470864 DOI: 10.3390/molecules24061007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Chiral molecules are stereoselective with regard to specific biological functions. Enantiomers differ considerably in their physiological reactions with the human body. Safeguarding the quality and safety of drugs requires an efficient analytical platform by which to selectively probe chiral compounds to ensure the extraction of single enantiomers. Asymmetric synthesis is a mature approach to the production of single enantiomers; however, it is poorly suited to mass production and allows for only specific enantioselective reactions. Furthermore, it is too expensive and time-consuming for the evaluation of therapeutic drugs in the early stages of development. These limitations have prompted the development of surface-modified nanoparticles using amino acids, chiral organic ligands, or functional groups as chiral selectors applicable to a racemic mixture of chiral molecules. The fact that these combinations can be optimized in terms of sensitivity, specificity, and enantioselectivity makes them ideal for enantiomeric recognition and separation. In chiral resolution, molecules bond selectively to particle surfaces according to homochiral interactions, whereupon an enantiopure compound is extracted from the solution through a simple filtration process. In this review article, we discuss the fabrication of chiral nanoparticles and look at the ways their distinctive surface properties have been adopted in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, Assam 785001, India.
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Harsh Ranawat
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan.
| |
Collapse
|
18
|
Yang B, Sun M, Qian X, Gao H, Ding X, Zhang Q. Preparation of a novel magnetically recoverable copper complex catalyst and its application in the Henry reaction. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bing Yang
- Key Laboratory of Public Security Management Technology in Universities of Shandong; Shandong Management University; Jinan 250357 China
| | - Meiyu Sun
- Key Laboratory of Public Security Management Technology in Universities of Shandong; Shandong Management University; Jinan 250357 China
| | - Xiangli Qian
- Key Laboratory of Public Security Management Technology in Universities of Shandong; Shandong Management University; Jinan 250357 China
| | - Hongfen Gao
- Key Laboratory of Public Security Management Technology in Universities of Shandong; Shandong Management University; Jinan 250357 China
| | - Xia Ding
- Key Laboratory of Public Security Management Technology in Universities of Shandong; Shandong Management University; Jinan 250357 China
| | - Qikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals; Shandong Normal University; Jinan 250014 China
| |
Collapse
|
19
|
Hirano K, Takano S, Tsukuda T. Asymmetric aerobic oxidation of secondary alcohols catalyzed by poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters modified with cyclodextrin derivatives. Chem Commun (Camb) 2019; 55:15033-15036. [DOI: 10.1039/c9cc06770a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modification of poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters (1.8 ± 0.6 nm) with aminated cyclodextrins induced aerobic oxidative kinetic resolution of racemic secondary alcohols (krel = 1.2).
Collapse
Affiliation(s)
- Koto Hirano
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shinjiro Takano
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Tatsuya Tsukuda
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
20
|
Fernández G, Pleixats R. Soluble Pt Nanoparticles Stabilized by a Tris-imidazolium Tetrafluoroborate as Efficient and Recyclable Catalyst for the Stereoselective Hydrosilylation of Alkynes. ChemistrySelect 2018. [DOI: 10.1002/slct.201802785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guillem Fernández
- Department of Chemistry and Centro de Innovación en Química Avanzada (CINQA); Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès; Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (CINQA); Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès; Barcelona, Spain
| |
Collapse
|
21
|
Fernández G, Sort J, Pleixats R. Nickel Nanoparticles Stabilized by Trisimidazolium Salts: Synthesis, Characterization and Application as Recyclable Catalysts for the Reduction of Nitroarenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201801839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillem Fernández
- Department of Chemistry and Centro de Innovación en Química Avanzada (CINQA)Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès Barcelona Spain
| | - Jordi Sort
- Department of PhysicsUniversitat Autònoma de Barcelona 08193 Bellaterra Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23 E-08010 Barcelona Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (CINQA)Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès Barcelona Spain
| |
Collapse
|
22
|
A new magnetically recyclable heterogeneous palladium(II) as a green catalyst for Suzuki-Miyaura cross-coupling and reduction of nitroarenes in aqueous medium at room temperature. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Nindakova LO, Strakhov VO, Kolesnikov SS. Hydrogenation of Ketones on Dispersed Chiral-Modified Palladium Nanoparticles. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218020044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Davies GL, Govan J, Tekoriute R, Serrano-García R, Nolan H, Farrell D, Hajatpour O, Gun'ko YK. Magnetically activated adhesives: towards on-demand magnetic triggering of selected polymerisation reactions. Chem Sci 2017; 8:7758-7764. [PMID: 29163912 PMCID: PMC5674535 DOI: 10.1039/c7sc03474a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/17/2017] [Indexed: 11/21/2022] Open
Abstract
We demonstrate a new strategy to inhibit and trigger polymerisation of an adhesive formulation, utilising colloidal core@shell CoFe2O4@MnO2 magnetic nanoparticles.
On-demand initiation of chemical reactions is becoming increasingly popular in many areas. The use of a magnetic field to trigger reactions is an intriguing concept, with vast potential in both research and industrial settings, though it remains a challenge as yet unsolved. Here we report the first example of on-demand magnetic activation of a polymerisation process using an anaerobic adhesive formulation as an example of this new approach toward triggering polymerisation reactions using an external magnetic field. Our strategy involves the use of a colloidal system comprising functional methacrylate ester monomers, peroxide and CuII-salt as polymerisation initiators and magnetic nanoparticles coated with an oxidising shell. This unique combination prevents reduction of the reactive transition metal (CuII) ion by the metal substrates (steel or aluminium) to be joined – hence inhibiting the redox radical initiated cationic polymerisation reaction and efficiently preventing adhesion. The polymerisation and corresponding adhesion process can be triggered by removal of the functional magnetic particles using a permanent external magnet either prior to formulation application or at the joint to be adhered, enabling the polymerisation to proceed through CuII-mediated reduction. This new approach enables on-demand magnetically-triggered reaction initiation and holds potential for a range of useful applications in chemistry, materials science and relevant industrial manufacturing.
Collapse
Affiliation(s)
- Gemma-Louise Davies
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK .
| | - Joseph Govan
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Renata Tekoriute
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Raquel Serrano-García
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - Hugo Nolan
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland .
| | - David Farrell
- Henkel Ireland Operations & Research Limited , Tallaght Business Park, Whitestown, Tallaght , Dublin 24 , Ireland
| | - Ory Hajatpour
- Henkel Ireland Operations & Research Limited , Tallaght Business Park, Whitestown, Tallaght , Dublin 24 , Ireland
| | - Yurii K Gun'ko
- School of Chemistry , CRANN Institute , Trinity College Dublin , Dublin 2 , Ireland . .,ITMO University , 197101 , St. Petersburg , Russia
| |
Collapse
|
25
|
Kamali F, Shirini F. Fe3
O4
@SiO2
-ZrCl2
-MNPs: A novel magnetic catalyst for the clean and efficient cascade synthesis of 1-(benzothiazolylamino)methyl-2-naphthol derivatives in the absence of solvent. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Kamali
- Department of Chemistry, College of Science; University of Guilan; Rasht zip code 41335 I.R. Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science; University of Guilan; Rasht zip code 41335 I.R. Iran
| |
Collapse
|
26
|
|
27
|
P-Stereogenic Phosphines for the Stabilisation of Metal Nanoparticles. A Surface State Study. Catalysts 2016. [DOI: 10.3390/catal6120213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
28
|
Robson JA, Gonzàlez de Rivera F, Jantan KA, Wenzel MN, White AJP, Rossell O, Wilton-Ely JDET. Bifunctional Chalcogen Linkers for the Stepwise Generation of Multimetallic Assemblies and Functionalized Nanoparticles. Inorg Chem 2016; 55:12982-12996. [DOI: 10.1021/acs.inorgchem.6b02409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan A. Robson
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Ferran Gonzàlez de Rivera
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
- Departament de Química Inorgànica, Universitat de Barcelona, Martí Franquès 1-11, 08028 Barcelona, Spain
| | - Khairil A. Jantan
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Margot N. Wenzel
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Oriol Rossell
- Departament de Química Inorgànica, Universitat de Barcelona, Martí Franquès 1-11, 08028 Barcelona, Spain
| | | |
Collapse
|
29
|
|
30
|
Pagoti S, Ghosh T, Dash J. Synthesis of Magnetic Nanoparticles and Polymer Supported Imidazolidinone Catalysts for Enantioselective Friedel-Crafts Alkylation of Indoles. ChemistrySelect 2016. [DOI: 10.1002/slct.201600995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sreenivasarao Pagoti
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Tridev Ghosh
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata- 700032 India
| |
Collapse
|
31
|
Denicourt-Nowicki A, Roucoux A. Odyssey in Polyphasic Catalysis by Metal Nanoparticles. CHEM REC 2016; 16:2127-41. [DOI: 10.1002/tcr.201600050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Alain Roucoux
- ENSCR, UMR, CNRS 6226; 11 Allée de Beaulieu, CS 50837 35708 Rennes Cedex 7 France
| |
Collapse
|
32
|
Etayo P, Ayats C, Pericàs MA. Synthesis and catalytic applications of C3-symmetric tris(triazolyl)methanol ligands and derivatives. Chem Commun (Camb) 2016; 52:1997-2010. [PMID: 26701737 DOI: 10.1039/c5cc08961a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently introduced tris(1,2,3-triazol-4-yl)methanols and derivatives (TTM ligands) have become a valuable subclass of C3-symmetric tripodal ligands for transition metal-mediated reactions. TTM-based ligand architectures are modularly constructed through regioselective, one-pot triple [3+2] cycloaddition of azides and alkynes. Applications of homogeneous systems of this type and of heterogenised (polystyrene- and magnetic nanoparticle-supported) TTM ligands in synthesis and catalysis are compiled in this Feature Article.
Collapse
Affiliation(s)
- Pablo Etayo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain.
| | - Carles Ayats
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain.
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, E-43007 Tarragona, Spain. and Departament de Química Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
33
|
Chen T, Rodionov VO. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00714] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyou Chen
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valentin O. Rodionov
- KAUST
Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Huang J, Su P, Zhou L, Yang Y. Grafting l -valine on polyamidoamine dendrimer-modified magnetic microspheres for enantioselective adsorption of dansyl amino acids. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
35
|
Guarnizo A, Angurell I, Muller G, Llorca J, Seco M, Rossell O, Rossell MD. Highly water-dispersible magnetite-supported Pd nanoparticles and single atoms as excellent catalysts for Suzuki and hydrogenation reactions. RSC Adv 2016. [DOI: 10.1039/c6ra14257e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The linker dpa enables the deposition of palladium on magnetite nanoparticles that show excellent catalytic behavior in water or water/ethanol solvents.
Collapse
Affiliation(s)
- A. Guarnizo
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - I. Angurell
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - G. Muller
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - J. Llorca
- Institut de Tècniques Energètiques i Centre de Recerca en Nanoenginyeria
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - M. Seco
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - O. Rossell
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - M. D. Rossell
- Electron Microscopy Center
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- 8600 Dübendorf
- Switzerland
| |
Collapse
|
36
|
Hassani H, Zakerinasab B, Nasseri MA, Shavakandi M. The preparation, characterization and application of COOH grafting on ferrite–silica nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra24252e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic materials grafted with carboxylic acid (Fe3O4@SiO2@COOH MNPs) were successfully prepared via the incorporation of maleic anhydride as a functional group on the surface of ferrite–silica nanoparticles.
Collapse
Affiliation(s)
- H. Hassani
- Department of Chemistry
- Payam Noor University
- Birjand
- Iran
| | | | - M. A. Nasseri
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand 97175-615
- Iran
| | - M. Shavakandi
- Department of Chemistry
- Payam Noor University
- Birjand
- Iran
| |
Collapse
|
37
|
Baeza A, Guillena G, Ramón DJ. Magnetite and Metal-Impregnated Magnetite Catalysts in Organic Synthesis: A Very Old Concept with New Promising Perspectives. ChemCatChem 2015. [DOI: 10.1002/cctc.201500854] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandro Baeza
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| | - Gabriela Guillena
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| | - Diego J. Ramón
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| |
Collapse
|
38
|
Bhosale DS, Drabina P, Kincl M, Vlček M, Sedlák M. Magnetically recoverable catalyst for the asymmetric Henry reaction based on a substituted imidazolidine-4-one copper(II) complex supported by Fe3O4·SiO2 nanoparticles. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Veisi H, Sedrpoushan A, Maleki B, Hekmati M, Heidari M, Hemmati S. Palladium immobilized on amidoxime-functionalized magnetic Fe3O4nanoparticles: a highly stable and efficient magnetically recoverable nanocatalyst for sonogashira coupling reaction. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3390] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hojat Veisi
- Department of Chemistry; Payame Noor University; Tehran Iran
| | - Alireza Sedrpoushan
- Institute of Industrial Chemistry; Iranian Research Organization for Science and Technology; Tehran Iran
| | - Behrooz Maleki
- Hakim Sabzevari University; Department of Chemistry; PO Box 397 Sabzevar Iran
| | - Malak Hekmati
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch; (IAUPS); Tehran Iran
| | - Masoud Heidari
- Institute of Industrial Chemistry; Iranian Research Organization for Science and Technology; Tehran Iran
| | - Saba Hemmati
- Department of Chemistry; Payame Noor University; Tehran Iran
| |
Collapse
|
40
|
From hydroxycetylammonium salts to their chiral counterparts. A library of efficient stabilizers of Rh(0) nanoparticles for catalytic hydrogenation in water. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Nasir Baig R, Nadagouda MN, Varma RS. Magnetically retrievable catalysts for asymmetric synthesis. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Guarnizo A, Angurell I, Rossell MD, Llorca J, Muller G, Seco M, Rossell O. 4-Mercaptophenyldiphenylphosphine as linker to immobilize Pd onto the surface of magnetite nanoparticles. Excellent catalytic efficiency of the system after partial linker removal. RSC Adv 2015. [DOI: 10.1039/c5ra18953e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The catalytic efficiency of Pd nanoparticles supported on Fe3O4 NPs strongly improves after partial removal of the Sdp linker.
Collapse
Affiliation(s)
- A. Guarnizo
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - I. Angurell
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - M. D. Rossell
- Electron Microscopy Center
- Empa, Swiss Federal Laboratories for Materials Science and Technology
- Switzerland
| | - J. Llorca
- Institut de Tècniques Energètiques i Centre de Recerca en Nanoenginyeria
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - G. Muller
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - M. Seco
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - O. Rossell
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
43
|
Mendoza C, Jansat S, Vilar R, Pericàs MA. Clickable complexing agents: functional crown ethers for immobilisation onto polymers and magnetic nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra10027e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A modular library of crown ethers and monoazacrown ethers supported by CuAAC reactions onto magnetic nanoparticles and polymers has been prepared and evaluated as extracting materials for Pb2+ from aqueous and organic solutions.
Collapse
Affiliation(s)
- Carolina Mendoza
- Institute of Chemical Research of Catalonia (ICIQ)
- E-43007 Tarragona
- Spain
| | - Susanna Jansat
- Institute of Chemical Research of Catalonia (ICIQ)
- E-43007 Tarragona
- Spain
| | - Ramón Vilar
- Department of Chemistry
- Imperial College London
- London SW7 2AY
- UK
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)
- E-43007 Tarragona
- Spain
- Departament de Química Orgànica
- Universitat de Barcelona
| |
Collapse
|
44
|
Aguilera J, Favier I, Sans M, Mor À, Álvarez-Larena Á, Illa O, Gómez M, Ortuño RM. Synthesis of Chiral Functionalised Cyclobutylpyrrolidines and Cyclobutylamino Alcohols from (-)-(S)-Verbenone - Applications in the Stabilisation of Ruthenium Nanocatalysts. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Vishwanatha TM, Sureshbabu VV. Copper(0) Nanoparticles in Click Chemistry: Synthesis of 3,5-Disubstituted Isoxazoles. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- T. M. Vishwanatha
- # 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus; Dr. B. R. Ambedkar Veedhi, Bangalore University; Bangalore 560 001 India
| | - Vommina V. Sureshbabu
- # 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus; Dr. B. R. Ambedkar Veedhi, Bangalore University; Bangalore 560 001 India
| |
Collapse
|
46
|
Deraedt C, Wang D, Salmon L, Etienne L, Labrugère C, Ruiz J, Astruc D. Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers Containing Palladium Nanoparticles on a Magnetic Support. ChemCatChem 2014. [DOI: 10.1002/cctc.201402775] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Lima CGS, Silva S, Gonçalves RH, Leite ER, Schwab RS, Corrêa AG, Paixão MW. Highly Efficient and Magnetically Recoverable Niobium Nanocatalyst for the Multicomponent Biginelli Reaction. ChemCatChem 2014. [DOI: 10.1002/cctc.201402689] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Li Z, Ni Y, Qiu F, Ying A, Xu S, Wang Y. Novel Ionic Tagged Amine Anchored on Magnetic Nanoparticles: An Efficient and Magnetically Recyclable Catalyst for Phospha-Michael Addition. Catal Letters 2014. [DOI: 10.1007/s10562-014-1342-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Kirby F, Moreno-Marrodan C, Baán Z, Bleeker BF, Barbaro P, Berben PH, Witte PT. NanoSelect Precious Metal Catalysts and their Use in Asymmetric Heterogeneous Catalysis. ChemCatChem 2014. [DOI: 10.1002/cctc.201402310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Pérez JM, Ramón DJ. Cobalt-Impregnated Magnetite as General Heterogeneous Catalyst for the Hydroacylation Reaction of Azodicarboxylates. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|