1
|
Rahbarimehr E, Chao HP, Churcher ZR, Slavkovic S, Kaiyum YA, Johnson PE, Dauphin-Ducharme P. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors. Anal Chem 2023; 95:2229-2237. [PMID: 36638814 DOI: 10.1021/acs.analchem.2c03566] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electrochemical aptamer-based (E-AB) biosensors afford real-time measurements of the concentrations of molecules directly in complex matrices and in the body, offering alternative strategies to develop innovative personalized medicine tools. While different electroanalytical techniques have been used to interrogate E-AB sensors (i.e., cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry) to resolve the change in electron transfer of the aptamer's covalently attached redox reporter, square-wave voltammetry remains a widely used technique due to its ability to maximize the redox reporter's faradic contribution to the measured current. Several E-AB sensors interrogated with this technique, however, show lower aptamer affinity (i.e., μM-mM) even in the face of employing aptamers that have high affinities (i.e., nM-μM) when characterized using solution techniques such as isothermal titration calorimetry (ITC) or fluorescence spectroscopy. Given past reports showing that E-AB sensor's response is dependent on square-wave interrogation parameters (i.e., frequency and amplitude), we hypothesized that the difference in dissociation constants measured with solution techniques stemmed from the electrochemical interrogation technique itself. In response, we decided to compare six dissociation constants of aptamers when characterized in solution with ITC and when interrogated on electrodes with electrochemical impedance spectroscopy, a technique able to, in contrast to square-wave voltammetry, deconvolute and quantify E-AB sensors' contributions to the measured current. In doing so, we found that we were able to measure dissociation constants that were either separated by 2-3-fold or within experimental errors. These results are in contrast with square-wave voltammetry-measured dissociation constants that are at the most separated by 2-3 orders of magnitude from ones measured by ITC. We thus envision that the versatility and time scales covered by electrochemical impedance spectroscopy offer the highest sensitivity to measure target binding in electrochemical biosensors relying on changes in electron-transfer rates.
Collapse
Affiliation(s)
- Erfan Rahbarimehr
- Département de chimie, Université de Sherbrooke, Sherbrooke, QuébecJ1K 2R1, Canada
| | - Hoi Pui Chao
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Sladjana Slavkovic
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Yunus A Kaiyum
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | | |
Collapse
|
2
|
Khuda N, Somasundaram S, Easley CJ. Electrochemical Sensing of the Peptide Drug Exendin-4 Using a Versatile Nucleic Acid Nanostructure. ACS Sens 2022; 7:784-789. [PMID: 35180342 PMCID: PMC8985241 DOI: 10.1021/acssensors.1c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although endogenous peptides and peptide-based therapeutics are both highly relevant to human health, there are few approaches for sensitive biosensing of this class of molecules with minimized workflow. In this work, we have further expanded on the generalizability of our recently developed DNA nanostructure architecture by applying it to electrochemical (EC) peptide quantification. While DNA-small molecule conjugates were used in a prior work to make sensors for small molecule and protein analytes, here DNA-peptide conjugates were incorporated into the nanostructure at the electrode surfaces, and antibody displacement permitted rapid peptide sensing. Interestingly, multivalent DNA-peptide conjugates were found to be detrimental to the assay readout, yet these effects could be minimized by solution-phase bioconjugation. The final biosensor was validated for quantifying exendin-4 (4.2 kDa)─a human glucagon-like peptide-1 receptor agonist important in diabetes therapy─for the first time using EC methods with minimal workflow. The sensor was functional in 98% human serum, and the low nanomolar assay range lies between the injected dose concentration and the therapeutic range, boding well for future applications in therapeutic drug monitoring.
Collapse
|
3
|
Ogden NE, Kurnik M, Parolo C, Plaxco KW. An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst 2019; 144:5277-5283. [PMID: 31369000 PMCID: PMC6886667 DOI: 10.1039/c9an00455f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The faster a disease can be diagnosed, the sooner effective treatment can be initiated, motivating a drive to replace standard laboratory techniques with point-of-care technologies that return answers in minutes rather than hours. Thus motivated, we describe the development of an E-DNA scaffold sensor for the rapid and convenient measurement of antibodies diagnostic of syphilis. To achieve this (and in contrast to previous sensors of this class, which relied on single, linear epitopes for detection), we utilized a near full-length antigen as the sensor's recognition element, allowing us to simultaneously display multiple epitopes. The resultant sensor is able to detect antibodies against Treponema pallidum pallidum, the causative agent of syphilis, at clinically relevant concentrations in samples in less than 10 min. Preliminary results obtained using sero-positive and sero-negative human samples suggest the clinical sensitivity and specificity of the approach compare well to current gold-standard tests, while being simple and rapid enough to deploy at the point of care.
Collapse
Affiliation(s)
- Nathan E Ogden
- Department of Material Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
4
|
Eberly JO, Mayo ML, Carr MR, Crocker FH, Indest KJ. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor. J GEN APPL MICROBIOL 2019; 65:145-150. [PMID: 30700648 DOI: 10.2323/jgam.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common contaminants found in soil and groundwater at military facilities worldwide, but large-scale monitoring of these contaminants at low concentrations is difficult. Biosensors that incorporate aptamers with high affinity and specificity for a target are a novel way of detecting these compounds. This work describes novel riboswitch-based biosensors for detecting RDX. The performance of the RDX riboswitch was characterized in Escherichia coli using a range of RDX concentrations from 0-44 μmol l-1. Fluorescence was induced at RDX concentrations as low as 0.44 μmol l-1. The presence of 4.4 μmol l-1 RDX induced an 8-fold increase in fluorescence and higher concentrations did not induce a statistically significant increase in response.
Collapse
Affiliation(s)
- Jed O Eberly
- U.S. Army Engineer Research and Development Center, Environmental Laboratory.,Montana State University, Central Ag Research Center
| | - Michael L Mayo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Matthew R Carr
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Fiona H Crocker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| | - Karl J Indest
- U.S. Army Engineer Research and Development Center, Environmental Laboratory
| |
Collapse
|
5
|
Kang D, Parolo C, Sun S, Ogden NE, Dahlquist FW, Plaxco KW. Expanding the Scope of Protein-Detecting Electrochemical DNA "Scaffold" Sensors. ACS Sens 2018; 3:1271-1275. [PMID: 29877078 DOI: 10.1021/acssensors.8b00311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to measure the levels of diagnostically relevant proteins, such as antibodies, directly at the point of care could significantly impact healthcare. Thus motivated, we explore here the E-DNA "scaffold" sensing platform, a rapid, convenient, single-step means to this end. These sensors comprise a rigid nucleic acid "scaffold" attached via a flexible linker to an electrode and modified on its distal end with a redox reporter and a protein binding "recognition element". The binding of a targeted protein reduces the efficiency with which the redox reporter approaches the electrode, resulting in an easily measured signal change when the sensor is interrogated voltammetrically. Previously we have demonstrated scaffold sensors employing a range of low molecular weight haptens and linear peptides as their recognition elements. Expanding on this here we have characterized sensors employing much larger recognition elements (up to and including full length proteins) in order to (1) define the range of recognition elements suitable for use in the platform; (2) better characterize the platform's signaling mechanism to aid its design and optimization; and (3) demonstrate the analytical performance of sensors employing full-length proteins as recognition elements. In doing so we have enlarged the range of molecular targets amenable to this rapid and convenient sensing platform.
Collapse
|
6
|
Wu W, Pan W, Yu D, Yuan Z, Qin Y, Lu Y, Zhang T, Zhou J. A novel steric effect-regulated isothermal exponential amplification technology for the one-step homogeneous sensing of proteins. Analyst 2018; 143:829-832. [DOI: 10.1039/c7an01963g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach utilizing the steric effect and isothermal exponential amplification for one-step homogeneous sensing of proteins.
Collapse
Affiliation(s)
- Wanghua Wu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Wufan Pan
- Department of Chemistry
- Zhejiang University
- Hangzhou
- P.R. China
| | - Dongdong Yu
- Hospital of Zhejiang University
- Zhejiang University
- Hangzhou
- P.R. China
| | - Zhen Yuan
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Yazhou Qin
- Department of Chemistry
- Zhejiang University
- Hangzhou
- P.R. China
| | - Yuxiang Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- P.R. China
| | - Tao Zhang
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Jianguang Zhou
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| |
Collapse
|
7
|
Kang D, Sun S, Kurnik M, Morales D, Dahlquist FW, Plaxco KW. New Architecture for Reagentless, Protein-Based Electrochemical Biosensors. J Am Chem Soc 2017; 139:12113-12116. [PMID: 28789522 DOI: 10.1021/jacs.7b05953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we demonstrate a new class of reagentless, single-step sensors for the detection of proteins and peptides that is the electrochemical analog of fluorescence polarization (fluorescence anisotropy), a versatile optical approach widely employed to this same end. Our electrochemical sensors consist of a redox-reporter-modified protein (the "receptor") site-specifically anchored to an electrode via a short, flexible polypeptide linker. Interaction of the receptor with its binding partner alters the efficiency with which the reporter approaches the electrode surface, thus causing a change in redox current upon voltammetric interrogation. As our first proof-of-principle we employed the bacterial chemotaxis protein CheY as our receptor. Interaction with either of CheY's two binding partners, the P2 domain of the chemotaxis kinase, CheA, or the 16-residue "target region" of the flagellar switch protein, FliM, leads to easily measurable changes in output current that trace Langmuir isotherms within error of those seen in solution. Phosphorylation of the electrode-bound CheY decreases its affinity for CheA-P2 and enhances its affinity for FliM in a manner likewise consistent with its behavior in solution. As expected given the proposed sensor signaling mechanism, the magnitude of the binding-induced signal change depends on the placement of the redox reporter on the receptor. Following these preliminary studies with CheY, we also developed and characterized additional sensors aimed at the detection of specific antibodies using the relevant protein antigens as the receptor. These exhibit excellent detection limits for their targets without the use of reagents or wash steps. This novel, protein-based electrochemical sensing architecture provides a new and potentially promising approach to sensors for the single-step measurement of specific proteins and peptides.
Collapse
Affiliation(s)
- Di Kang
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Sheng Sun
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Demosthenes Morales
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, ‡Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Mahshid SS, Ricci F, Kelley SO, Vallée-Bélisle A. Electrochemical DNA-Based Immunoassay That Employs Steric Hindrance To Detect Small Molecules Directly in Whole Blood. ACS Sens 2017; 2:718-723. [PMID: 28723122 DOI: 10.1021/acssensors.7b00176] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of a universal sensing mechanism for the rapid and quantitative detection of small molecules directly in whole blood would drastically impact global health by enabling disease diagnostics, monitoring, and treatment at home. We have previously shown that hybridization between a free DNA strand and its complementary surface-bound strand can be sterically hindered when the former is bound to large antibodies. Here, we exploit this effect to design a competitive antibody-based electrochemical assay, called CeSHHA, that enables the quantitative detection of small molecules directly in complex matrices, such as whole blood or soil. We discuss the importance of this inexpensive assay for point-of-care diagnosis and for treatment monitoring applications.
Collapse
Affiliation(s)
- Sahar S. Mahshid
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
- Department
of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Francesco Ricci
- Dipartimento
di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Shana O. Kelley
- Department
of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montreal, Québec H3T 1J4, Canada
| |
Collapse
|
9
|
Mars A, Argoubi W, Ben Aoun S, Raouafi N. Induced conformational change on ferrocenyl-terminated alkyls and their application as transducers for label-free immunosensing of Alzheimer's disease biomarker. RSC Adv 2016. [DOI: 10.1039/c5ra19328a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ApoE Alzheimer's disease biomarker can be sensitively detected by a label-free platform using flexible ferrocene-terminated alkyl chains. The immunorecognition triggers conformational changes, which improve the rate constants of electron-transfer.
Collapse
Affiliation(s)
- Abdelmoneim Mars
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| | - Wicem Argoubi
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| | - Sami Ben Aoun
- Taibah University
- Faculty of Science
- Department of Chemistry
- Al-Madinah Al-Munawarah
- Saudi Arabia
| | - Noureddine Raouafi
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| |
Collapse
|
10
|
Ranallo S, Rossetti M, Plaxco KW, Vallée-Bélisle A, Ricci F. A Modular, DNA-Based Beacon for Single-Step Fluorescence Detection of Antibodies and Other Proteins. Angew Chem Int Ed Engl 2015; 54:13214-8. [PMID: 26337144 PMCID: PMC4757636 DOI: 10.1002/anie.201505179] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/20/2015] [Indexed: 12/17/2022]
Abstract
A versatile platform for the one-step fluorescence detection of both monovalent and multivalent proteins has been developed. This system is based on a conformation-switching stem-loop DNA scaffold that presents a small-molecule, polypeptide, or nucleic-acid recognition element on each of its two stem strands. The steric strain associated with the binding of one (multivalent) or two (monovalent) target molecules to these elements opens the stem, enhancing the emission of an attached fluorophore/quencher pair. The sensors respond rapidly (<10 min) and selectively, enabling the facile detection of specific proteins even in complex samples, such as blood serum. The versatility of the platform was demonstrated by detecting five bivalent proteins (four antibodies and the chemokine platelet-derived growth factor) and two monovalent proteins (a Fab fragment and the transcription factor TBP) with low nanomolar detection limits and no detectable cross-reactivity.
Collapse
Affiliation(s)
- Simona Ranallo
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy)
| | - Marianna Rossetti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy)
| | - Kevin W Plaxco
- Center for Bioengineering & Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7 (Canada).
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy).
| |
Collapse
|
11
|
Ranallo S, Rossetti M, Plaxco KW, Vallée‐Bélisle A, Ricci F. A Modular, DNA‐Based Beacon for Single‐Step Fluorescence Detection of Antibodies and Other Proteins. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Simona Ranallo
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy)
| | - Marianna Rossetti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy)
| | - Kevin W. Plaxco
- Center for Bioengineering & Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 (USA)
| | - Alexis Vallée‐Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre‐ville, Montréal, Québec H3C 3J7 (Canada)
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133 (Italy)
| |
Collapse
|
12
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Wang C, Tang Y, Guo Y. Adenosine deaminase biosensor combining cationic conjugated polymer-based FRET with deoxyguanosine-based photoinduced electron transfer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21686-21691. [PMID: 25360869 DOI: 10.1021/am506832y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrated a sensitive and selective adenosine deaminase (ADA) detection by modulating the fluorescence resonance energy transfer (FRET) between cationic conjugated poly(9,9-bis(6'-N,N,N-trimethylammonium) hexyl)fluorine phenylene) (PFP) and the deoxyguanosine-tailored hairpin aptamer. The hairpin aptamer was labeled with a fluorophore FAM at one end and three deoxyguanosines (Gs) at the other end as a quencher. In the absence of ADA, aptamer forms hairpin-like conformation with adenosines making close affinity of Gs and FAM, which results in the weak FRET from PFP to FAM because of FAM fluorescence being quenched by Gs via photoinduced electron transfer (PET). After addition of ADA, adenosine was hydrolyzed by ADA, followed by the release of free aptamer. In this case, FAM being far away from Gs, the strong FRET thus was obtained due to the quenching process being blocked. Therefore, the new strategy based on the FRET ratio enhancement is reasonably used to detect the ADA sensitively, combining the fluorescence signal amplification of conjugated polymers with the initiative signal decreasing by Gs. The detection limit of the ADA assay is 0.3 U/L in both buffer solution and human serum, which is more sensitive than most of those previously documented methods. Importantly, the assay is rapid, homogeneous, and simple without a complicated treating process. The ADA inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA), was also studied based on this assay, and the detection limit of EHNA is 10 pM. This strategy provides a new platform for the detection of other biomolecules and enzymes.
Collapse
Affiliation(s)
- Chun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | | | | |
Collapse
|
14
|
Fechner P, Bleher O, Ewald M, Freudenberger K, Furin D, Hilbig U, Kolarov F, Krieg K, Leidner L, Markovic G, Proll G, Pröll F, Rau S, Riedt J, Schwarz B, Weber P, Widmaier J. Size does matter! Label-free detection of small molecule-protein interaction. Anal Bioanal Chem 2014; 406:4033-51. [PMID: 24817356 DOI: 10.1007/s00216-014-7834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
This review is focused on methods for detecting small molecules and, in particular, the characterisation of their interaction with natural proteins (e.g. receptors, ion channels). Because there are intrinsic advantages to using label-free methods over labelled methods (e.g. fluorescence, radioactivity), this review only covers label-free techniques. We briefly discuss available techniques and their advantages and disadvantages, especially as related to investigating the interaction between small molecules and proteins. The reviewed techniques include well-known and widely used standard analytical methods (e.g. HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer and more specialised analytical methods (e.g. biosensors), biological systems (e.g. cell lines and animal models), and in-silico approaches.
Collapse
Affiliation(s)
- Peter Fechner
- Biametrics GmbH, Auf der Morgenstelle 18, 72076, Tübingen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bonham AJ, Paden NG, Ricci F, Plaxco KW. Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor. Analyst 2013; 138:5580-3. [PMID: 23905162 PMCID: PMC3956051 DOI: 10.1039/c3an01079a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe an electrochemical analog of fluorescence polarization that supports the quantitative measurement of a specific protein, the chemokine IP-10, directly in undiluted blood serum. The sensor is label-free, wash-free, and electronic, suggesting it could support point-of-care detection of diagnostic proteins in largely unprocessed clinical samples.
Collapse
Affiliation(s)
- Andrew J. Bonham
- Department of Chemistry, Metropolitan State University of Denver, Denver, CO 80217, USA. Fax: 01 303 556 5399; Tel: 01 303 556 3929;
| | - Nicole G. Paden
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93117, USA. Fax: 01 805 893 4120; Tel: 01 805 893 5558;
| | - Francesco Ricci
- University of Rome Tor Vergata, Rome, Italy. Tel: 39 06 72594422;
| | - Kevin W. Plaxco
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93117, USA. Fax: 01 805 893 4120; Tel: 01 805 893 5558;
| |
Collapse
|
16
|
Ricci F, Adornetto G, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.06.033] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zhang K, Yang Q, Zhang J, Fu L, Zhou Y, Wu B, Xie M, Huang B. An enzyme substrate binding aptamer complex based time-resolved fluorescence sensor for the adenosine deaminase detection. Biosens Bioelectron 2012. [PMID: 23202335 DOI: 10.1016/j.bios.2012.10.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, we report an enzyme substrate binding aptamer complex based fluorescence sensor for an enzyme activity detection of adenosine deaminase (ADA). The sensor employs a DNA probe containing an adenosine aptamer region dually labeled with biotin and digoxigenin (DIG). The probe is immobilized in a streptavidin-modified 96-well micro plate via biotin-avidin bridge, and the DIG serves as an affinity tag for an Anti-DIG antibody conjugated with horseradish peroxidase (anti-DIG-HRP). The principle of our sensor is as follows: the aptamer forms a coiled structure making the DNA in a "closed" state in the presence of adenosine, which shields the DIG tag from the bulky anti-DIG-HRP due to a proper steric effect. After adding ADA in the test solution, adenosine will be converted to inosine regardless of the aptamer binding. Then, the inosine release causes the DNA to relax and consequently, the DIG becomes accessible to the bulky anti-DIG-HRP which will further conjugate a Eu³⁺ labeled anti-horseradish peroxidase (Eu-anti-HRP). The Eu-anti-HRP can give a fluorescence signal when an enhancement solution is added. In the result of the experiment, we found the sensor signal can reflect the enzyme activity accurately and the detection limit is lowered to 0.5 U L⁻¹ of ADA not only in buffer solution, but also in serum, and an enzyme inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride is studied. With a concentration of 0.01 nM it is enough to cause a distinct difference of the sensor response.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang G, Zhang G, Huang H, Wang L. Electrochemical Immunosensor for α-Fetoprotein Based on Gold Nanoparticles/Graphene-Prussian Blue. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201280015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
20
|
White RJ, Kallewaard HM, Hsieh W, Patterson AS, Kasehagen JB, Cash KJ, Uzawa T, Soh HT, Plaxco KW. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies. Anal Chem 2012; 84:1098-103. [PMID: 22145706 DOI: 10.1021/ac202757c] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diagnosis, prevention, and treatment of many illnesses, including infectious and autoimmune diseases, would benefit from the ability to measure specific antibodies directly at the point of care. Thus motivated, we designed a wash-free, electrochemical method for the rapid, quantitative detection of specific antibodies directly in undiluted, unprocessed blood serum. Our approach employs short, contiguous polypeptide epitopes coupled to the distal end of an electrode-bound nucleic acid "scaffold" modified with a reporting methylene blue. The binding of the relevant antibody to the epitope reduces the efficiency with which the redox reporter approaches, and thus exchanges electrons with, the underlying sensor electrode, producing readily measurable change in current. To demonstrate the versatility of the approach, we fabricated a set of six such sensors, each aimed at the detection of a different monoclonal antibody. All six sensors are sensitive (subnanomolar detection limits), rapid (equilibration time constants ∼8 min), and specific (no appreciable cross reactivity with the targets of the other five). When deployed in a millimeter-scale, an 18-pixel array with each of the six sensors in triplicate support the simultaneous measurement of the concentrations of multiple antibodies in a single, submilliliter sample volume. The described sensor platform thus appears be a relatively general approach to the rapid and specific quantification of antibodies in clinical materials.
Collapse
Affiliation(s)
- Ryan J White
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Biagiotti V, Porchetta A, Desiderati S, Plaxco KW, Palleschi G, Ricci F. Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Anal Bioanal Chem 2011; 402:413-21. [PMID: 21928081 DOI: 10.1007/s00216-011-5361-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022]
Abstract
Surface-confined DNA probes are increasingly used as recognition elements (or presentation scaffolds) for detection of proteins, enzymes, and other macromolecules. Here we demonstrate that the density of the DNA probe monolayer on the gold electrode is a crucial determinant of the final signalling of such devices. We do so using redox modified single-stranded and double-stranded DNA probes attached to the surface of a gold electrode and measuring the rate of digestion in the presence of a non-specific nuclease enzyme. We demonstrate that accessibility of DNA probes for binding to their macromolecular target is, as expected, improved at lower probe densities. However, with double-stranded DNA probes, even at the lowest densities investigated, a significant fraction of the immobilized probe is inaccessible to nuclease digestion. These results stress the importance of the accessibility issue and of probe density effects when DNA-based sensors are used for detection of macromolecular targets.
Collapse
Affiliation(s)
- Vanessa Biagiotti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Khor SM, Liu G, Fairman C, Iyengar SG, Gooding JJ. The importance of interfacial design for the sensitivity of a label-free electrochemical immuno-biosensor for small organic molecules. Biosens Bioelectron 2011; 26:2038-44. [DOI: 10.1016/j.bios.2010.08.082] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
|
24
|
Diezmann F, Seitz O. DNA-guided display of proteins and protein ligands for the interrogation of biology. Chem Soc Rev 2011; 40:5789-801. [DOI: 10.1039/c1cs15054e] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Uzawa T, Cheng RR, White RJ, Makarov DE, Plaxco KW. A mechanistic study of electron transfer from the distal termini of electrode-bound, single-stranded DNAs. J Am Chem Soc 2010; 132:16120-6. [PMID: 20964337 PMCID: PMC3026591 DOI: 10.1021/ja106345d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrode-bound, redox-reporter-modified oligonucleotides play roles in the functioning of a number of electrochemical biosensors, and thus the question of electron transfer through or from such molecules has proven of significant interest. In response, we have experimentally characterized the rate with which electrons are transferred between a methylene blue moiety on the distal end of a short, single-stranded polythymine DNA to a monolayer-coated gold electrode to which the other end of the DNA is site-specifically attached. We find that this rate scales with oligonucleotide length to the -1.16 ± 0.09 power. This weak, approximately inverse length dependence differs dramatically from the much stronger dependencies observed for the rates of end-to-end collisions in single-stranded DNA and through-oligonucleotide electron hopping. It instead coincides with the expected length dependence of a reaction-limited process in which the overall rate is proportional to the equilibrium probability that the end of the oligonucleotide chain approaches the surface. Studies of the ionic strength and viscosity dependencies of electron transfer further support this "chain-flexibility" mechanism, and studies of the electron transfer rate of methylene blue attached to the hexanethiol monolayer suggest that heterogeneous electron transfer through the monolayer is rate limiting. Thus, under the circumstances we have employed, the flexibility (i.e., the equilibrium statistical properties) of the oligonucleotide chain defines the rate with which an attached redox reporter transfers electrons to an underlying electrode, an observation that may be of utility in the design of new biosensor architectures.
Collapse
Affiliation(s)
- Takanori Uzawa
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Ryan R. Cheng
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
| | - Ryan J. White
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106
- Interdepartmental program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
26
|
Small molecule immunosensing using surface plasmon resonance. SENSORS 2010; 10:7323-46. [PMID: 22163605 PMCID: PMC3231171 DOI: 10.3390/s100807323] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/15/2010] [Accepted: 07/25/2010] [Indexed: 11/17/2022]
Abstract
Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained.
Collapse
|
27
|
Zhang K, Zhu X, Wang J, Xu L, Li G. Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity. Anal Chem 2010; 82:3207-11. [PMID: 20345118 DOI: 10.1021/ac902771k] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel strategy for the fabrication of electrochemical aptasensor is proposed in this work, and the strategy has been employed to develop an aptasensor for the assay of adenosine deaminase activity. While a well-designed oligonucleotide containing three functional regions (an adenosine aptamer region, a G-quadruplex halves region, and a linker region) is adopted in our strategy as the core element, the enzymatic reaction of adenosine catalyzed by adenosine deaminase plays a key role as well in the regulation of the binding of the G-quadruplex halves with hemin, the electroactive probe, which is to reflect the activity of the enzyme indirectly but accurately. The detection limit of the fabrication biosensor can be lowered to 0.2 U mL(-1) of adenosine deaminase, and 1 nM of the inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride is enough to present distinguishable electrochemical response. Moreover, since the electroactive probe is not required to be bound with the oligonucleotide, this strategy may integrate the advantages of both the labeled and label-free strategies.
Collapse
Affiliation(s)
- Kai Zhang
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | |
Collapse
|
28
|
Lubin AA, Plaxco KW. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 2010; 43:496-505. [PMID: 20201486 DOI: 10.1021/ar900165x] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecular recognition is versatile, specific, and high affinity, qualities that have motivated decades of research aimed at adapting biomolecules into a general platform for molecular sensing. Despite significant effort, however, so-called "biosensors" have almost entirely failed to achieve their potential as reagentless, real-time analytical devices; the only quantitative, reagentless biosensor to achieve commercial success so far is the home glucose monitor, employed by millions of diabetics. The fundamental stumbling block that has precluded more widespread success of biosensors is the failure of most biomolecules to produce an easily measured signal upon target binding. Antibodies, for example, do not change their shape or dynamics when they bind their recognition partners, nor do they emit light or electrons upon binding. It has thus proven difficult to transduce biomolecular binding events into a measurable output signal, particularly one that is not readily spoofed by the binding of any of the many potentially interfering species in typical biological samples. Analytical approaches based on biomolecular recognition are therefore mostly cumbersome, multistep processes relying on analyte separation and isolation (such as Western blots, ELISA, and other immunochemical methods); these techniques have proven enormously useful, but are limited almost exclusively to laboratory settings. In this Account, we describe how we have refined a potentially general solution to the problem of signal detection in biosensors, one that is based on the binding-induced "folding" of electrode-bound DNA probes. That is, we have developed a broad new class of biosensors that employ electrochemistry to monitor binding-induced changes in the rigidity of a redox-tagged probe DNA that has been site-specifically attached to an interrogating electrode. These folding-based sensors, which have been generalized to a wide range of specific protein, nucleic acid, and small-molecule targets, are rapid (responding in seconds to minutes), sensitive (detecting sub-picomolar to micromolar concentrations), and reagentless. They are also greater than 99% reusable, are supported on micrometer-scale electrodes, and are readily fabricated into densely packed sensor arrays. Finally, and critically, their signaling is linked to a binding-specific change in the physics of the probe DNA, and not simply to adsorption of the target onto the sensor head. Accordingly, they are selective enough to be employed directly in blood, crude soil extracts, cell lysates, and other grossly contaminated clinical and environmental samples. Indeed, we have recently demonstrated the ability to quantitatively monitor a specific small molecule in real-time directly in microliters of flowing, unmodified blood serum. Because of their sensitivity, substantial background suppression, and operational convenience, these folding-based biosensors appear potentially well suited for electronic, on-chip applications in pathogen detection, proteomics, metabolomics, and drug discovery.
Collapse
Affiliation(s)
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry
- Biomolecular Science and Engineering Program
| |
Collapse
|
29
|
|
30
|
Song Z, Yuan R, Chai Y, Zhuo Y, Jiang W, Su H, Che X, Li J. Horseradish peroxidase-functionalized Pt hollow nanospheres and multiple redox probes as trace labels for a sensitive simultaneous multianalyte electrochemical immunoassay. Chem Commun (Camb) 2010; 46:6750-2. [DOI: 10.1039/c0cc01537g] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|