1
|
Lučić M, Wilson MT, Pullin J, Hough MA, Svistunenko DA, Worrall JAR. New insights into controlling radical migration pathways in heme enzymes gained from the study of a dye-decolorising peroxidase. Chem Sci 2023; 14:12518-12534. [PMID: 38020392 PMCID: PMC10646903 DOI: 10.1039/d3sc04453j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
In heme enzymes, such as members of the dye-decolorising peroxidase (DyP) family, the formation of the highly oxidising catalytic Fe(iv)-oxo intermediates following reaction with hydrogen peroxide can lead to free radical migration (hole hopping) from the heme to form cationic tyrosine and/or tryptophan radicals. These species are highly oxidising (∼1 V vs. NHE) and under certain circumstances can catalyse the oxidation of organic substrates. Factors that govern which specific tyrosine or tryptophan the free radical migrates to in heme enzymes are not well understood, although in the case of tyrosyl radical formation the nearby proximity of a proton acceptor is a recognised facilitating factor. By using an A-type member of the DyP family (DtpAa) as an exemplar, we combine protein engineering, X-ray crystallography, hole-hopping calculations, EPR spectroscopy and kinetic modelling to provide compelling new insights into the control of radical migration pathways following reaction of the heme with hydrogen peroxide. We demonstrate that the presence of a tryptophan/tyrosine dyad motif displaying a T-shaped orientation of aromatic rings on the proximal side of the heme dominates the radical migration landscape in wild-type DtpAa and continues to do so following the rational engineering into DtpAa of a previously identified radical migration pathway in an A-type homolog on the distal side of the heme. Only on disrupting the proximal dyad, through removal of an oxygen atom, does the radical migration pathway then switch to the engineered distal pathway to form the desired tyrosyl radical. Implications for protein design and biocatalysis are discussed.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jacob Pullin
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael A Hough
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| |
Collapse
|
2
|
The dynamics of hemoglobin-haptoglobin complexes. Relevance for oxidative stress. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Honarmand Ebrahimi K, Rowbotham JS, McCullagh J, James WS. Mechanism of Diol Dehydration by a Promiscuous Radical-SAM Enzyme Homologue of the Antiviral Enzyme Viperin (RSAD2). Chembiochem 2020; 21:1605-1612. [PMID: 31951306 DOI: 10.1002/cbic.201900776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/30/2022]
Abstract
3'-Deoxynucleotides are an important class of drugs because they interfere with the metabolism of nucleotides, and their incorporation into DNA or RNA terminates cell division and viral replication. These compounds are generally produced by multi-step chemical synthesis, and an enzyme with the ability to catalyse the removal of the 3'-deoxy group from different nucleotides has yet to be described. Here, using a combination of HPLC, HRMS and NMR spectroscopy, we demonstrate that a thermostable fungal radical S-adenosylmethionine (SAM) enzyme, with similarity to the vertebrate antiviral enzyme viperin (RSAD2), can catalyse the transformation of CTP, UTP and 5-bromo-UTP to their 3'-deoxy-3',4'-didehydro (ddh) analogues. We show that, unlike the fungal enzyme, human viperin only catalyses the transformation of CTP to ddhCTP. Using electron paramagnetic resonance spectroscopy and molecular docking and dynamics simulations in combination with mutagenesis studies, we provide insight into the origin of the unprecedented substrate promiscuity of the enzyme and the mechanism of dehydration of a nucleotide. Our findings highlight the evolution of substrate specificity in a member of the radical-SAM enzymes. We predict that our work will help in using a new class of the radical-SAM enzymes for the biocatalytic synthesis of 3'-deoxy nucleotide/nucleoside analogues.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - James McCullagh
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| |
Collapse
|
4
|
Samanta D, Saha P, Ghosh P. Proton-Coupled Oxidation of Aldimines and Stabilization of H-Bonded Phenoxyl Radical-Phenol Skeletons. Inorg Chem 2019; 58:15060-15077. [DOI: 10.1021/acs.inorgchem.9b01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debasish Samanta
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| |
Collapse
|
5
|
Svistunenko DA, Manole A. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? J Biomed Res 2019; 34:281-291. [PMID: 32475850 PMCID: PMC7386409 DOI: 10.7555/jbr.33.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the difficulties in creating a blood substitute on the basis of human haemoglobin (Hb) is the toxic nature of Hb when it is outside the safe environment of the red blood cells. The plasma protein haptoglobin (Hp) takes care of the Hb physiologically leaked into the plasma – it binds Hb and makes it much less toxic while retaining the Hb's high oxygen transporting capacity. We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that the protein bound radical induced by H2O2 in Hb and Hp-Hb complex is formed on the same tyrosine residue(s), but, in the complex, the radical is found in a more hydrophobic environment and decays slower than in unbound Hb, thus mitigating its oxidative capacity. The data obtained in this study might set new directions in engineering blood substitutes for transfusion that would have the oxygen transporting efficiency typical of Hb, but which would be non-toxic.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Biomedical EPR Facility, School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Sasmal S, Debnath M, Nandi SK, Haldar D. A urea-modified tryptophan based in situ reducing and stabilizing agent for the fabrication of gold nanoparticles as a Suzuki-Miyaura cross-coupling catalyst in water. NANOSCALE ADVANCES 2019; 1:1380-1386. [PMID: 36132616 PMCID: PMC9418380 DOI: 10.1039/c8na00273h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/01/2019] [Indexed: 06/02/2023]
Abstract
Urea-modified tryptophan has been used as an in situ reducing and stabilizing agent for the fabrication of gold nanoparticles in water. The tryptophan side chain NH has been used for the reduction of gold ions in HAuCl4 to metallic gold and carboxylic acid functionality helps to stabilize the gold nanoparticles. This was confirmed by a controlled reaction with urea-modified leucine which failed to form any gold nanoparticles. The resultant gold nanoparticles have been characterized by various spectroscopic techniques such as UV-visible spectroscopy, FT-IR spectroscopy and microscopic techniques such as FE-SEM and TEM. Moreover, we have shown that the urea-modified tryptophan stabilized gold nanoparticles catalyze the Suzuki-Miyaura cross-coupling reaction. The gold nanoparticle catalyzed Suzuki-Miyaura cross-coupling reaction between 4-bromobenzoic acid and phenylboronic acid in water provides 92% yield in 40 minutes. The high efficiency exhibited by the gold nanoparticle catalyst was effectively translated to a large number of Suzuki-Miyaura reactions between halides with phenylboronic acid. The results may inspire further research on gold nanoparticles catalysis in water.
Collapse
Affiliation(s)
- Supriya Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Mintu Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
7
|
Chaplin AK, Chicano TM, Hampshire BV, Wilson MT, Hough MA, Svistunenko DA, Worrall JAR. An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis. Chemistry 2019; 25:6141-6153. [PMID: 30945782 DOI: 10.1002/chem.201806290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2 O2 , DyPs form a high-valent iron(IV)-oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein-bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2 O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein-bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron-transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron-transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Present address: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tadeo Moreno Chicano
- Present address: Department of Molecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Bethany V Hampshire
- Present address: Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
8
|
Sirohiwal A, Neese F, Pantazis DA. Microsolvation of the Redox-Active Tyrosine-D in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer. J Am Chem Soc 2019; 141:3217-3231. [PMID: 30666866 PMCID: PMC6728127 DOI: 10.1021/jacs.8b13123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) of oxygenic photosynthesis captures sunlight to drive the catalytic oxidation of water and the reduction of plastoquinone. Among the several redox-active cofactors that participate in intricate electron transfer pathways there are two tyrosine residues, YZ and YD. They are situated in symmetry-related electron transfer branches but have different environments and play distinct roles. YZ is the immediate oxidant of the oxygen-evolving Mn4CaO5 cluster, whereas YD serves regulatory and protective functions. The protonation states and hydrogen-bond network in the environment of YD remain debated, while the role of microsolvation in stabilizing different redox states of YD and facilitating oxidation or mediating deprotonation, as well the fate of the phenolic proton, is unclear. Here we present detailed structural models of YD and its environment using large-scale quantum mechanical models and all-atom molecular dynamics of a complete PSII monomer. The energetics of water distribution within a hydrophobic cavity adjacent to YD are shown to correlate directly with electron paramagnetic resonance (EPR) parameters such as the tyrosyl g-tensor, allowing us to map the correspondence between specific structural models and available experimental observations. EPR spectra obtained under different conditions are explained with respect to the mode of interaction of the proximal water with the tyrosyl radical and the position of the phenolic proton within the cavity. Our results revise previous models of the energetics and build a detailed view of the role of confined water in the oxidation and deprotonation of YD. Finally, the model of microsolvation developed in the present work rationalizes in a straightforward way the biphasic oxidation kinetics of YD, offering new structural insights regarding the function of the radical in biological photosynthesis.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
- Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
9
|
Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J Am Chem Soc 2016; 138:7951-64. [PMID: 27276098 PMCID: PMC4929525 DOI: 10.1021/jacs.6b03605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Fluorinated tyrosines
(FnY’s, n = 2
and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the
recently evolved M. jannaschii Y-tRNA synthetase/tRNA
pair. Class Ia RNRs require four redox active Y’s, a stable
Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356
in β and 731 and 730 in α) to initiate the radical-dependent
nucleotide reduction process. FnY (3,5;
2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β
and the X-ray structures of each resulting β with a diferric
cluster are reported and compared with wt-β2 crystallized under
the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1
Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide
reduction with activities that vary from 5% to 85% that of wt-β2.
Each FnY·-β2 has been characterized
by 9 and 130 GHz electron paramagnetic resonance and high-field electron
nuclear double resonance spectroscopies. The hyperfine interactions
associated with the 19F nucleus provide unique signatures
of each FnY· that are readily distinguishable
from unlabeled Y·’s. The variability of the abiotic FnY pKa’s
(6.4 to 7.8) and reduction potentials (−30 to +130 mV relative
to Y at pH 7.5) provide probes of enzymatic reactions proposed to
involve Y·’s in catalysis and to investigate the importance
and identity of hopping Y·’s within redox active proteins
proposed to protect them from uncoupled radical chemistry.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | - Paul A Stucky
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Troy A Stich
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
10
|
Viglino E, Shaffer CJ, Tureček F. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase. Angew Chem Int Ed Engl 2016; 55:7469-73. [DOI: 10.1002/anie.201602604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Emilie Viglino
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | | | - František Tureček
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
11
|
Viglino E, Shaffer CJ, Tureček F. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emilie Viglino
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | | | - František Tureček
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
12
|
Sikdar S, Ghosh M, De Raychaudhury M, Chakrabarti J. Quantum chemical studies on nucleophilic sites in calcium ion bound zwitterionic calmodulin loops. RSC Adv 2016. [DOI: 10.1039/c6ra10846f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantum chemical calculation on Ca2+ bound zwitterionic calmodulin-loops shows terminal capping contributions localized near HOMO and LUMO, which decay exponentially and presence of nucleophilic site at the phenyl-ring Oh of Y99.
Collapse
Affiliation(s)
- Samapan Sikdar
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700098
- India
| | - Mahua Ghosh
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700098
- India
| | | | - J. Chakrabarti
- Department of Chemical, Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700098
- India
| |
Collapse
|
13
|
The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 2015; 456:441-52. [PMID: 24099549 DOI: 10.1042/bj20130758] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis.
Collapse
|
14
|
The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase - Identification of three new potential substrate-interaction sites. Arch Biochem Biophys 2014; 574:75-85. [PMID: 25542606 DOI: 10.1016/j.abb.2014.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 11/21/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) such as AauDyPI from the fungus Auricularia auricula-judae are able to oxidize substrates of different kinds and sizes. A crystal structure of an AauDyPI-imidazole complex gives insight into the binding patterns of organic molecules within the heme cavity of a DyP. Several small N-containing heterocyclic aromatics are shown to bind in the AauDyPI heme cavity, hinting to susceptibility of DyPs to azole-based inhibitors similar to cytochromes P450. Imidazole is confirmed as a competitive inhibitor with regard to peroxide binding. In contrast, bulky substrates such as anthraquinone dyes are converted at the enzyme surface. In the crystal structure a substrate analog, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), binds to a tyrosine-rich hollow harboring Y25, Y147, and Y337. Spin trapping with a nitric oxide donor uncovers Y229 as an additional tyrosine-based radical center in AauDyPI. Multi-frequency EPR spectroscopy further reveals the presence of at least one intermediate tryptophanyl radical center in activated AauDyPI with W377 as the most likely candidate.
Collapse
|
15
|
Bernini C, Arezzini E, Basosi R, Sinicropi A. In silico spectroscopy of tryptophan and tyrosine radicals involved in the long-range electron transfer of cytochrome c peroxidase. J Phys Chem B 2014; 118:9525-37. [PMID: 25084495 DOI: 10.1021/jp5025153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c peroxidase (CcP) is a heme-containing enzyme that catalyzes the oxidation of the ferrocytochrome c to ferricytochrome c with concomitant reduction of H2O2 to H2O. Its catalytic cycle involves the formation of a double oxidized species (compound I) consisting of an oxoferryl center (Fe(IV)═O) and an amino acid radical (R(•)). Here we use a quantum-mechanics/molecular-mechanics (QM/MM) computational protocol based on density functional theory (DFT) and multiconfigurational perturbation theory (CASPT2) methods to reproduce specific features of compound I EPR and UV-vis spectra. The results show that the employed QM/MM models can correctly predict the magnetic, electronic and vibrational properties of the observed amino acid radicals of compound I. Furthermore, we have been able to confirm that the principal radical species of compound I is a tryptophan cationic radical located on residue 191 (Trp191(•+)) and that three tyrosine residues (Tyr203, Tyr236, and Tyr251), located along two possible ET pathways involving Trp191(•+), are possible candidates to host the secondary radical species.
Collapse
Affiliation(s)
- Caterina Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via A. Moro 2, 53100 Siena, Italy
| | | | | | | |
Collapse
|
16
|
The class Ib ribonucleotide reductase from Mycobacterium tuberculosis has two active R2F subunits. J Biol Inorg Chem 2014; 19:893-902. [PMID: 24585102 DOI: 10.1007/s00775-014-1121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides, playing a crucial role in DNA repair and replication in all living organisms. Class Ib RNRs require either a diiron-tyrosyl radical (Y·) or a dimanganese-Y· cofactor in their R2F subunit to initiate ribonucleotide reduction in the R1 subunit. Mycobacterium tuberculosis, the causative agent of tuberculosis, contains two genes, nrdF1 and nrdF2, encoding the small subunits R2F-1 and R2F-2, respectively, where the latter has been thought to serve as the only active small subunit in the M. tuberculosis class Ib RNR. Here, we present evidence for the presence of an active Fe 2 (III) -Y· cofactor in the M. tuberculosis RNR R2F-1 small subunit, supported and characterized by UV-vis, X-band electron paramagnetic resonance, and resonance Raman spectroscopy, showing features similar to those for the M. tuberculosis R2F-2-Fe 2 (III) -Y· cofactor. We also report enzymatic activity of Fe 2 (III) -R2F-1 when assayed with R1, and suggest that the active M. tuberculosis class Ib RNR can use two different small subunits, R2F-1 and R2F-2, with similar activity.
Collapse
|
17
|
Schmidt TC, Paasche A, Grebner C, Ansorg K, Becker J, Lee W, Engels B. QM/MM investigations of organic chemistry oriented questions. Top Curr Chem (Cham) 2014; 351:25-101. [PMID: 22392477 DOI: 10.1007/128_2011_309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.
Collapse
Affiliation(s)
- Thomas C Schmidt
- Institut für Phys. und Theor. Chemie, Emil-Fischer-Strasse 42, Campus Hubland Nord, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Cooper CE, Schaer DJ, Buehler PW, Wilson MT, Reeder BJ, Silkstone G, Svistunenko DA, Bulow L, Alayash AI. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxid Redox Signal 2013; 18:2264-73. [PMID: 22702311 PMCID: PMC3638561 DOI: 10.1089/ars.2012.4547] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. RESULTS Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. INNOVATION Hp binding decreases both the ferryl iron and free radical reactivity of Hb. CONCLUSION Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging.
Collapse
Affiliation(s)
- Chris E Cooper
- School of Biological Sciences, University of Essex, Essex, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
De Cooman H, Keysabyl J, Kusakovskij J, Van Yperen-De Deyne A, Waroquier M, Callens F, Vrielinck H. Dominant Stable Radicals in Irradiated Sucrose: g Tensors and Contribution to the Powder Electron Paramagnetic Resonance Spectrum. J Phys Chem B 2013; 117:7169-78. [DOI: 10.1021/jp400053h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hendrik De Cooman
- Ghent University, Department of Solid State Sciences, Electron Magnetic Resonance
Research Group, Krijgslaan 281-S1, B-9000 Ghent, Belgium
- Ghent University, Center for Molecular Modeling, Technologiepark 903, B-9052 Zwijnaarde,
Belgium
| | - Joke Keysabyl
- Ghent University, Department of Solid State Sciences, Electron Magnetic Resonance
Research Group, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| | - Jevgenij Kusakovskij
- Ghent University, Department of Solid State Sciences, Electron Magnetic Resonance
Research Group, Krijgslaan 281-S1, B-9000 Ghent, Belgium
- Vilnius University, Institute of Applied Research, Sauletekio
av. 9-III, LT-10222 Vilnius,
Lithuania
| | - Andy Van Yperen-De Deyne
- Ghent University, Center for Molecular Modeling, Technologiepark 903, B-9052 Zwijnaarde,
Belgium
| | - Michel Waroquier
- Ghent University, Center for Molecular Modeling, Technologiepark 903, B-9052 Zwijnaarde,
Belgium
| | - Freddy Callens
- Ghent University, Department of Solid State Sciences, Electron Magnetic Resonance
Research Group, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| | - Henk Vrielinck
- Ghent University, Department of Solid State Sciences, Electron Magnetic Resonance
Research Group, Krijgslaan 281-S1, B-9000 Ghent, Belgium
| |
Collapse
|
20
|
Tomter AB, Zoppellaro G, Andersen NH, Hersleth HP, Hammerstad M, Røhr ÅK, Sandvik GK, Strand KR, Nilsson GE, Bell CB, Barra AL, Blasco E, Le Pape L, Solomon EI, Andersson KK. Ribonucleotide reductase class I with different radical generating clusters. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein. PLoS One 2012; 7:e33436. [PMID: 22432022 PMCID: PMC3303829 DOI: 10.1371/journal.pone.0033436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/08/2012] [Indexed: 11/24/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity.
Collapse
|
22
|
Bernini C, Pogni R, Basosi R, Sinicropi A. The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: Insights from quantum mechanical/molecular mechanics simulations. Proteins 2012; 80:1476-83. [DOI: 10.1002/prot.24046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/21/2023]
|
23
|
Charnock GTP, Krzystyniak M, Kuprov I. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:62-68. [PMID: 22300803 DOI: 10.1016/j.jmr.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to vibrational excursions from the equilibrium geometry.
Collapse
Affiliation(s)
- G T P Charnock
- Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK
| | | | | |
Collapse
|
24
|
Tomter AB, Zoppellaro G, Schmitzberger F, Andersen NH, Barra AL, Engman H, Nordlund P, Andersson KK. HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus. PLoS One 2011; 6:e25022. [PMID: 21980375 PMCID: PMC3181257 DOI: 10.1371/journal.pone.0025022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g₁-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm⁻¹) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe²⁺ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.
Collapse
Affiliation(s)
- Ane B. Tomter
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | - Florian Schmitzberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Niels H. Andersen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, LNCMI-G, UPR 3228, CNRS, Grenoble, France
| | - Henrik Engman
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
25
|
Rinkevicius Z, Murugan NA, Kongsted J, Aidas K, Steindal AH, Ågren H. Density Functional Theory/Molecular Mechanics Approach for Electronic g-Tensors of Solvated Molecules. J Phys Chem B 2011; 115:4350-8. [DOI: 10.1021/jp1108653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Royal Institute of Technology, 10044 Stockholm, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kęstutis Aidas
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Arnfinn Hykkerud Steindal
- Centre of Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Bernini C, Pogni R, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Sinicropi A. EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 2011; 13:5078-98. [DOI: 10.1039/c0cp02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Mukherjee A, Angeles-Boza AM, Huff GS, Roth JP. Catalytic mechanism of a heme and tyrosyl radical-containing fatty acid α-(di)oxygenase. J Am Chem Soc 2010; 133:227-38. [PMID: 21166399 DOI: 10.1021/ja104180v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The steady-state catalytic mechanism of a fatty acid α-(di)oxygenase is examined, revealing that a persistent tyrosyl radical (Tyr379(•)) effects O(2) insertion into C(α)-H bonds of fatty acids. The initiating C(α)-H homolysis step is characterized by apparent rate constants and deuterium kinetic isotope effects (KIEs) that increase hyperbolically upon raising the concentration of O(2). These results are consistent with H(•) tunneling, transitioning from a reversible to an irreversible regime. The limiting deuterium KIEs increase from ∼30 to 120 as the fatty acid chain is shortened from that of the native substrate. In addition, activation barriers increase in a manner that reflects decreased fatty acid binding affinities. Anaerobic isotope exchange experiments provide compelling evidence that Tyr379(•) initiates catalysis by H(•) abstraction. C(α)-H homolysis is kinetically driven by O(2) trapping of the α-carbon radical and reduction of a putative peroxyl radical intermediate to a 2(R)-hydroperoxide product. These findings add to a body of work which establishes large-scale hydrogen tunneling in proteins. This particular example is novel because it involves a protein-derived amino acid radical.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
28
|
Thompson MK, Franzen S, Ghiladi RA, Reeder BJ, Svistunenko DA. Compound ES of Dehaloperoxidase Decays via Two Alternative Pathways Depending on the Conformation of the Distal Histidine. J Am Chem Soc 2010; 132:17501-10. [DOI: 10.1021/ja106620q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Brandon J. Reeder
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Dimitri A. Svistunenko
- Department of Chemistry, North Carolina State University, Box 8204, Raleigh, North Carolina 27695-8204, United States, and Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
29
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J Am Chem Soc 2010; 132:9030-9. [DOI: 10.1021/ja101322g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|