1
|
Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, Fang H, Qian G. Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Front Immunol 2022; 13:988479. [PMID: 36211429 PMCID: PMC9537444 DOI: 10.3389/fimmu.2022.988479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein–protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor–gene interactions, DEG–microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Collapse
Affiliation(s)
- Hongwei Fang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Kong
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| |
Collapse
|
2
|
Murthy ASN, Das S, Singh T, Kim TW, Sepay N, Jeon S, Im J. Mitochondria targeting molecular transporters: synthesis, lipophilic effect, and ionic complex. Drug Deliv 2022; 29:270-283. [PMID: 35014934 PMCID: PMC8757599 DOI: 10.1080/10717544.2021.2023696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
As mitochondria are potential therapeutic targeting sites for the treatment of human diseases, delivering cytotoxic drugs, antioxidants, and imaging molecules to mitochondria can provide new therapeutic opportunities. In an attempt to develop a new mitochondria-targeting vector, we synthesized sorbitol-based molecular transporters with multiple guanidines, measured their partition coefficients, compared their targeting efficiency using fluorescent images and Pearson's correlation coefficients, and studied cellular uptake mechanisms. To increase the targeting ability of these molecular transporters to mitochondria, alanine-naphthalene as a lipophilic group was attached to the molecular transporter, which improved translocation across cellular membranes and led to higher accumulation in mitochondria. The molecular transporter was able to form an ionic complex with antibiotics, resulting in low cell viability. These data demonstrate that the molecular transporter with a lipophilic group could be utilized as a potential drug delivery vector for treating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Akula S N Murthy
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan, South Korea
| | - Sanket Das
- Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Tejinder Singh
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan, South Korea
| | - Tae-Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan, South Korea
| | - Nasim Sepay
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan, South Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Jungkyun Im
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan, South Korea.,Department of Chemical Engineering, Soonchunhyang University, Asan, South Korea
| |
Collapse
|
3
|
Jeong D, Pal T, Kim H, Kim TW, Biswas G, Lee D, Singh T, Murthy ASN, Kim W, Kim K, Im J. Preparation of a Camptothecin‐conjugated Molecular Carrier and its Cytotoxic Effect Toward Human Colorectal Carcinoma
In Vitro. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongjun Jeong
- Department of Pathology, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tarun Pal
- Department of ChemistryPohang University of Science and Technology Pohang Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tae Wan Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Goutam Biswas
- Department of ChemistryCooch Behar Panchanan Barma University Cooch Behar India
| | - Daeun Lee
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Tejinder Singh
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Wanil Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Kyong‐Tai Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Jungkyun Im
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| |
Collapse
|
4
|
Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Synthesis of Ibuprofen Conjugated Molecular Transporter Capable of Enhanced Brain Penetration. J CHEM-NY 2017. [DOI: 10.1155/2017/4746158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on the strong evidences between inflammation and neurodegeneration, nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, are considered as effective agents to reduce the risk of Alzheimer’s and Parkinson’s disease. However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. In this study, we had synthesized ibuprofen conjugate which has good brain penetration.S-(+)-Ibuprofen was covalently attached to a molecular transporter having FITC and eight terminal guanidine groups. This conjugate showed good cellular uptake property in live cells. It was also injected into a mouse and the distribution of the compound was examined in each organ. The conjugate was well delivered to mouse brain indicating the conjugate is able to cross the blood-brain barrier. Our novel synthetic ibuprofen conjugate will hopefully deliver other NSAIDs into brain and is therefore applicable to the neurodegenerative diseases treatment or prevention.
Collapse
|
6
|
Demir M, Laywell ED. Neurotoxic effects of AZT on developing and adult neurogenesis. Front Neurosci 2015; 9:93. [PMID: 25852464 PMCID: PMC4367529 DOI: 10.3389/fnins.2015.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
Azidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits—subsumed under AIDS Dementia Complex (Brew, 1999)—it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy.
Collapse
Affiliation(s)
- Meryem Demir
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida Gainesville, FL, USA
| | - Eric D Laywell
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
7
|
Abstract
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.
Collapse
Affiliation(s)
- Ezequiel Wexselblatt
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jeffrey
D. Esko
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry and Department of Cellular and Molecular
Medicine, University of California, San Diego 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
8
|
Al-Ghananeem AM, Smith M, Coronel ML, Tran H. Advances in brain targeting and drug delivery of anti-HIV therapeutic agents. Expert Opin Drug Deliv 2013; 10:973-85. [PMID: 23510097 DOI: 10.1517/17425247.2013.781999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection. Although antiretroviral drugs are able to eliminate the majority of the HIV virus in the bloodstream, however, no specific treatment currently exist for CNS infections related to HIV. This is mainly attributed to the poor penetrability of antiretroviral therapy across the blood-brain barrier (BBB), and the protective nature of the BBB. Therefore, in order to increase the efficacy of anti-HIV drugs, novel drug delivery methodologies that can exhibit activity in the CNS are most needed and warranted. AREAS COVERED In this review article, the authors discussed the challenges with delivering drugs to the brain especially under HIV infection pathophysiology status. Also, they discussed the approaches currently being investigated to enhance brain targeting of anti-HIV drugs. A literature search was performed to cover advances in major approaches used to enhance drug delivery to the brain. EXPERT OPINION If drugs could reach the CNS in sufficient quantity by the methodologies discussed, mainly through intranasal administration and the utilization of nanotechnology, this could generate interest in previously abandoned therapeutic agents and enable an entirely novel approach to CNS drug delivery.
Collapse
Affiliation(s)
- Abeer M Al-Ghananeem
- Sullivan University, College of Pharmacy, Department of Pharmaceutical Sciences, 2100 Gardiner Lane West Campus, Louisville, KY 40205, USA.
| | | | | | | |
Collapse
|
9
|
Orthmann A, Fichtner I, Zeisig R. Improving the transport of chemotherapeutic drugs across the blood-brain barrier. Expert Rev Clin Pharmacol 2012; 4:477-90. [PMID: 22114857 DOI: 10.1586/ecp.11.26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The successful treatment of brain tumors or metastases in the brain is still hampered by the very efficient blood-brain barrier, which prevents the cerebral accumulation of a pharmacologically sufficient amount of a drug. Beside the possibility of disintegrating the functionality of this effective working barrier, a nanocarrier-mediated transport is presently an interesting and promising method to increase the drug concentration in the brain. Nanocarriers are small vesicles (<200 nm) and can be prepared by polymerization, resulting in nanoparticles, or by producing superficial lipid structures to incorporate the drug. In this context, liposomes are of importance owing to their ability to adapt their properties to the pharmacological requirements. In this article, we will give an overview of current possibilities of enhancing anticancer drug transport across the blood-brain barrier, based on its structure and functionality. Special consideration will be given to recent liposomal approaches that use active targeting for receptor-mediated transport across this physiological barrier.
Collapse
Affiliation(s)
- Andrea Orthmann
- Max Delbrück Center for Molecular Medicine, Experimental Pharmacology, Robert-Rössle-Str. 10, 13122 Berlin, German
| | | | | |
Collapse
|
10
|
Dalpiaz A, Paganetto G, Pavan B, Fogagnolo M, Medici A, Beggiato S, Perrone D. Zidovudine and Ursodeoxycholic Acid Conjugation: Design of a New Prodrug Potentially Able To Bypass the Active Efflux Transport Systems of the Central Nervous System. Mol Pharm 2012; 9:957-68. [DOI: 10.1021/mp200565g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alessandro Dalpiaz
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Marco Fogagnolo
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Alessandro Medici
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Daniela Perrone
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Jin J, Lee WS, Joo KM, Maiti KK, Biswas G, Kim W, Kim KT, Lee SJ, Kim KH, Nam DH, Chung SK. Preparation of blood-brain barrier-permeable paclitaxel-carrier conjugate and its chemotherapeutic activity in the mouse glioblastoma model. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00235f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Luo Q, Wu D, Liu S, Tang D, Huang Y, Liu X, Wang F, Wang R, Wu G. The formation of thymidine-based T-tetramers with remarkable structural and metal ion size effects. Org Biomol Chem 2010; 9:1030-3. [PMID: 21165518 DOI: 10.1039/c0ob00520g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present direct ESI Q-TOF MS and X-ray evidence for remarkable structural and metal ion size effects on the formation of thymidine-based T-tetramers. The conventional H-bond acceptors on the ribose and deoxyribose may disfavor the formation of T-tetramers, and in the series of alkali metal ions, lithium did not induce T-tetramer due to its small ion size. Sodium, potassium, rubidium and caesium could produce thymidine-based T-tetramers. Furthermore, rubidium and caesium could induce T-pentamers and dimeric T-pentamers probably due to their larger ion sizes.
Collapse
Affiliation(s)
- Qun Luo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|