1
|
Rajendiran V, El Rassi Z. Silica-Based Stationary Phase with Surface Bound N-Acetyl-glucosamine for Hydrophilic Interaction Liquid Chromatography. Molecules 2023; 28:7099. [PMID: 37894577 PMCID: PMC10609419 DOI: 10.3390/molecules28207099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
A hydrophilic silica-based stationary phase with surface bound N-acetylglucosamine (GlcNAc-silica) was prepared in house and characterized physically via Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) and chromatographically over a wide range of mobile phase compositions. While both FTIR and TGA confirmed the attachment of the GlcNAc ligands to the silica surface, the chromatographic evaluation of GlcNAc-silica with polar and slightly polar standard solutes (e.g., sugars, nucleic acid fragments, phenolic, and benzoic acid derivatives) yielded the typical hydrophilic interaction liquid chromatography (HILIC) behaviors in the sense that retention increased with increases in solute polarity and the organic content (i.e., acetonitrile) of the hydro-organic mobile phase (i.e., ACN-rich mobile phase). Sugars derivatized with 1-naphthylamine (1-NA) and 2-aminoanthrcene (2-AA) such as xylose, glucose, and short chains maltooligosaccharides constituted the most polar species for HILIC retention evaluation, and in addition, the maltooligosaccharides offered a polar homologous series for gauging the hydrophilicity of GlcNAc-silica in analogy with alkylbenzene homologous series and other nonpolar homologues for evaluating the hydrophobicity of non-polar stationary phases. On the other hand, the benzoic acid and phenolic acid derivatives were the probe solutes for evaluating the HILIC retention dependence of ionizable solutes on the pH of the mobile phase. Similarly, the nucleobase and nucleoside weak basic solutes as well as some typical cyclic nucleotide acidic solutes allowed for the examination of the dependence of solute retention on the pH of the mobile as well as the polarity of the species.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA;
| |
Collapse
|
2
|
Zheng Y, Yan J, Cao C, Liu Y, Yu D, Liang X. Application of chromatography in purification and structural analysis of natural polysaccharides: A review. J Sep Sci 2023; 46:e2300368. [PMID: 37480171 DOI: 10.1002/jssc.202300368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Polysaccharides are widely distributed in natural sources from monocytic microorganisms to higher animals, and are found in a variety of biological activities in recent decades. Natural polysaccharides have the characteristics of large molecular weight, diverse composition, and complex structure, so their purification and structural analysis are difficult issues in research. Chromatography as a powerful separation technique, plays an irreplaceable role in the separation and structural analysis of natural polysaccharides, especially in the purification of polysaccharides, the separation of hydrolysates, and the analysis of monosaccharide composition. The separation mechanisms and application of different chromatographic methods in the studies of polysaccharides were summarized in this review. Moreover, the advantages and drawbacks of various chromatography methods were discussed as well.
Collapse
Affiliation(s)
- Yi Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Cuiyan Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| |
Collapse
|
3
|
Salman Sajid M, Saleem S, Jabeen F, Waqas Ishaq M, Najam-Ul-Haq M, Ressom HW. Mapping the low abundant plasma glycoproteome using Ranachrome-5 immobilized magnetic terpolymer as improved HILIC sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123846. [PMID: 37567067 PMCID: PMC10528939 DOI: 10.1016/j.jchromb.2023.123846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
HILIC (hydrophilic interaction liquid chromatography) materials enrich glycopeptides. The non-specific interactions because of support material and inadequate hydrophilicity render loss of less abundant glycopeptides in SPE-based enrichments. In this work, magnetic terpolymer (Fe3O4@MAA/DVB/1,2-Epoxy-5-hexene) is functionalized with Ranachrome-5 to generate enhanced hydrophilicity. Amine, carboxylic, and amide groups of ranachrome-5 provide zwitterionic chemistry. Material's magnetic core contributes to ease of operation while higher surface area 97.0711 m2 g-1 immobilizes better quantities of Ranachrome-5. Homogeneous morphology, nano-size, and super hydrophilicity enhance enrichment. Ranachrome-5 functionalized polymeric core-shell beads enrich 25, 18 and 16 N-linked glycopeptides via SPE strategy from tryptic digests of model glycoproteins i.e., immunoglobulin G (IgG), horseradish peroxidase (HRP) and chicken avidin, respectively. Zwitterionic chemistry of ranachrome-5 helps in achieving higher selectivity (1:250, HRP / Bovine Serum Albumin), and lower detection limit (100 attomole, HRP digest) with complete glycosylation profile of each standard digest. High binding capacity (137.1 mg/g) and reuse of affinity material up to seven cycles reduce the cost and amount of affinity material for complex sample analysis. A recovery of 91.76% and relative standard deviation (RSD) values less than 1 define the application of HILIC beads for complex samples like plasma. 508 N-linked intact low abundant glycopeptides corresponding to 50 glycoproteins are identified from depleted human plasma samples via nano-Liquid Chromatography-Tandem Mass Spectrometry (nLC-MS/MS). Using Single Nucleotide Variances (BioMuta) for low abundant plasma glycoproteins, the potential association of proteins to four cancers, i.e., breast, lung, uterine, and melanoma is evaluated. Via the bottom-up approach, HILIC beads can analyze clinically important low-abundant glycoproteins.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shafaq Saleem
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fahmida Jabeen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
4
|
Garreau C, Gablin C, Léonard D, Delair T, Sudre G, Trombotto S. Regiospecific Grafting of Chitosan Oligomers Brushes onto Silicon Wafers. Int J Mol Sci 2022; 23:ijms23148013. [PMID: 35887359 PMCID: PMC9322837 DOI: 10.3390/ijms23148013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
The functionalization of surfaces using chitosan oligomers is of great interest for a wide range of applications in biomaterial and biomedical fields, as chitosan oligomers can provide various functional properties including biocompatibility, wetting, adhesion, and antibacterial activity. In this study, an innovative process for the regiospecific chemical grafting of reducing-end-modified chitosan oligomers brushes onto silicon wafers is described. Chitosan oligomers (COS) with well-defined structural parameters (average DP ~19 and DA ~0%) and bearing a 2,5-anhydro-d-mannofuranose (amf) unit at the reducing end were obtained via nitrous acid depolymerization of chitosan. After a silanization step where silicon wafers were modified with aromatic amine derivatives, grafting conditions were studied to optimize the reductive amination between aldehydes of amf-terminated COS and aromatic amines of silicon wafers. Functionalized surfaces were fully characterized by AFM, ATR-FTIR, ellipsometry, contact angle measurement, and ToF-SIMS techniques. Smooth surfaces were obtained with a COS layer about 3 nm thick and contact angle values between 72° and 76°. Furthermore, it was shown that the addition of the reducing agent NaBH3CN could positively improve the COS grafting density and/or led to a better stability of the covalent grafting to hydrolysis. Finally, this study also showed that this grafting process is also efficient for chitosan oligomers of higher DA (i.e., ~21%).
Collapse
Affiliation(s)
- Cyrielle Garreau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 Villeurbanne, France; (C.G.); (T.D.); (G.S.)
| | - Corinne Gablin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, Rue de la Doua, F-69100 Villeurbanne, France; (C.G.); (D.L.)
| | - Didier Léonard
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5, Rue de la Doua, F-69100 Villeurbanne, France; (C.G.); (D.L.)
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 Villeurbanne, France; (C.G.); (T.D.); (G.S.)
| | - Guillaume Sudre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 Villeurbanne, France; (C.G.); (T.D.); (G.S.)
| | - Stéphane Trombotto
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69622 Villeurbanne, France; (C.G.); (T.D.); (G.S.)
- Correspondence:
| |
Collapse
|
5
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
6
|
Shi H, Zhang L. Maltose-functionalized HILIC stationary phase silica gel based on self-assembled oligopeptides and its application for the separation of polar compounds. Anal Bioanal Chem 2022; 414:3917-3925. [PMID: 35352163 DOI: 10.1007/s00216-022-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
In this study, carbonyldiimidazole was used to bond maltose-modified oligopeptides (Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys) to the surface of silica spheres for hydrophilic interaction liquid chromatography (HILIC). Attenuated total reflectance-Fourier transform infrared spectroscopy, elemental analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, BET technique, and water contact angle measurement results confirmed the successful immobilization of the obtained material. Compared with the conventional method for preparing carbohydrate stationary phases, this method involves simpler steps and less time-consuming processes. The experimental results proved that the retention mechanism of the maltose-based HILIC column matched the typical HILIC retention mechanism. The column showed high separation efficiency and stability toward the separation of polar compounds such as amino acids, bases, nucleosides, water-soluble vitamins, and salicylic acid and its analogs. The column achieved high selectivity toward oligosaccharide separation. In addition, this efficient analysis demonstrates the applicability of the as-prepared material in the field of food inspection.
Collapse
Affiliation(s)
- Hailan Shi
- Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, 710075, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, 710075, China.
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| |
Collapse
|
7
|
Pan Y, Zhang C, Xiao R, Zhang L, Zhang W. Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Anal Chim Acta 2021; 1158:338412. [DOI: 10.1016/j.aca.2021.338412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023]
|
8
|
Tang T, Guo D, Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:419-425. [PMID: 33427266 DOI: 10.1039/d0ay02016h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a series of novel hydrophilic interaction chromatography (HILIC) stationary phases were prepared by grafting nucleosides or nucleotides on the surface of silica gel. Firstly, the silica was modified with 3-glycidoxypropyltrimethoxysilane (GPTMS). And then nucleosides or nucleotides were bonded on the surface of GPTMS-modified silica through the epoxy-amine ring-opening reaction to provide four HILIC materials. These obtained stationary phases were successfully characterized by Fourier transform-infrared spectroscopy (FT-IR) and elemental analysis (EA), respectively. Effects of column temperature, water content of the mobile phase, pH and buffer concentration on the retention behavior of these HILIC materials and the corresponding separation mechanism were evaluated using various nucleosides and nucleobases, respectively. In addition, polar and hydrophilic compounds such as amino acids and water-soluble vitamins were successfully separated using the corresponding columns, showing application potential for the separation of bioactive substances.
Collapse
Affiliation(s)
- Tingfeng Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|
9
|
Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta 2020; 218:121140. [DOI: 10.1016/j.talanta.2020.121140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
|
10
|
Chu Z, Zhang W, Li D, Zhang L, Zhu M, Ge Z. Synthesis and chromatographic evaluation of poly(pentabromostyrene)-silica composite: A versatile stationary phase for separating both polar and non-polar aromatic compounds. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Sobańska AW. Emerging or Underestimated Silica-Based Stationary Phases in Liquid Chromatography. Crit Rev Anal Chem 2020; 51:631-655. [PMID: 32482079 DOI: 10.1080/10408347.2020.1760782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several newly synthesized or forgotten silica-based stationary phases proposed for liquid chromatography are described, including non-endcapped, short-chain alkyl phases; hydrophilic and polar-endcapped stationary phases; polar-embedded alkyl phases; long-chain alkyl phases. Stationary phases with aromatic, cyanopropyl, diol and aminopropyl functionalities are also reviewed. Stationary phases of particular interest are biomolecular materials - based on immobilized cholesterol, aminoacids, peptides, proteins or lipoproteins. Packing materials involving macrocyclic chemistry (crown ethers; calixarenes; aza-macrocycles; oligo-and polysaccharides including these of marine origin - chitin- or chitosan-based; macrocyclic antibiotics) are discussed. Since many stationary phases developed for one type of applications (e.g. chiral separation) have been found useful in solving other analytical problems (e.g. drug's plasma protein binding ability), it seemed reasonable to discuss particular chemistries behind the stationary phases presented in this review rather than specific types of interactions or chromatographic modes.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Reducing-End Functionalization of 2,5-Anhydro-d-mannofuranose-Linked Chitooligosaccharides by Dioxyamine: Synthesis and Characterization. Molecules 2020; 25:molecules25051143. [PMID: 32143349 PMCID: PMC7179158 DOI: 10.3390/molecules25051143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/05/2023] Open
Abstract
The nitrous acid depolymerization of chitosan enables the synthesis of singular chitosan oligosaccharides (COS) since their reducing-end unit is composed of 2,5-anhydro-d-mannofuranose (amf). In the present study, we describe a chemical method for the reducing-end conjugation of COS-amf by the commercially available dioxyamine O,O'-1,3-propanediylbishydroxylamine in high mass yields. The chemical structure of resulting dioxyamine-linked COS-amf synthesized by both oximation and reductive amination ways were fully characterized by 1H- and 13C-NMR spectroscopies and MALDI-TOF mass spectrometry. The coupling of chemically attractive linkers such as dioxyamines at the reducing end of COS-amf forms a relevant strategy for the development of advanced functional COS-based conjugates.
Collapse
|
13
|
Fabijanczuk K, Gaspar K, Desai N, Lee J, Thomas DA, Beauchamp JL, Gao J. Resin and Magnetic Nanoparticle-Based Free Radical Probes for Glycan Capture, Isolation, and Structural Characterization. Anal Chem 2019; 91:15387-15396. [PMID: 31718152 DOI: 10.1021/acs.analchem.9b01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By combining the merits of solid supports and free radical activated glycan sequencing (FRAGS) reagents, we develop a multifunctional solid-supported free radical probe (SS-FRAGS) that enables glycan enrichment and characterization. SS-FRAGS comprises a solid support, free radical precursor, disulfide bond, pyridyl, and hydrazine moieties. Thio-activated resin and magnetic nanoparticles (MNPs) are chosen as the solid support to selectively capture free glycans via the hydrazine moiety, allowing for their enrichment and isolation. The disulfide bond acts as a temporary covalent linkage between the solid support and the captured glycan, allowing the release of glycans via the cleavage of the disulfide bond by dithiothreitol. The basic pyridyl functional group provides a site for the formation of a fixed charge, enabling detection by mass spectrometry and avoiding glycan rearrangement during collisional activation. The free radical precursor generates a nascent free radical upon collisional activation and thus simultaneously induces systematic and predictable fragmentation for glycan structure elucidation. A radical-driven glycan deconstruction diagram (R-DECON) is developed to visually summarize the MS2 results and thus allow for the assembly of the glycan skeleton, making the differentiation of isobaric glycan isomers unambiguous. For application to a real-world sample, we demonstrate the efficacy of the SS-FRAGS by analyzing glycan structures enzymatically cleaved from RNase-B.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Nikunj Desai
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Jungeun Lee
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| |
Collapse
|
14
|
Reducing-end “clickable” functionalizations of chitosan oligomers for the synthesis of chitosan-based diblock copolymers. Carbohydr Polym 2019; 219:387-394. [DOI: 10.1016/j.carbpol.2019.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
|
15
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
16
|
Zhao X, Liu S, Peng J, Li X, Niu H, Zhang H, Wang L, Wu R. Facile one-pot synthesized hydrothermal carbon from cyclodextrin: A stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2019; 1585:144-151. [DOI: 10.1016/j.chroma.2018.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
|
17
|
Ma G, Luo X, Sun X, Wang W, Shou Q, Liang X, Liu H. Glycopolymer Grafted Silica Gel as Chromatographic Packing Materials. Int J Mol Sci 2018; 20:ijms20010010. [PMID: 30577498 PMCID: PMC6337448 DOI: 10.3390/ijms20010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023] Open
Abstract
The modification of the surface of silica gel to prepare hydrophilic chromatographic fillers has recently become a research interest. Most researchers have grafted natural sugar-containing polymers onto chromatographic surfaces. The disadvantage of this approach is that the packing structure is singular and the application scope is limited. In this paper, we explore the innovative technique of grafting a sugar-containing polymer, 2-gluconamidoethyl methacrylamide (GAEMA), onto the surface of silica gel by atom transfer radical polymerization (ATRP). The SiO2-g-GAEMA with ATRP reaction time was characterized by Fourier infrared analysis, Thermogravimetric analysis (TGA), and elemental analysis. As the reaction time lengthened, the amount of GAEMA grafted on the surface of the silica gel gradually increased. The GAEMA is rich in amide bonds and hydroxyl groups and is a typical hydrophilic chromatography filler. Finally, SiO2-g-GAEMA (reaction time = 24 h) was chosen as the stationary phase of the chromatographic packing and evaluated with four polar compounds (uracil, cytosine, guanosine, and cytidine). Compared with unmodified silica gel, modified silica gel produces sharper peaks and better separation efficiency. This novel packing material may have a potential for application with highly isomerized sugar mixtures.
Collapse
Affiliation(s)
- Gaoqi Ma
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
| | - Xitao Luo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China.
| | - Xitong Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
| | - Weiyan Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Qinghui Shou
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
| | - Xiangfeng Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China.
| |
Collapse
|
18
|
Zheng H, Li X, Jia Q. Self-Assembling Glutamate-Functionalized Cyclodextrin Molecular Tube for Specific Enrichment of N-Linked Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19914-19921. [PMID: 29792669 DOI: 10.1021/acsami.8b01445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin molecular tube (CDMT), a new comer of cyclodextrin family, possesses large and hydrophilic outer area and stable structure. Its development and applications remain highly desired, especially in the field of separation and enrichment. Herein, we developed a CDMT-based enrichment platform focusing on the specific capture of glycopeptides. To enhance the hydrophilicity of CDMT, it was functionalized with glutamate (glu). The prepared gluCDMT exhibited large hydrophilic surface, high stability, and good acidic/alkalic resistance. A solid monolithic support was employed to immobilize gluCDMT by a host-guest self-assembly synthetic strategy, which did not occupy the surface hydrophilic sites. The gluCDMT-based monolith exhibited high binding capacity (∼50 mg g-1), good ability to capture glycopeptides (23 HRP glycopeptides and 28 IgG glycopeptides), and high selectivity (horseradish peroxidase/bovine serum albumin = 1:10 000). Moreover, the developed platform was successfully applied to analyze glycopetides in acute myelogenous leukemia cell lysate and human serum samples.
Collapse
Affiliation(s)
| | - Xiqian Li
- China-Japan Hospital of Jilin University , Changchun 130033 , China
| | | |
Collapse
|
19
|
Chu Z, Zhang L, Zhang W. Preparation and evaluation of maltose modified polymer-silica composite based on cross-linked poly glycidyl methacrylate as high performance liquid chromatography stationary phase. Anal Chim Acta 2018; 1036:179-186. [PMID: 30253830 DOI: 10.1016/j.aca.2018.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022]
Abstract
A new maltose modified polymer-silica composite was fabricated and applied as high performance liquid chromatography (HPLC) stationary phase. The cross-linked poly glycidyl methacrylate (pGMA) layer was chemically bonded to the outer surface as well as pore inner surface of silica beads via in-situ polymerization, and then maltose was modified onto the polymer layer via a [3 + 2] "click" reaction. The porous spherical silica (4 μm diameter) with 300 Å pore size was selected as the matrix so that the 3.25 nm-thick polymer layer fabricated on the pore inner surface would not affect its permeability. The typical 'U-shape' retention curves indicated a mixed-mode retention mechanism of the as-synthesized stationary phase. Both polar and non-polar analytes could be well separated on the stationary phase with column efficiency reaching 123809 plates/m for guanosine in hydrophilic interaction liquid chromatography (HILIC) mode and 46808 plates/m for fluorene in reversed-phase liquid chromatography (RPLC) mode, respectively. Nucleotides and their bases were baseline separated with good peak shape without any buffer salt in mobile phase, suggesting the effective shielding of the silanol groups. The packing material also showed excellent chromatographic repeatability with intraday RSDs of the retention time of five nucleosides less than 0.048% (n = 3) and interday RSDs less than 0.33% (n = 7) and great pH stability (from 1.5 to 10.2). Finally, the stationary phase was applied to the separation of ginseng extract.
Collapse
Affiliation(s)
- Zhanying Chu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
20
|
Ding X, Yang J, Dong Y. Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs. J Pharm Anal 2018; 8:75-85. [PMID: 29736293 PMCID: PMC5934735 DOI: 10.1016/j.jpha.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
The various advantages of organic polymer monoliths, including relatively simple preparation processes, abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.
Collapse
Affiliation(s)
- Xiali Ding
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jing Yang
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yuming Dong
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Lanzhou Universty-Techcomp (China) Ltd. Joint Laboratory of Pharmaceutical Analysis, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
21
|
Chen L, Ding D, Sheng Q, Yu L, Liu X, Liang X. Selective enrichment of N-linked glycopeptides and glycans by using a dextran-modified hydrophilic material. J Sep Sci 2018; 41:2003-2011. [PMID: 29333671 DOI: 10.1002/jssc.201700995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Linlin Chen
- The Fifth People's Hospital; Fudan University; Shanghai China
- Department of Pathology, School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Di Ding
- Department of Pathology, School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry; East China University of Science and Technology; Shanghai China
| | - Long Yu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Xiuping Liu
- The Fifth People's Hospital; Fudan University; Shanghai China
- Department of Pathology, School of Basic Medical Sciences; Fudan University; Shanghai China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
22
|
Li Y, Sheng Z, Zhu C, Yin W, Chu C. Silica based click-dibenzo-18-crown-6-ether high performance liquid chromatography stationary phase and its application in separation of fullerenes. Talanta 2018; 178:195-201. [DOI: 10.1016/j.talanta.2017.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
23
|
Rathnasekara R, El Rassi Z. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography. J Chromatogr A 2017; 1508:24-32. [PMID: 28599861 DOI: 10.1016/j.chroma.2017.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/06/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022]
Abstract
Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF3.ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides.
Collapse
Affiliation(s)
- Renuka Rathnasekara
- Oklahoma State University, Department of Chemistry, Stillwater, OK, 74078-3071, USA
| | - Ziad El Rassi
- Oklahoma State University, Department of Chemistry, Stillwater, OK, 74078-3071, USA.
| |
Collapse
|
24
|
Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides. J Chromatogr A 2017; 1498:72-79. [DOI: 10.1016/j.chroma.2016.12.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022]
|
25
|
Zhao Y, Chen Y, Xiong Z, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W. Synthesis of magnetic zwitterionic–hydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A 2017; 1482:23-31. [DOI: 10.1016/j.chroma.2016.12.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/17/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
|
26
|
|
27
|
Bibi A, Ju H. Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica. Talanta 2016; 161:681-685. [DOI: 10.1016/j.talanta.2016.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 11/26/2022]
|
28
|
Cao L, Wu J, Li X, Zheng L, Wu M, Liu P, Huang Q. Validated HPAEC-PAD Method for the Determination of Fully Deacetylated Chitooligosaccharides. Int J Mol Sci 2016; 17:ijms17101699. [PMID: 27735860 PMCID: PMC5085731 DOI: 10.3390/ijms17101699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was established for the simultaneous separation and determination of glucosamine (GlcN)₁ and chitooligosaccharides (COS) ranging from (GlcN)₂ to (GlcN)₆ without prior derivatization. Detection limits were 0.003 to 0.016 mg/L (corresponding to 0.4-0.6 pmol), and the linear range was 0.2 to 10 mg/L. The optimized analysis was carried out on a CarboPac-PA100 analytical column (4 × 250 mm) using isocratic elution with 0.2 M aqueous sodium hydroxide-water mixture (10:90, v/v) as the mobile phase at a 0.4 mL/min flow rate. Regression equations revealed a good linear relationship (R² = 0.9979-0.9995, n = 7) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of (GlcN)1-6 in a commercial COS technical concentrate. The established method was also used to monitor the acid hydrolysis of a COS technical concentrate to ensure optimization of reaction conditions and minimization of (GlcN)₁ degradation.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jinlong Wu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Xiuhuan Li
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Li Zheng
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Miaomiao Wu
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Pingping Liu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
29
|
Song P, Huang P, Huang T, Li H, Chen W, Lin L, Feng S, Tian R. Facile synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles for selective enrichment of glycopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:190-195. [PMID: 27539437 DOI: 10.1002/rcm.7626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Selective enrichment of glycopeptides prior to mass spectrometry (MS) analysis is essential due to the low abundance of the modified glycopeptides in complex samples, ion suppression effects during MS ionization and detection caused by the co-presence of non-glycosylated peptides, etc. Among different enrichment approaches, hydrophilic interaction liquid chromatography (HILIC)-based magnetic separation has become one of the most popular methods in recent years, due to its high efficiency and selectivity for glycopeptide enrichment. METHODS Herein, novel carboxymethyl-β-cyclodextrin (CMCD)-modified magnetic nanoparticles (MNPs) were synthesized via a carbodiimide activation method. CMCD was covalently bonded with the -OH group on the surface of MNPs through carbodiimide, and the proposed procedure provides a rapid and efficient alternative for glycopeptide enrichment due to its stable interaction, time-saving, and easy operation. RESULTS The prepared absorbents with a mean diameter of 15 nm demonstrated a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of bound CMCD was 3 wt%. The outer CMCD layer conjugated on the Fe3 O4 core showed high hydrophilic surface property. In the analysis of a complex mouse liver sample, a total of 666 unique N-glycosylation sites corresponding to 494 glycosylated proteins were identified successfully. CONCLUSIONS The study demonstrated an easy-to-use CMCD-modified MNPs-based approach with high selectivity and high capacity in the enrichment of low-abundance glycopeptides from complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peipei Song
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Peiwu Huang
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Tengjun Huang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Hua Li
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Wendong Chen
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Lin Lin
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| |
Collapse
|
30
|
Vessally E. A new avenue to the synthesis of highly substituted pyrroles: synthesis from N-propargylamines. RSC Adv 2016. [DOI: 10.1039/c5ra20706a] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pyrroles have attracted much attention due to their potential biological activities.
Collapse
|
31
|
Sun X, Dong J, Li J, Ye M, Ou J, Zhang L, Zhang W. Au–cysteine modified macroporous adsorption resin: preparation and highly selective enrichment and identification of N-linked glycopeptides from the complex biological sample. RSC Adv 2016. [DOI: 10.1039/c6ra24236g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cysteine functionalized macroporous adsorption resin/gold nanoparticle was synthesized and applied to the highly selective enrichment and identification of N-linked glycopeptides.
Collapse
Affiliation(s)
- Xudong Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jing Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Jinan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
32
|
Bodnar E, Raymond C, Lopez PG, Villacrés C, Butler M, Schoenhofen IC, Durocher Y, Perreault H. Mass spectrometric analysis of products of metabolic glycan engineering with azido-modification of sialic acids. Anal Bioanal Chem 2015; 407:8945-58. [PMID: 26362153 DOI: 10.1007/s00216-015-9010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering of glycans present on antibodies and other glycoproteins is becoming an interesting research area for improving our understanding of the glycome. With knowledge of the sialic acid biosynthetic pathways, the experiments described in this report are based on a published procedure involving the addition of a synthesized azido-mannosamine sugar into cell culture media and evaluation of downstream expression as azido-sialic acid. This unique bioorthogonal sugar has the potential for a variety of "click chemistry" reactions through the azide linkage, which allow for it to be isolated and quantified given the choice of label. In this report, mass spectrometry was used to investigate and optimize the cellular absorption of peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to form N-azidoacetylneuraminic acid (SiaNAz) in a Chinese hamster ovary (CHO) cell line transiently expressing a double mutant trastuzumab (TZMm2), human galactosyltransferase 1 (GT), and human α-2,6-sialyltransferase (ST6). This in vivo approach is compared to in vitro enzymatic addition SiaNAz onto TZMm2 using soluble β-galactosamide α-2,6-sialyltransferase 1 and CMP-SiaNAz as donor. The in vivo results suggest that for this mAb, concentrations above 100 μM of Ac4ManNAz are necessary to allow for observation of terminal SiaNAz on tryptic peptides of TZMm2 by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. This is further confirmed by a parallel study on the production of EG2-hFc monoclonal antibody (Zhang J et al. Prot Expr Purific 65(1); 77-82, 2009) in the presence of increasing concentrations of Ac4ManNAz.
Collapse
Affiliation(s)
- Edward Bodnar
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Céline Raymond
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Paul G Lopez
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carina Villacrés
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Butler
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ian C Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
33
|
Bodnar ED, Perreault H. Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment. Anal Chim Acta 2015; 891:179-89. [DOI: 10.1016/j.aca.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
|
34
|
Marine JE, Liang X, Song S, Rudick JG. Azide-rich peptides via an on-resin diazotransfer reaction. Biopolymers 2015; 104:419-26. [PMID: 25753459 PMCID: PMC4516611 DOI: 10.1002/bip.22634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Azide-containing amino acids are valuable building blocks in peptide chemistry, because azides are robust partners in several bioorthogonal reactions. Replacing polar amino acids with apolar, azide-containing amino acids in solid-phase peptide synthesis can be tricky, especially when multiple azide residues are to be introduced in the amino acid sequence. We present a strategy for effectively incorporating multiple azide-containing residues site-specifically.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
35
|
Silica-based 2-(N,N-dimethylamino)-1,3-propanediol hydrophilic interaction liquid chromatography stationary phase for separating cephalosporins and carbapenems. Anal Bioanal Chem 2015; 407:6217-20. [PMID: 26022095 DOI: 10.1007/s00216-015-8779-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
A silica-based stationary phase bearing both hydrophilic hydroxyl and amino groups was developed by covalently bonding a small molecular N,N-dimethylamino 1,3-propanediol moiety onto silica beads via copper(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition (CuAAC). This new stationary phase showed good HILIC characteristics and high column efficiency (the theoretical plate number is up to 37000 plates m(-1) in the case of inosine) in the separation of polar compounds, such as nucleosides and bases, organic acids, cephalosporins, and carbapenems.
Collapse
|
36
|
Wu S, Li X, Zhang F, Jiang G, Liang X, Yang B. An arginine-functionalized stationary phase for hydrophilic interaction liquid chromatography. Analyst 2015; 140:3921-4. [PMID: 25946074 DOI: 10.1039/c5an00570a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An arginine-functionalized stationary phase for hydrophilic interaction liquid chromatography (HILIC) has been prepared for the first time by clicking arginine onto silica gel. It offers an efficient separation of organic acids, nucleotides and sugars. More interestingly, it exhibited excellent selectivity and enrichment toward acidic glycopeptides, even at a ratio of 1 : 150 to non-glycopeptides.
Collapse
Affiliation(s)
- Shengjie Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
37
|
Liang T, Fu Q, Shen A, Wang H, Jin Y, Xin H, Ke Y, Guo Z, Liang X. Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography. J Chromatogr A 2015; 1388:110-8. [DOI: 10.1016/j.chroma.2015.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/16/2014] [Accepted: 02/08/2015] [Indexed: 11/15/2022]
|
38
|
Chen Y, Xiong Z, Zhang L, Zhao J, Zhang Q, Peng L, Zhang W, Ye M, Zou H. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. NANOSCALE 2015; 7:3100-3108. [PMID: 25611677 DOI: 10.1039/c4nr05955g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g(-1)), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.
Collapse
Affiliation(s)
- Yajing Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Preparation, characterization and application of N-methylene phosphonic acid chitosan grafted magnesia–zirconia stationary phase. Anal Chim Acta 2015; 854:191-201. [DOI: 10.1016/j.aca.2014.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/06/2014] [Accepted: 11/15/2014] [Indexed: 11/21/2022]
|
40
|
Yin W, Chai H, Liu R, Chu C, Palasota JA, Cai X. Click N-benzyl iminodiacetic acid: Novel silica-based tridentate zwitterionic stationary phase for hydrophilic interaction liquid chromatography. Talanta 2015; 132:137-45. [DOI: 10.1016/j.talanta.2014.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022]
|
41
|
|
42
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
43
|
Sheng Q, Su X, Li X, Ke Y, Liang X. A dextran-bonded stationary phase for saccharide separation. J Chromatogr A 2014; 1345:57-67. [DOI: 10.1016/j.chroma.2014.03.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
44
|
One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides. Anal Chim Acta 2014; 841:99-105. [PMID: 25109867 DOI: 10.1016/j.aca.2014.05.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/09/2014] [Accepted: 05/25/2014] [Indexed: 12/19/2022]
Abstract
Selective enrichment of glycopeptides prior to the mass spectrometry (MS) analysis is essential due to ion suppression effect during ionization caused by the co-presence of non-glycosylated peptides. Among the enrichment approaches, hydrophilic interaction liquid chromatography (HILIC) based on magnetic separation has become a popular method in recent years. As the conventional synthesis procedures of these materials are tedious and time-consuming with at least four steps. Herein, magnetic colloidal nanocrystal clusters coated with chitosan (Fe3O4@CS MCNCs) have been successfully prepared by a simple one-pot method. The resulting Fe3O4@CS MCNCs demonstrated an excellent ability for glycopeptide enrichment with high selectivity, low detection limit and high binding capacity. Furthermore, in the analysis of real complicated biological sample, 283 unique N-glycosylation sites corresponding to 175 glycosylated proteins were identified in three replicate analyses of 45μg protein sample extracted from HeLa cells, indicating the great potential in detection and identification of low abundant glycopeptides in glycoproteome analysis.
Collapse
|
45
|
Zhang Y, Jiao J, Yang P, Lu H. Mass spectrometry-based N-glycoproteomics for cancer biomarker discovery. Clin Proteomics 2014; 11:18. [PMID: 24872809 PMCID: PMC4017703 DOI: 10.1186/1559-0275-11-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/20/2014] [Indexed: 02/04/2023] Open
Abstract
Glycosylation is estimated to be found in over 50% of human proteins. Aberrant protein glycosylation and alteration of glycans are closely related to many diseases. More than half of the cancer biomarkers are glycosylated-proteins, and specific glycoforms of glycosylated-proteins may serve as biomarkers for either the early detection of disease or the evaluation of therapeutic efficacy for treatment of diseases. Glycoproteomics, therefore, becomes an emerging field that can make unique contributions to the discovery of biomarkers of cancers. The recent advances in mass spectrometry (MS)-based glycoproteomics, which can analyze thousands of glycosylated-proteins in a single experiment, have shown great promise for this purpose. Herein, we described the MS-based strategies that are available for glycoproteomics, and discussed the sensitivity and high throughput in both qualitative and quantitative manners. The discovery of glycosylated-proteins as biomarkers in some representative diseases by employing glycoproteomics was also summarized.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Glycoconjuates Research Ministry of Public Health and Institutes of Biomedical Sciences, Fudan University Shanghai, 200032, China
| | - Jing Jiao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Key Laboratory of Glycoconjuates Research Ministry of Public Health and Institutes of Biomedical Sciences, Fudan University Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Haojie Lu
- Key Laboratory of Glycoconjuates Research Ministry of Public Health and Institutes of Biomedical Sciences, Fudan University Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
46
|
Click aspartic acid as H ILIC SPE material for selective enrichment of N-linked glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 941:45-9. [DOI: 10.1016/j.jchromb.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
47
|
Bai H, Pan Y, Tong W, Zhang W, Ren X, Tian F, Peng B, Wang X, Zhang Y, Deng Y, Qin W, Qian X. Graphene based soft nanoreactors for facile “one-step” glycan enrichment and derivatization for MALDI-TOF-MS analysis. Talanta 2013; 117:1-7. [DOI: 10.1016/j.talanta.2013.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/14/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022]
|
48
|
Marechal A, El-Debs R, Dugas V, Demesmay C. Is click chemistry attractive for separation sciences? J Sep Sci 2013; 36:2049-62. [DOI: 10.1002/jssc.201300231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Audrey Marechal
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Racha El-Debs
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Vincent Dugas
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Claire Demesmay
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| |
Collapse
|
49
|
Shen G, Zhang F, Yang B, Chu C, Liang X. A novel amide stationary phase for hydrophilic interaction liquid chromatography and ion chromatography. Talanta 2013; 115:129-32. [PMID: 24054569 DOI: 10.1016/j.talanta.2013.04.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/11/2013] [Accepted: 04/21/2013] [Indexed: 11/17/2022]
Abstract
A novel amide stationary phase (ASP) for hydrophilic interaction liquid chromatography (HILIC) has been prepared via the Click chemistry method. It was based on the strategy that the amino group of Asparagine was easily transferred to the corresponding azido group and then clicked onto terminal alkyne-silica gel in the presence of Cu(I)-based catalyst. For the tested polar compounds including nucleosides and nucleic acid bases, ASP-based column has demonstrated good performance in terms of separation efficiency and column stability, and the retention mechanism was found to match well the typical HILIC retention. In addition, the ASP described here showed much better selectivity in separation of inorganic anions under ion chromatography mode relative to other kinds of commercial ASP.
Collapse
Affiliation(s)
- Guobin Shen
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
50
|
Yang F, Mao J, He XW, Chen LX, Zhang YK. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins. Anal Bioanal Chem 2013; 405:5321-31. [DOI: 10.1007/s00216-013-6917-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
|