1
|
Nascimento GCZ, Matias R, Miranda-Vilela AL, Farias KS, Silva DB, Facco GG, da Silva MAN, Rivero-Wendt CLG. Acute exposure of zebrafish ( Danio rerio) adults to psychotria carthagenensis leaf extracts: chemical profile, lack of genotoxicity and histological changes. Drug Chem Toxicol 2024:1-11. [PMID: 38953234 DOI: 10.1080/01480545.2024.2367560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Psychotria carthagenensis is a shrubby plant, often consumed by traditional populations in religious rituals. Previous studies have shown that this plant's infusion can inhibit the activity of Acetylcholinesterase (AChE) in rats. Despite the therapeutic potential, there is a lack of research regarding its possible toxicological and genotoxic effects. Hence, this study aimed to analyze the chemical profile of the ethanol extract from P. carthagenensis leaves by LC-DAD-MS and assess its possible toxicity and genotoxicity in zebrafish (Danio rerio). Adult zebrafish (N = 9/group) were exposed at different concentrations and the LC50 was calculated. Frequencies of micronucleus (MN) and nuclear abnormalities (NA) were estimated for genotoxic effects, and degree of tissue changes (DTC) was used to assess the liver and gill histopathology. From the LC-DAD-MS analyses, the identified compounds included N-fructosyl valine, ethyl hexoside, 5-O-E-caffeoylquinic acid, N-feruloylagmatime, roseoside, di-O-deoxyhexoyl-hexosyl quercetin, loiolide, and oleamide. The calculated values of LC50 did not vary significantly during the time of exposure. At the concentrations of 1.25, 2.5, 3.75, 5, 7.5, 10 and 15 mg/L, there was no genotoxicity, and only low to moderate toxicity for the tissues was observed, despite mortality of 100% at doses of 20-100 mg/L of P. carthagenensis ethanolic leaf extract. There were changes in cytoplasm of hepatocytes at 1.25 mg/L, and karyorrhexis, karyolysis and megalocytosis at 10 mg/L. In the gills, the alterations were primary lamellar hyperplasia in all concentrations, and at 10 mg/L, secondary lamellar edema and vascular hyperemia were common. Additionally, the chemical composition of P. carthagenensis was expanded.
Collapse
Affiliation(s)
| | - Rosemary Matias
- Postgraduate Program in Environment and Regional Development, University Anhanguera-Uniderp, Campo Grande, MS, Brazil
| | | | - Katyuce Souza Farias
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Gilberto Gonçalves Facco
- Postgraduate Program in Environment and Regional Development, University Anhanguera-Uniderp, Campo Grande, MS, Brazil
| | - Mirra Angelina Neres da Silva
- Ultraviolet Laboratory, Department of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | |
Collapse
|
2
|
Alijanpour S, Ghasemzadeh Z, Ebrahimi-Ghiri M, Zarrindast MR. Basolateral amygdala cannabinoid CB1 receptors mediate the antinociceptive activity of harmaline in adolescent male mice. Physiol Behav 2022; 254:113886. [PMID: 35718215 DOI: 10.1016/j.physbeh.2022.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Evidence suggests a clear role for the amygdala endocannabinoid system in pain processing. Harmaline has been also known as the main nociceptive agent extracted from the Peganum harmala plant. In this study, the role of basolateral amygdala (BLA) cannabinoid CB1 receptors in pain sensitivity of harmaline-treated mice were assessed using tail-flick and hot plate methods in adolescent male NMRI mice. Intraperitoneal administration of two higher doses of harmaline (6 and 8 mg/kg) increased tail-flick latency, suggesting an antinociceptive activity. The same result was observed for the higher dose of harmaline in the hot plate test. Intra-BLA microinjection of CB1 receptor agonist ACPA (1 and 1.5 ng/mouse) or (1.5 ng/mouse) enhanced the ineffective dose-response of harmaline on pain threshold in the tail-flick or hot plate tests, respectively. Microinjection of two higher doses of CB1 receptor antagonist AM251 (0.5 and 1 ng/mouse) attenuated the antinociceptive activity of harmaline (8 ng/mouse) in both tail-flick and hot plate tests. Meanwhile, ACPA and AM251 did not alter latency to withdraw from the noxious stimulus in both tests, by themselves. It should be noted that the analgesic dose of the drugs alone or in combination did not affect locomotor activity. The obtained results highlight that BLA CB1 receptors mediate the antinociceptive activity of harmaline.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, P. O. Box 163, Gonbad Kavous, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kaserer T, Steinacher T, Kainhofer R, Erli F, Sturm S, Waltenberger B, Schuster D, Spetea M. Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Sci Rep 2020; 10:13804. [PMID: 32796875 PMCID: PMC7427800 DOI: 10.1038/s41598-020-70493-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects. Medicinal plants represent important sources of new drug candidates, with morphine and its semisynthetic analogues as well-known examples as analgesic drugs. In this study, combining in silico (pharmacophore-based virtual screening and docking) and pharmacological (in vitro binding and functional assays, and behavioral tests) approaches, we report on the discovery of two naturally occurring plant alkaloids, corydine and corydaline, as new MOR agonists that produce antinociceptive effects in mice after subcutaneous administration via a MOR-dependent mechanism. Furthermore, corydine and corydaline were identified as G protein-biased agonists to the MOR without inducing β-arrestin2 recruitment upon receptor activation. Thus, these new scaffolds represent valuable starting points for future chemical optimization towards the development of novel opioid analgesics, which may exhibit improved therapeutic profiles.
Collapse
Affiliation(s)
- Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Theresa Steinacher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Roman Kainhofer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Filippo Erli
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Sonja Sturm
- Department of Pharmacognosy, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Birgit Waltenberger
- Department of Pharmacognosy, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria. .,Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Molecules 2018; 23:molecules23102602. [PMID: 30314288 PMCID: PMC6222496 DOI: 10.3390/molecules23102602] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited.
Collapse
|
5
|
Zhou FJ, Nian Y, Yan Y, Gong Y, Luo Q, Zhang Y, Hou B, Zuo ZL, Wang SM, Jiang HH, Yang J, Cheng YX. Two New Classes of T-Type Calcium Channel Inhibitors with New Chemical Scaffolds from Ganoderma cochlear. Org Lett 2015; 17:3082-5. [PMID: 26024438 DOI: 10.1021/acs.orglett.5b01353] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Feng-Jiao Zhou
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Yin Nian
- Key
Laboratory of Animal Models and Human Disease Mechanisms, and Ion
Channel Research and Drug Development Center, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
| | - Yongming Yan
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ye Gong
- Key
Laboratory of Animal Models and Human Disease Mechanisms, and Ion
Channel Research and Drug Development Center, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
| | - Qi Luo
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Zhang
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Bo Hou
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Zhi-Li Zuo
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shu-Mei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - He-Hai Jiang
- Key
Laboratory of Animal Models and Human Disease Mechanisms, and Ion
Channel Research and Drug Development Center, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
| | - Jian Yang
- Key
Laboratory of Animal Models and Human Disease Mechanisms, and Ion
Channel Research and Drug Development Center, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Yong-Xian Cheng
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
6
|
Riley AP, Groer CE, Young D, Ewald AW, Kivell BM, Prisinzano TE. Synthesis and κ-opioid receptor activity of furan-substituted salvinorin A analogues. J Med Chem 2014; 57:10464-75. [PMID: 25426797 PMCID: PMC4281103 DOI: 10.1021/jm501521d] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure-activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings. Evaluation of these compounds in a functional assay indicated that sterically less demanding substitutions are preferred, suggesting the furan ring is bound in a congested portion of the binding pocket. The most potent of the analogues successfully reduced drug-seeking behavior in an animal model of drug-relapse without producing the sedation observed with other κ-opioid agonists.
Collapse
Affiliation(s)
- Andrew P Riley
- Department of Chemistry and ‡Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , Lawrence, Kansas 66045, United States
| | | | | | | | | | | |
Collapse
|
7
|
Simonson B, Morani AS, Ewald AWM, Walker L, Kumar N, Simpson D, Miller JH, Prisinzano TE, Kivell BM. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A. Br J Pharmacol 2014; 172:515-31. [PMID: 24641310 DOI: 10.1111/bph.12692] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- B Simonson
- School of Biological Science, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
A single injection of a novel κ opioid receptor agonist salvinorin A attenuates the expression of cocaine-induced behavioral sensitization in rats. Behav Pharmacol 2012; 23:162-70. [PMID: 22293826 DOI: 10.1097/fbp.0b013e3283512c1e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kappa opioid receptor (KOPr) activation antagonizes many cocaine-related behaviors but adverse side-effects such as sedation, dysphoria, and depression limit their therapeutic use. Recently, salvinorin A (Sal A), a naturally occurring KOPr agonist, has been shown to attenuate cocaine-induced drug seeking in a model of relapse in rats. The present study evaluated the effects of acute Sal A exposure on cocaine-induced hyperactivity and cocaine sensitization in rats. Acute treatment with a dose of Sal A that decreased drug seeking in a previous study (0.3 mg/kg) significantly attenuated the expression of cocaine sensitization. This dose of Sal A failed to affect spontaneous locomotion or to produce a conditioned taste aversion to a novel-tasting saccharin solution. However, Sal A decreased climbing and swimming time and increased time spent immobile in the forced swim test. These findings indicate that Sal A, just like traditional KOPr agonists, attenuates cocaine-induced behavioral sensitization but does not produce the adverse effect of conditioned aversion, suggesting improved potential compliance. However, prodepressive effects were also produced and these effects may limit the therapeutic potential.
Collapse
|
9
|
Lovell KM, Vasiljevik T, Araya JJ, Lozama A, Prevatt-Smith KM, Day VW, Dersch CM, Rothman RB, Butelman ER, Kreek MJ, Prisinzano TE. Semisynthetic neoclerodanes as kappa opioid receptor probes. Bioorg Med Chem 2012; 20:3100-10. [PMID: 22464684 DOI: 10.1016/j.bmc.2012.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Modification of the furan ring of salvinorin A (1), the main active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. Conversion of the furan ring to an aldehyde at the C-12 position (5) has allowed for the synthesis of analogues with new carbon-carbon bonds at that position. Previous methods for forming these bonds, such as Grignard and Stille conditions, have met with limited success. We report a palladium catalyzed Liebeskind-Srogl cross-coupling reaction of a thioester and a boronic acid that occurs at neutral pH and ambient temperature to produce ketone analogs at C-12. To the best of our knowledge, this is the first reported usage of the Liebeskind-Srogl reaction to diversify a natural product scaffold. We also describe a one-step protocol for the conversion of 1 to 12-epi-1 (3) through microwave irradiation. Previously, this synthetically challenging process has required multiple steps. Additionally, we report in this study that alkene 9 and aromatic analogues 12, 19, 23, 25, and 26 were discovered to retain affinity and selectivity at kappa opioid receptors (KOP). Finally, we report that the furan-2-yl analog of 1 (31) has similar affinity to 1. Collectively, these findings suggest that different aromatic groups appended directly to the decalin core may be well tolerated by KOP receptors, and may generate further ligands with affinity and activity at KOP receptors.
Collapse
Affiliation(s)
- Kimberly M Lovell
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|