1
|
Giri RP, Chowdhury S, Mukhopadhyay MK, Chakrabarti A, Sanyal MK. Ganglioside GM1 Drives Hemin and Protoporphyrin Adsorption in Phospholipid Membranes: A Structural Study. J Phys Chem B 2024; 128:2745-2754. [PMID: 38447189 DOI: 10.1021/acs.jpcb.3c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- Department of Physics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Subhadip Chowdhury
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata 700103, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| |
Collapse
|
2
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Modulation of Temoporfin Distribution in Blood by β-Cyclodextrin Nanoshuttles. Pharmaceutics 2021; 13:pharmaceutics13071054. [PMID: 34371745 PMCID: PMC8308962 DOI: 10.3390/pharmaceutics13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy represents a more targeted and less invasive alternative cancer treatment to traditional modalities. Temoporfin, as with many photosensitizers, is given by injection into a vein, and its subsequent fate is largely determined by the binding to plasma proteins and interaction with endothelial and blood cells. Thus, it is essential to be able to control and to alter the biodistribution of temoporfin in blood. In the present study, we evaluated the effect of co-administration of temoporfin with randomly methylated β-CD (Me-β-CD) on the distribution of temoporfin in the main subpopulations of blood cells of healthy donors using absorbance spectrophotometry and flow cytometry. We showed that cell-bound temoporfin fraction in blood strongly depends on the concentration of Me-β-CD. In fact, the accumulation of temoporfin in white blood cells was more sensitive than that in red blood cells, due to the higher volume of membranous organelles in white blood cells. Finally, we demonstrated that Me-β-CD significantly increases cellular uptake of temoporfin cancer human Burkitt′s lymphoma Raji cells. The presence of Me-β-CD resulted in a spotted pattern of temoporfin distribution in the plasma membrane compartment. Our results clearly demonstrated that β-CDs derivatives provide new options to modulate temoporfin biodistribution in blood.
Collapse
|
4
|
Gjuroski I, Furrer J, Vermathen M. Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques. Molecules 2021; 26:1942. [PMID: 33808335 PMCID: PMC8037866 DOI: 10.3390/molecules26071942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin-macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.
Collapse
Affiliation(s)
| | | | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (I.G.); (J.F.)
| |
Collapse
|
5
|
Zagami R, Franco D, Pipkin JD, Antle V, De Plano L, Patanè S, Guglielmino S, Monsù Scolaro L, Mazzaglia A. Sulfobutylether-β-cyclodextrin/5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine nanoassemblies with sustained antimicrobial phototherapeutic action. Int J Pharm 2020; 585:119487. [PMID: 32492506 DOI: 10.1016/j.ijpharm.2020.119487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-βCD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 1:1 stoichiometry and apparent equilibrium binding constant (Kb ≅ 1.32 × 105 M-1) were prepared with entrapment efficiency of ≅ 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy techniques. Time resolved fluorescence pointed out the strong interaction of porphyrin monomer within nanoassemblies (τ2 ≅ 11 ns with an amount of ca 90%) and scarce self-aggregation of porphyrins have been observed. Singlet oxygen comparative determination (ϕΔ CAPTISOL®/TMPyP = 0.58) assessed their photodynamic potential. Release and photostability studies have been carried out under physiological conditions pointing out the role of CAPTISOL® to sustain porphyrin release for more than 2 weeks and to protect PS from photodegradation. Finally, photoantimicrobial activity of nanoassemblies vs free porphyrin have been investigated against Gram-negative P. aeruginosa, E. coli and Gram-positive S. aureus. The proposed nanosystems were able to photokill both Gram-positive and -negative bacterial cells similarly to TMPyP at MBC90 = 6 µM of TMPyP and at 42 J/cm2 light dose. However, with respect to the less selective free TMPyP in biological sites, nanoassemblies exhibit sustained release properties and a higher photostability thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.
Collapse
Affiliation(s)
- Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| | - Domenico Franco
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | | | - Vince Antle
- Ligand Pharmaceuticals Incorporated, San Diego, CA, USA
| | - Laura De Plano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Guglielmino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Luigi Monsù Scolaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; C.I.R.C.M.S.B, Unity of Messina, Messina, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell'Università di Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
6
|
Size-Selected Graphene Oxide Loaded with Photosensitizer (TMPyP) for Targeting Photodynamic Therapy In Vitro. Processes (Basel) 2020. [DOI: 10.3390/pr8020251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Targeted therapies of various diseases are nowadays widely studied in many biomedical fields. Photodynamic therapy (PDT) represents a modern treatment of cancer using a locally activated light. TMPyP is an efficient synthetic water-soluble photosensitizer (PS), yet with poor absorption in the visible and the red regions. In this work, we prepared size-selected and colloidally stable graphene oxide (GO) that is appropriate for biomedical use. Thanks to the negative surface charge of GO, TMPyP was easily linked in order to create conjugates of GO/TMPyP by electrostatic force. Due to the strong ionic interactions, charge transfers between GO and TMPyP occur, as comprehensively investigated by steady-state and time-resolved fluorescence spectroscopy. Biocompatibility and an in vitro effect of GO/TMPyP were confirmed by a battery of in vitro tests including MTT, comet assay, reactive oxygen species (ROS) production, and monitoring the cellular uptake. PDT efficiency of GO/TMPyP was tested using 414 and 740 nm photoexcitation. Our newly prepared nanotherapeutics showed a higher PDT effect than in free TMPyP, and is promising for targeted therapy using clinically favorable conditions.
Collapse
|
7
|
Yang K, Zhang Z, Du J, Li W, Pei Z. Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem Commun (Camb) 2020; 56:5865-5876. [DOI: 10.1039/d0cc02001j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article summarizes recent advances in the development of supramolecular photodynamic therapy based on host–guest interactions.
Collapse
Affiliation(s)
- Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhihua Zhang
- Chimie ParisTech
- PSL University
- CNRS
- Institut de Recherche de Chimie Paris
- 75231 Paris
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
8
|
|
9
|
Notsu S, Sugikawa K, Ikeda A. Reversible Supramolecular System of Porphyrin Exchange between Inclusion in Cyclodextrin and Intercalation in DNA by Change in pH. ChemistrySelect 2018. [DOI: 10.1002/slct.201801070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shota Notsu
- Department of Applied ChemistryGraduate School of EngineeringHiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Kouta Sugikawa
- Department of Applied ChemistryGraduate School of EngineeringHiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Atsushi Ikeda
- Department of Applied ChemistryGraduate School of EngineeringHiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|
10
|
Zakavi S, Hoseini S, Mojarrad AG. New insights into the influence of weak and strong acids on the oxidative stability and photocatalytic activity of porphyrins. NEW J CHEM 2017. [DOI: 10.1039/c7nj02442h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effects of weak and strong acids on the photocatalytic performance of porphyrins in the aerobic photooxidation of olefins are reported.
Collapse
Affiliation(s)
- Saeed Zakavi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Saiedeh Hoseini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Aida G. Mojarrad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
11
|
Pradines V, Bijani C, Stigliani JL, Blanzat M, Rico-Lattes I, Pratviel G. Cationic Porphyrin-Anionic Surfactant Mixtures for the Promotion of Self-Organized 1:4 Ion Pairs in Water with Strong Aggregation Properties. Chemphyschem 2015; 16:3877-85. [PMID: 26456707 DOI: 10.1002/cphc.201500783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 12/21/2022]
Abstract
We performed a systematic study on the spectroscopic and aggregation properties of stoichiometric mixtures (1:4) of the tetracationic meso-tetrakis(4-N-methylpyridinium)porphyrin (H2 TMPyP) and three sodium alkylsulfate surfactants (tetradecyl, hexadecyl, and octadecylsulfate) in an aqueous solution. The objective was to build a supramolecular aggregate, which would favor the internalization of tetracationic porphyrins in cells without chemical modification of the structure of the porphyrin. We show that stoichiometric H2 TMPyP/alkylsulfate (1:4) mixtures lead to the formation of large hollow spherical aggregates (60-160 nm). The TEM images show that the membrane of these aggregates are composed of smaller aggregates, which are probably rod-like micelles. These rod-like micelles have a hydrophobic core composed of the alkyl chains of the alkylsulfate surfactant, whereas the charged surface corresponds to the tetracationic porphyrins.
Collapse
Affiliation(s)
- Vincent Pradines
- Laboratoire de Chimie de Coordination CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| | - Muriel Blanzat
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623 CNRS, 118 route de Narbonne, 31062, Toulouse cedex 9, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| | - Isabelle Rico-Lattes
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623 CNRS, 118 route de Narbonne, 31062, Toulouse cedex 9, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| | - Geneviève Pratviel
- Laboratoire de Chimie de Coordination CNRS, UPR 8241, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, Université Paul Sabatier UPS, INPT, Toulouse, France
| |
Collapse
|
12
|
Mavridis IM, Yannakopoulou K. Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: Synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharm 2015; 492:275-90. [DOI: 10.1016/j.ijpharm.2015.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
13
|
Barata JF, Zamarrón A, Neves MGP, Faustino MAF, Tomé AC, Cavaleiro JA, Röder B, Juarranz Á, Sanz-Rodríguez F. Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells. Eur J Med Chem 2015; 92:135-44. [DOI: 10.1016/j.ejmech.2014.12.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 01/28/2023]
|
14
|
Parida MR, Aly SM, Alarousu E, Sridharan A, Nagaraju DH, Alshareef HN, Mohammed OF. To what extent can charge localization influence electron injection efficiency at graphene–porphyrin interfaces? Phys Chem Chem Phys 2015; 17:14513-7. [DOI: 10.1039/c5cp02362a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With careful control of the charge localization of the TMPyP cavity using β-cyclodextrin as an external cage, we successfully improved the interfacial-electron injection efficiency from cationic TMPyP to GC by 120% compared to TMPyP alone.
Collapse
Affiliation(s)
- Manas R. Parida
- Solar and Photovoltaics Engineering Research Center
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Shawkat M. Aly
- Solar and Photovoltaics Engineering Research Center
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Erkki Alarousu
- Solar and Photovoltaics Engineering Research Center
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Aravindan Sridharan
- Solar and Photovoltaics Engineering Research Center
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Doddahalli H. Nagaraju
- Materials Science and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Husam N. Alshareef
- Materials Science and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Omar F. Mohammed
- Solar and Photovoltaics Engineering Research Center
- Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| |
Collapse
|
15
|
|
16
|
Suthari P, P HK, Doddi S, Bangal PR. Investigation of supramolecular stoichiometry and dynamic for inclusion complex of water soluble porphyrin with cucurbit[7]uril by fluorescence correlation spectroscopy. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Hanakova A, Bogdanova K, Tomankova K, Pizova K, Malohlava J, Binder S, Bajgar R, Langova K, Kolar M, Mosinger J, Kolarova H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol Res 2014; 169:163-70. [DOI: 10.1016/j.micres.2013.07.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 11/26/2022]
|
18
|
D'Urso A, Fragalà ME, Purrello R. From self-assembly to noncovalent synthesis of programmable porphyrins' arrays in aqueous solution. Chem Commun (Camb) 2012; 48:8165-76. [DOI: 10.1039/c2cc31856c] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Hu P, Liu GF, Ji LN, Mao ZW. Efficient promotion of phosphate diester cleavage by a face-to-face cyclodextrin dimer without metal. Chem Commun (Camb) 2012; 48:5515-7. [DOI: 10.1039/c2cc31490h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Tsuchiya Y, Shiraki T, Matsumoto T, Sugikawa K, Sada K, Yamano A, Shinkai S. Supramolecular Dye Inclusion Single Crystals Created from 2,3,6-Trimethyl-β-cyclodextrin and Porphyrins. Chemistry 2011; 18:456-65. [DOI: 10.1002/chem.201102075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Indexed: 11/09/2022]
|
21
|
Tsuchiya Y, Yamano A, Shiraki T, Sada K, Shinkai S. Single-crystal Structure of Porphyrin Bicapped with Trimethyl-β-cyclodextrins: A Novel Dye-oriented Material. CHEM LETT 2011. [DOI: 10.1246/cl.2011.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Kubát P, Šebera J, Záliš S, Langmaier J, Fuciman M, Polívka T, Lang K. Charge transfer in porphyrin–calixarene complexes: ultrafast kinetics, cyclic voltammetry, and DFT calculations. Phys Chem Chem Phys 2011; 13:6947-54. [DOI: 10.1039/c0cp01726d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|