1
|
Larmore SP, Champagne PA. Cyclopropylcarbinyl-to-Homoallyl Carbocation Equilibria Influence the Stereospecificity in the Nucleophilic Substitution of Cyclopropylcarbinols. J Org Chem 2023. [PMID: 37141426 DOI: 10.1021/acs.joc.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The synthesis of quaternary homoallylic halides and trichloroacetates from cyclopropylcarbinols, as reported by Marek (J. Am. Chem. Soc. 2020, 142, 5543-5548), is one of the few reported examples of stereospecific nucleophilic substitution involving chiral bridged carbocations. However, for the phenyl-substituted substrates, poor specificity is observed and mixtures of diastereomers are obtained. To understand the nature of the intermediates involved and explain the loss of specificity for certain substrates, we have performed a computational investigation of the reaction mechanism using ωB97X-D optimizations and DLPNO-CCSD(T) energy refinements. Our results indicate that cyclopropylcarbinyl cations are stable intermediates in this reaction, while bicyclobutonium structures are high-energy transition structures that are not involved. Instead, multiple rearrangement pathways of cyclopropylcarbinyl cations were located, including ring openings to homoallylic cations. The activation barriers required to reach such structures are correlated to the nature of the substituents; while direct nucleophilic attack on the chiral cyclopropylcarbinyl cations is kinetically favored for most systems, the rearrangements become competitive with nucleophilic attack for the phenyl-substituted systems, leading to a loss of specificity through rearranged carbocation intermediates. As such, stereospecific reactions of chiral cyclopropylcarbinyl cations depend on the energies required to access their corresponding homoallylic structures, from which selectivity is not guaranteed.
Collapse
Affiliation(s)
- Sean P Larmore
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Wang YH, Zhang F, Zhou J, Xie H, Wu R. Reply to Comment on “Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity”. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Heng Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hujun Xie
- Department
of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Zhang F, Wang YH, Tang X, Wu R. Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate. Phys Chem Chem Phys 2018; 20:15061-15073. [DOI: 10.1039/c8cp02262c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By QM(DFT)/MM MD simulations, it has been revealed that the non-native substrate catalytic promiscuity of TEAS (one of the sesquiterpene cyclases) is mostly attributable to its notable conformational flexibility of the branching intermediate bisabolyl cation.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong-Heng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
4
|
Wang YH, Xie H, Zhou J, Zhang F, Wu R. Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong-Heng Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hujun Xie
- Department
of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Tantillo DJ. Bedeutung der inhärenten Substratreaktivität bei enzymvermittelten Cyclisierungen/Umlagerungen von Carbokationen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702363] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dean J. Tantillo
- Department of Chemistry University of California—Davis 1 Shields Avenue Davis CA 95616 USA
| |
Collapse
|
6
|
Tantillo DJ. Importance of Inherent Substrate Reactivity in Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew Chem Int Ed Engl 2017; 56:10040-10045. [PMID: 28349600 DOI: 10.1002/anie.201702363] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 11/08/2022]
Abstract
The importance of inherent substrate reactivity for terpene synthase enzymes is discussed, with a focus on recent experimental tests of predictions derived from computations on gas-phase reactivity of carbocations.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Hare SR, Pemberton RP, Tantillo DJ. Navigating Past a Fork in the Road: Carbocation-π Interactions Can Manipulate Dynamic Behavior of Reactions Facing Post-Transition-State Bifurcations. J Am Chem Soc 2017; 139:7485-7493. [PMID: 28504880 DOI: 10.1021/jacs.7b01042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dynamics calculations are described for carbocation rearrangements involving product-forming pathways with post-transition-state bifurcations. We show that noncovalent interactions with associated benzene rings (a simple model of aromatic amino acid side chains) can switch inherent dynamical tendencies for competing modes of disrotation, establishing that meaningful changes in dynamically controlled product selectivity can be achieved with few weak noncovalent interactions.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Ryan P Pemberton
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
8
|
Abstract
Insights into [1,j] sigmatropic proton shifts in polyenyl anions and related conjugated systems have been revealed by quantum chemical calculations.
Collapse
Affiliation(s)
- Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
9
|
Zhang F, Chen N, Wu R. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS. J Chem Inf Model 2016; 56:877-85. [PMID: 27082764 DOI: 10.1021/acs.jcim.6b00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| |
Collapse
|
10
|
Hong YJ, Tantillo DJ. How cyclobutanes are assembled in nature--insights from quantum chemistry. Chem Soc Rev 2015; 43:5042-50. [PMID: 24710596 DOI: 10.1039/c3cs60452g] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biosynthetic production of cyclobutanes leads to many complex natural products. Recently, theoretical work employing quantum chemical calculations has shed light on many of the details of cyclobutane-formation, in particular, for terpene natural products. Specific insights and general principles derived from these theoretical studies are described herein.
Collapse
Affiliation(s)
- Young J Hong
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
11
|
Hong YJ, Tantillo DJ. Feasibility of Intramolecular Proton Transfers in Terpene Biosynthesis – Guiding Principles. J Am Chem Soc 2015; 137:4134-40. [DOI: 10.1021/ja512685x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Hong YJ, Giner JL, Tantillo DJ. Bicyclobutonium Ions in Biosynthesis – Interconversion of Cyclopropyl-Containing Sterols from Orchids. J Am Chem Soc 2015; 137:2085-8. [DOI: 10.1021/ja512901a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, University of California−Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - José-Luis Giner
- Department
of Chemistry, SUNY-ESF, Syracuse, New York 13210, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California−Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
13
|
Hong YJ, Tantillo DJ. Branching Out from the Bisabolyl Cation. Unifying Mechanistic Pathways to Barbatene, Bazzanene, Chamigrene, Chamipinene, Cumacrene, Cuprenene, Dunniene, Isobazzanene, Iso-γ-bisabolene, Isochamigrene, Laurene, Microbiotene, Sesquithujene, Sesquisabinene, Thujopsene, Trichodiene, and Widdradiene Sesquiterpenes. J Am Chem Soc 2014; 136:2450-63. [DOI: 10.1021/ja4106489] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
14
|
Lodewyk MW, Willenbring D, Tantillo DJ. Pentalenene formation mechanisms redux. Org Biomol Chem 2014; 12:887-94. [DOI: 10.1039/c3ob42005a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Pemberton RP, Hong YJ, Tantillo DJ. Inherent dynamical preferences in carbocation rearrangements leading to terpene natural products. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-11-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An introduction to the application of quantum chemical dynamics calculations to mechanistic problems in the field of terpene biosynthesis is provided. A bare bones introduction to the fundamentals of chemical dynamics is followed by a brief account of previous applications to terpene-forming carbocation reactions, a discussion of questions in this field that dynamics calculations may help answer, and a description of current problems to which dynamics calculations are being applied.
Collapse
|
16
|
Nguyen QNN, Tantillo DJ. Caryolene-forming carbocation rearrangements. Beilstein J Org Chem 2013; 9:323-31. [PMID: 23503674 PMCID: PMC3596059 DOI: 10.3762/bjoc.9.37] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/21/2013] [Indexed: 11/23/2022] Open
Abstract
Density functional theory calculations on mechanisms of the formation of caryolene, a putative biosynthetic precursor to caryol-1(11)-en-10-ol, reveal two mechanisms for caryolene formation: one involves a base-catalyzed deprotonation/reprotonation sequence and tertiary carbocation minimum, whereas the other (with a higher energy barrier) involves intramolecular proton transfer and the generation of a secondary carbocation minimum and a hydrogen-bridged minimum. Both mechanisms are predicted to involve concerted suprafacial/suprafacial [2 + 2] cycloadditions, whose asynchronicity allows them to avoid the constraints of orbital symmetry.
Collapse
Affiliation(s)
- Quynh Nhu N Nguyen
- Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Abstract
A complete pathway (structures and energies of intermediates and transition state structures connecting them) from geranylgeranyl diphosphate to taxadiene, obtained using quantum chemical calculations, is described. This pathway is fully consistent with previous labeling experiments, despite differing in several subtle ways (in terms of conformations of certain carbocation intermediates and in the concertedness and synchronicity of certain bond-forming events) from previous mechanistic proposals. Also, on the basis of the theoretical results, it is proposed that the 2-fluoro-geranylgeranyl diphosphate substrate analogue in the recently reported X-ray crystal structure of taxadiene synthase is bound in a nonproductive orientation.
Collapse
Affiliation(s)
- Young J Hong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
18
|
Tantillo DJ. Biosynthesis via carbocations: theoretical studies on terpene formation. Nat Prod Rep 2011; 28:1035-53. [PMID: 21541432 DOI: 10.1039/c1np00006c] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes applications of quantum chemical calculations in the field of terpene biosynthesis, with a focus on insights into the mechanisms of terpene-forming carbocation rearrangements arising from theoretical studies.
Collapse
|
19
|
Hong YJ, Tantillo DJ. How Many Secondary Carbocations Are Involved in the Biosynthesis of Avermitilol? Org Lett 2011; 13:1294-7. [DOI: 10.1021/ol103079v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department of Chemistry, University of California−Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
20
|
Siebert MR, Yudin AK, Tantillo DJ. The Effect of Strain on the RhI-Catalyzed Rearrangement of Allylamines. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Hong YJ, Tantillo DJ. Formation of Beyerene, Kaurene, Trachylobane, and Atiserene Diterpenes by Rearrangements That Avoid Secondary Carbocations. J Am Chem Soc 2010; 132:5375-86. [DOI: 10.1021/ja9084786] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
22
|
Hong YJ, Tantillo DJ. A tangled web—interconnecting pathways to amorphadiene and the amorphene sesquiterpenes. Chem Sci 2010. [DOI: 10.1039/c0sc00333f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Hong YJ, Tantillo DJ. Quantum chemical dissection of the classic terpinyl/pinyl/bornyl/camphyl cation conundrum—the role of pyrophosphate in manipulating pathways to monoterpenes. Org Biomol Chem 2010; 8:4589-600. [DOI: 10.1039/c0ob00167h] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
|