1
|
Sarwa A, Białońska A, Sobieraj M, Martínez JP, Trzaskowski B, Szyszko B. Iminopyrrole-Based Self-Assembly: A Route to Intrinsically Flexible Molecular Links and Knots. Angew Chem Int Ed Engl 2024; 63:e202316489. [PMID: 38032333 DOI: 10.1002/anie.202316489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
The use of 2,5-diformylpyrrole in self-assembly reactions with diamines and Zn(II)/Cd(II) salts allowed the preparation of [2]catenane, trefoil knot, and Borromean rings. The intrinsically dynamic nature of the diiminopyrrole motif rendered all of the formed assemblies intramolecularly flexible. The presence of diiminopyrrole revealed new coordination motifs and influenced the host-guest chemistry of the systems, as illustrated by hexafluorophosphate encapsulation by Borromean rings.
Collapse
Affiliation(s)
- Aleksandra Sarwa
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Michał Sobieraj
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Szyszko
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| |
Collapse
|
2
|
Gautam A, Rawat P, Singh R, Flores Holguin NR. Synthesis, spectroscopic and evaluation of anticancer activity of new hydrazone-containing dipyrromethane using experimental and theoretical approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Loke SK, Pagadala E, Srinivasadesikan V, Thanapaul RJRS, Pooventhiran T, Thomas R, Naganjaneyulu G, Kottalanka RK. Unprecedented biological evaluation of Zn(II) complexes supported by “Self-adjustable” acyclic diiminodipyrromethane Schiff’s bases: DFT, molecular docking; biological activity studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Kumar R, Guchhait T, Subramaniyan V, Schulzke C, Mani G. Versatility of the bis(iminopyrrolylmethyl)amine ligand: tautomerism, protonation, helical chirality, and the secondary coordination sphere with halogen bonds in the formation of copper(II) and nickel(II) complexes. Dalton Trans 2020; 49:13840-13853. [PMID: 33006344 DOI: 10.1039/d0dt02964e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of N,N-di(2,6-bis(isopropyl)phenylimino-pyrrolyl-α-methyl)-N-methylamine H2L1 with copper(i) sources such as CuX (X = Cl (1), Br (2), and I (3)) afforded bis(chelated) ionic copper(ii) complexes of the type [CuL1H]X. A similar type of mononuclear structure was obtained with Cu(NO3)2·(H2O)3. Conversely, binuclear copper(ii) complexes [Cu2(μ-L1)(μ-OOCCH3)(μ-OH)](4) and [Cu2(μ-L1H)(μ-OOCPh)(μ-O)] (5) were obtained from the reaction of Cu(O2CR)2·H2O with H2L1. Notably, these reactions in the presence of a base yielded the neutral copper(ii) complex [CuL1] (6). This product was also obtained from the reaction of complex 2 or 4 with NaOH in methanol. All structures feature a dianionic imino-pyrrole motif and a protonated central amine function except 4. The reaction of H2L1 with NiCl2·DME gave the mononuclear complex [NiCl2(L1H2)], 7. In contrast to this, the reaction of the newly synthesized sterically less encumbered ligand N,N-di(phenylimino-pyrrolyl-α-methyl)-N-methylamine H2L2 with NiCl2·DME gave the binuclear complex [NiCl(L2H2)(HOMe)]2[Cl]2 (8). Both 7 and 8 show the amine-azafulvene ligand form and coordination of the central amine. The reaction of complex 7 with NaHBEt3 yielded a neutral complex [NiL1] (8) containing the imino-pyrrole form. In the molecular structures, interesting secondary coordination spheres incorporating guest molecules such as CHCl3 and MeOH in the crystal lattices and the presence of helical enantiomers were observed and analysed. In one case, CHCl3 was found inside an unusual cage-like structure supported by halogen bonds. Preliminary DFT calculations on the geometry of the nickel complex with H2L1 showed that the pentacoordinated tbp geometry is more stable than the square planar geometry.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Tapas Guchhait
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Vasudevan Subramaniyan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17289 Greifswald, Germany.
| | - Ganesan Mani
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721 302, India.
| |
Collapse
|
5
|
Loke SK, Pagadala E, Devaraju S, Srinivasadesikan V, Kottalanka RK. New zinc complexes derived from "self-adaptable" acyclic diiminodipyrromethanes as potent catalysts for the reduction of curing temperature of bisphenol-A/F benzoxazines. RSC Adv 2020; 10:36275-36286. [PMID: 35517922 PMCID: PMC9057005 DOI: 10.1039/d0ra07837a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023] Open
Abstract
The simple modification of the Schiff-base ligands often brings significant changes in the coordination properties of the metal-complexes, providing newer prospects for their unexplored applications. In this context, the present work utilized the “self-adaptable” acyclic diiminodipyrromethane Schiff's bases (2a and 2b) for the synthesis of their Zn-based complexes and explored their potential in the ring-opening polymerization of benzoxazines. The two zinc complexes of composition [Zn{(Ph)(CH3)C(2,6-iPr2C6H3–N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CH–C4H2N)(2,6-iPr2C6H3–NCH–C4H2NH)}2] (3) and [ZnCl2{(Ph)(CH3)C(Ph3C–NHCH–C4H2N)2}] (4) were synthesized in good yields, and the structures were confirmed by single crystal X-ray diffraction (XRD). Later, zinc complexes (3 & 4) were used as catalysts to reduce the curing (ring-opening polymerization) temperature of benzoxazine monomers such as Bisphenol-A (BA-a) and Bisphenol-F (BF-a) benzoxazines. Dynamic scanning calorimetry (DSC) studies revealed that the on-set curing (Tp) temperatures were reasonably decreased upto 20% for the benzoxazines. Furthermore, the thermal stabilities of the polybenzoxazines (PBzs) derived in the presence of zinc catalysts (3 and 4) were compared with PBz obtained in the absence of catalyst under similar conditions. The thermal studies reveled that there is no significant changes in the initial degradation of polymers. However, the thermal stability in terms of char yields at 800 °C improved upto 10–21% for the bisphenol-A/F benzoxazines. The present work utilized the “self-adaptable” acyclic diiminodipyrromethane Schiff's bases (2a and 2b) for the synthesis of their Zn-based complexes and explored their potential in the ring-opening polymerization of BA-a and BF-a benzoxazines.![]()
Collapse
Affiliation(s)
- Shiva K Loke
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi Guntur-522213 Andhra Pradesh India +91 863 2344 707 +91 863 2344 700
| | - Eswar Pagadala
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi Guntur-522213 Andhra Pradesh India +91 863 2344 707 +91 863 2344 700
| | - S Devaraju
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi Guntur-522213 Andhra Pradesh India +91 863 2344 707 +91 863 2344 700
| | - V Srinivasadesikan
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi Guntur-522213 Andhra Pradesh India +91 863 2344 707 +91 863 2344 700
| | - Ravi K Kottalanka
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science Technology and Research (Deemed to be University) Vadlamudi Guntur-522213 Andhra Pradesh India +91 863 2344 707 +91 863 2344 700
| |
Collapse
|
6
|
Current Advances in the Synthesis of Valuable Dipyrromethane Scaffolds: Classic and New Methods. Molecules 2019; 24:molecules24234348. [PMID: 31795117 PMCID: PMC6930576 DOI: 10.3390/molecules24234348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
This review presents the most recent developments on the synthesis of dipyrromethanes, covering classical synthetic strategies, using acid catalyzed condensation of pyrroles and aldehydes or ketones, and recent breakthroughs which allow the synthesis of these type of heterocycles with new substitution patterns.
Collapse
|
7
|
Dahl EW, Kiernicki JJ, Zeller M, Szymczak NK. Hydrogen Bonds Dictate O 2 Capture and Release within a Zinc Tripod. J Am Chem Soc 2018; 140:10075-10079. [PMID: 30074788 PMCID: PMC6093784 DOI: 10.1021/jacs.8b04266] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six directed hydrogen bonding (H-bonding) interactions allow for the reversible capture and reduction of dioxygen to a trans-1,2-peroxo within a tripodal zinc(II) framework. Spectroscopic studies of the dizinc peroxides, as well as on model zinc diazides, suggest H-bonding contributions serve a dominant role for the binding/activation of these small molecules.
Collapse
Affiliation(s)
- Eric W. Dahl
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - John J. Kiernicki
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN 44555
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| |
Collapse
|
8
|
Gordon Z, Drummond MJ, Matson EM, Bogart JA, Schelter EJ, Lord RL, Fout AR. Tuning the Fe(II/III) Redox Potential in Nonheme Fe(II)-Hydroxo Complexes through Primary and Secondary Coordination Sphere Modifications. Inorg Chem 2017; 56:4852-4863. [PMID: 28394119 DOI: 10.1021/acs.inorgchem.6b03071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.
Collapse
Affiliation(s)
- Zachary Gordon
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michael J Drummond
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ellen M Matson
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin A Bogart
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison R Fout
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Kumar R, Paul T, Jana O, Mani G. Regioselective Mannich bases of pyrrole-2-carbaldehyde and binuclear copper(II) complexes of bis(iminopyrrolyl) ligand containing the piperazine ring. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Matson EM, Park YJ, Bertke JA, Fout AR. Synthesis and characterization of M(ii) (M = Mn, Fe and Co) azafulvene complexes and their X3− derivatives. Dalton Trans 2015; 44:10377-84. [DOI: 10.1039/c5dt00985e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and electronic flexibility in a tripodal ligand platform featuring a secondary coordination sphere.
Collapse
Affiliation(s)
- Ellen M. Matson
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Yun Ji Park
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Jeffery A. Bertke
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Alison R. Fout
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
11
|
Guchhait T, Barua B, Biswas A, Basak B, Mani G. Synthesis and structural characterization of silver(i), copper(i) coordination polymers and a helicate palladium(ii) complex of dipyrrolylmethane-based dipyrazole ligands: the effect of meso substituents on structural formation. Dalton Trans 2015; 44:9091-102. [DOI: 10.1039/c5dt00430f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A striking difference in the structures of silver complexes was observed because of the different substituents at the meso carbon atom of the dipyrrolylmethane-based ligand.
Collapse
Affiliation(s)
- Tapas Guchhait
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Bhagyasree Barua
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Aritra Biswas
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Biswanath Basak
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| | - Ganesan Mani
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721 302
- India
| |
Collapse
|
12
|
Kumar R, Mani G. Exhibition of the Brønsted acid–base character of a Schiff base in palladium(ii) complex formation: lithium complexation, fluxional properties and catalysis of Suzuki reactions in water. Dalton Trans 2015; 44:6896-908. [DOI: 10.1039/c5dt00438a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Brønsted acid–base character of bis(iminopyrrolylmethyl)amine was shown through the X-ray structures of palladium complexes. The bischelated palladium complex is fluxional as studied by the VT 1H NMR method and effectively catalyzes Suzuki reactions in water.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur
- India
| | - Ganesan Mani
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
13
|
Park YJ, Matson EM, Nilges MJ, Fout AR. Exploring Mn–O bonding in the context of an electronically flexible secondary coordination sphere: synthesis of a Mn(iii)–oxo. Chem Commun (Camb) 2015; 51:5310-3. [DOI: 10.1039/c4cc08603a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stabilization of Mn–O bonds by hydrogen-bond donating and accepting secondary coordination sphere.
Collapse
Affiliation(s)
- Yun Ji Park
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Ellen M. Matson
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Mark J. Nilges
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Alison R. Fout
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
14
|
Chang TM, Sinharay S, Astashkin AV, Tomat E. Prodigiosin analogue designed for metal coordination: stable zinc and copper pyrrolyldipyrrins. Inorg Chem 2014; 53:7518-26. [PMID: 25008284 PMCID: PMC4106694 DOI: 10.1021/ic5008439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pyrrolyldipyrrin motif is found in several naturally occurring prodigiosin pigments. The potential roles of the interactions of prodigiosins with transition metals and the properties of metal-bound pyrrolyldipyrrins, however, have been difficult to assess because of the very limited number of well-characterized stable complexes. Here, we show that the introduction of a meso-aryl substituent and an ethyl ester group during the sequential assembly of the three heterocycles affords a pyrrolyldipyrrin of enhanced coordinating abilities when compared to that of natural prodigiosins. UV-visible absorption studies indicate that this ligand promptly binds Zn(II) ions with 2:1 ligand-to-metal stoichiometry and Cu(II) ions with 1:1 stoichiometry. Notably, no addition of base is required for the formation of the resulting stable complexes. The crystal structures reveal that whereas the tetrahedral zinc center engages two nitrogen donors on each ligand, the pseudosquare planar copper complex features coordination of all three pyrrolic nitrogen atoms and employs the ester group as a neutral ligand. This first example of coordination of a redox-active transition metal within a fully conjugated pyrrolyldipyrrin framework was investigated spectroscopically by electron paramagnetic resonance to show that the 1:1 metal-to-ligand ratio found in the crystal structure is also maintained in solution.
Collapse
Affiliation(s)
- Tsuhen M Chang
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721-0041, United States
| | | | | | | |
Collapse
|
15
|
Matson EM, Bertke JA, Fout AR. Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand. Inorg Chem 2014; 53:4450-8. [DOI: 10.1021/ic500102c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ellen M. Matson
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| | - Jeffrey A. Bertke
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School
of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Hsu SY, Hu CH, Tu CY, Lin CH, Chen RY, Datta A, Huang JH. Aluminum Compounds Containing Pyrrole-Imine Ligand Systems - Synthesis, Characterization, Structure Elucidation, Ring-Opening Polymerization, and Catalytic Meerwein-Ponndorf-Verley Reaction. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Matson EM, Gordon Z, Lin B, Nilges MJ, Fout AR. Meridional vs. facial coordination geometries of a dipodal ligand framework featuring a secondary coordination sphere. Dalton Trans 2014; 43:16992-5. [DOI: 10.1039/c4dt02327g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligation of bipyridine invokes a conformational change in iron and copper complexes.
Collapse
Affiliation(s)
- Ellen M. Matson
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana, USA
| | - Zachary Gordon
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana, USA
| | - Benjamin Lin
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge, USA
| | - Mark J. Nilges
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana, USA
| | - Alison R. Fout
- School of Chemical Sciences
- University of Illinois at Urbana-Champaign
- Urbana, USA
| |
Collapse
|
18
|
Thammavongsy Z, LeDoux ME, Breuhaus-Alvarez AG, Seda T, Zakharov LN, Gilbertson JD. Pyridinediimine Iron Dicarbonyl Complexes with Pendant Lewis Bases and Lewis Acids Located in the Secondary Coordination Sphere. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
A convenient, high-yielding, chromatography-free method for the insertion of transition metal acetates into porphyrins. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Sarkar S, Fleck M, Mohanta S. Design of weak interaction directed self-assemblies of nickel(II) complexes using diprotonated diamines as supramolecular tectons: Syntheses and crystal structures. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Sickerman NS, Park YJ, Ng GKY, Bates JE, Hilkert M, Ziller JW, Furche F, Borovik AS. Synthesis, structure, and physical properties for a series of trigonal bipyramidal M(II)-Cl complexes with intramolecular hydrogen bonds. Dalton Trans 2012; 41:4358-64. [PMID: 22334366 PMCID: PMC3777263 DOI: 10.1039/c2dt12244h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of transition metal chloro complexes with the tetradentate tripodal tris(2-amino-oxazoline)amine ligand (TAO) have been synthesized and characterized. X-Ray structural analyses of these compounds demonstrate the formation of the mononuclear complexes [M(II)(TAO)(Cl)](+), where M(II) = Cr, Mn, Fe, Co, Ni, Cu and Zn. These complexes exhibit distorted trigonal-bipyramidal geometry, coordinating the metal through an apical tertiary amine, three equatorial imino nitrogen atoms, and an axial chloride anion. All the complexes possess an intramolecular hydrogen-bonding (H-bonding) network within the cavity occupied by the metal-bound chloride ion. The metal-chloride bond distances are atypically long, which is attributed to the effects of the H-bonding network. Nuclear magnetic resonance (NMR) spectroscopy of the Zn complex suggests that the solid-state structures are representative of that observed in solution, and that the H-bonding interactions persist as well. Additionally, density functional theory (DFT) calculations were carried out to probe the electronic structures of the complexes.
Collapse
Affiliation(s)
- Nathaniel S Sickerman
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bhattacharya S, Mondal S, Sasmal S, Sparkes HA, Howard JAK, Nayak M, Mohanta S. Bis(nitrate)diaquauranyl(vi) synthon to generate [1 × 2 + 1 × 1] and [1 × 1 + 1 × 1] co-crystalized 3d⋯5f self-assemblies. CrystEngComm 2011. [DOI: 10.1039/c0ce00332h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Hart JS, White FJ, Love JB. Donor-extended tripodal pyrroles: encapsulation, metallation, and H-bonded tautomers. Chem Commun (Camb) 2011; 47:5711-3. [DOI: 10.1039/c1cc11378j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Arnold PL, Pécharman AF, Hollis E, Yahia A, Maron L, Parsons S, Love JB. Uranyl oxo activation and functionalization by metal cation coordination. Nat Chem 2010; 2:1056-61. [PMID: 21107370 DOI: 10.1038/nchem.904] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 10/07/2010] [Indexed: 11/09/2022]
Abstract
The oxo groups in the uranyl ion [UO(2)](2+)-one of many oxo cations formed by metals from across the periodic table-are particularly inert, which explains the dominance of this ion in the laboratory and its persistence as an environmental contaminant. In contrast, transition metal oxo (M=O) compounds can be highly reactive and carry out difficult reactions such as the oxygenation of hydrocarbons. Here we show how the sequential addition of a lithium metal base to the uranyl ion constrained in a 'Pacman' environment results in lithium coordination to the U=O bonds and single-electron reduction. This reaction depends on the nature and stoichiometry of the lithium reagent and suggests that competing reduction and C-H bond activation reactions are occurring.
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kendall AJ, Zakharov LN, Gilbertson JD. Synthesis and Stabilization of a Monomeric Iron(II) Hydroxo Complex via Intramolecular Hydrogen Bonding in the Secondary Coordination Sphere. Inorg Chem 2010; 49:8656-8. [PMID: 20799715 DOI: 10.1021/ic101408e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Kendall
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225
| | - Lev N. Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | - John D. Gilbertson
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225
| |
Collapse
|
26
|
Park YJ, Sickerman NS, Ziller JW, Borovik A. Utilizing tautomerization of 2-amino-oxazoline in hydrogen bonding tripodal ligands. Chem Commun (Camb) 2010; 46:2584-6. [PMID: 20449315 PMCID: PMC3777267 DOI: 10.1039/c000160k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tetradentate tripodal ligand containing 2-amino-oxazoline moieties has been developed. This system tautomerizes upon chelation of a metal ion, forming a flexible cavity capable of accommodating ligands via an intramolecular hydrogen bonding network.
Collapse
Affiliation(s)
- Young Jun Park
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - Nathaniel S. Sickerman
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - Joseph W. Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - A.S. Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| |
Collapse
|