1
|
Franceus J, Steynen M, Allaert Y, Bredael K, D'hooghe M, Desmet T. High-yield synthesis of 2-O-α-D-glucosyl-D-glycerate by a bifunctional glycoside phosphorylase. Appl Microbiol Biotechnol 2024; 108:55. [PMID: 38175244 DOI: 10.1007/s00253-023-12970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Osmolytes are produced by various microorganisms as a defense mechanism to protect cells and macromolecules from damage caused by external stresses in harsh environments. Due to their useful stabilizing properties, these molecules are applied as active ingredients in a wide range of cosmetics and healthcare products. The metabolic pathways and biocatalytic syntheses of glycosidic osmolytes such as 2-O-α-D-glucosyl-D-glycerate often involve the action of a glycoside phosphorylase. Here, we report the discovery of a glucosylglycerate phosphorylase from carbohydrate-active enzyme family GH13 that is also active on sucrose, which contrasts the strict specificity of known glucosylglycerate phosphorylases that can only use α-D-glucose 1-phosphate as glycosyl donor in transglycosylation reactions. The novel enzyme can be distinguished from other phosphorylases from the same family by the presence of an atypical conserved sequence motif at specificity-determining positions in the active site. The promiscuity of the sucrose-active glucosylglycerate phosphorylase can be exploited for the high-yielding and rapid synthesis of 2-O-α-D-glucosyl-D-glycerate from sucrose and D-glycerate. KEY POINTS: • A Xylanimonas protaetiae glycoside phosphorylase can use both d-glycerate and fructose as glucosyl acceptor with high catalytic efficiency • Biocatalytic synthesis of the osmolyte 2-O-α-d-glucosyl-d-glycerate • Positions in the active site of GH13 phosphorylases act as convenient specificity fingerprints.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Manon Steynen
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Yentl Allaert
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kato Bredael
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
2
|
Liu J, Ren M, Ma H, Zhang H, Cui X, Kang R, Feng X, Meng D. One-pot sustainable synthesis of glucosylglycerate from starch and glycerol through artificial in vitro enzymatic cascade. BIORESOURCE TECHNOLOGY 2024; 399:130611. [PMID: 38508282 DOI: 10.1016/j.biortech.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Glucosylglycerate (R-2-O-α-D-glucopyranosyl-glycerate, GG) is a negatively charged compatible solution with versatile functions. Here, an artificial in vitro enzymatic cascade was designed to feasibly and sustainably produce GG from affordable starch and glycerol. First, Spirochaeta thermophila glucosylglycerate phosphorylase (GGP) was carefully selected because of its excellent heterologous expression, specific activity, and thermostability. The optimized two-enzyme cascade, consisting of alpha-glucan phosphorylase (αGP) and GGP, achieved a remarkable 81 % conversion rate from maltodextrin and D-glycerate. Scaling up this cascade resulted in a practical concentration of 58 g/L GG with a 62 % conversion rate based on the added D-glycerate. Additionally, the production of GG from inexpensive starch and glycerol in one-pot using artificial four-enzyme cascade was successfully implemented, which integrates alditol oxidase and catalase with αGP and GGP. Collectively, this sustainable enzymatic cascade demonstrates the feasibility of the practical synthesis of GG and has the potential to produce other glycosides using the phosphorylase-and-phosphorylase paradigm.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Mengfei Ren
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Haoran Ma
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Huilin Zhang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinyu Cui
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Runyuan Kang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinming Feng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China
| | - Dongdong Meng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
3
|
Allaert Y, Leyder A, Franceus J, Desmet T. Strategies for the synthesis of the osmolyte glucosylglycerate and its precursor glycerate. Appl Microbiol Biotechnol 2024; 108:297. [PMID: 38607564 PMCID: PMC11009771 DOI: 10.1007/s00253-024-13139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked. Glucosylglycerate is typically accumulated by certain organisms when they are exposed to high salinity and nitrogen starvation, and its potent stabilizing effects have been demonstrated in vitro. However, the applications of this osmolyte have not been thoroughly explored due to the lack of a cost-efficient production process. Here, we present an overview of the progress that has been made in developing promising strategies for the synthesis of glucosylglycerate and its precursor glycerate, and discuss the remaining challenges. KEY POINTS: • Bacterial milking could be explored for fermentative production of glucosylglycerate • Glycoside phosphorylases of GH13_18 represent attractive alternatives for biocatalytic production • Conversion of glycerol with alditol oxidase is a promising strategy for generating the precursor glycerate.
Collapse
Affiliation(s)
- Yentl Allaert
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Arthur Leyder
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
4
|
Zhang C, Chen Q, Fan F, Tang J, Zhan T, Wang H, Zhang X. Directed evolution of alditol oxidase for the production of optically pure D-glycerate from glycerol in the engineered Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6312499. [PMID: 34196357 PMCID: PMC8788829 DOI: 10.1093/jimb/kuab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
D-glycerate is an attractive chemical for a wide variety of pharmaceutical, cosmetic, biodegradable polymers, and other applications. Now several studies have been reported about the synthesis of glycerate by different biotechnological and chemical routes from glycerol or other feedstock. Here, we present the construction of an Escherichia coli engineered strain to produce optically pure D-glycerate by oxidizing glycerol with an evolved variant of alditol oxidase (AldO) from Streptomyces coelicolor. This is achieved by starting from a previously reported variant mAldO and employing three rounds of directed evolution, as well as the combination of growth-coupled high throughput selection with colorimetric screening. The variant eAldO3-24 displays a higher substrate affinity toward glycerol with 5.23-fold than the wild-type AldO, and a 1.85-fold increase of catalytic efficiency (kcat/KM). Then we introduced an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible T7 expression system in E. coli to overexpress the variant eAldO3-24, and deleted glucosylglycerate phosphorylase encoding gene ycjM to block the consumption of D-glycerate. Finally, the resulting strain TZ-170 produced 30.1 g/l D-glycerate at 70 h with a yield of 0.376 mol/mol in 5-l fed-batch fermentation.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China.,College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| |
Collapse
|
5
|
Structural Comparison of a Promiscuous and a Highly Specific Sucrose 6 F-Phosphate Phosphorylase. Int J Mol Sci 2019; 20:ijms20163906. [PMID: 31405215 PMCID: PMC6720575 DOI: 10.3390/ijms20163906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
In family GH13 of the carbohydrate-active enzyme database, subfamily 18 contains glycoside phosphorylases that act on α-sugars and glucosides. Because their phosphorolysis reactions are effectively reversible, these enzymes are of interest for the biocatalytic synthesis of various glycosidic compounds. Sucrose 6F-phosphate phosphorylases (SPPs) constitute one of the known substrate specificities. Here, we report the characterization of an SPP from Ilumatobacter coccineus with a far stricter specificity than the previously described promiscuous SPP from Thermoanaerobacterium thermosaccharolyticum. Crystal structures of both SPPs were determined to provide insight into their similarities and differences. The residues responsible for binding the fructose 6-phosphate group in subsite +1 were found to differ considerably between the two enzymes. Furthermore, several variants that introduce a higher degree of substrate promiscuity in the strict SPP from I. coccineus were designed. These results contribute to an expanded structural knowledge of enzymes in subfamily GH13_18 and facilitate their rational engineering.
Collapse
|
6
|
Sato S, Kishimoto A, Kitamoto D, Takahashi Y, Kondo Y, Habe H. Synthesis and Characterization of a Novel Glycolipid with Glucosylglycerate as a Hydrophile Showing Protective Effects on Heat-induced Protein Denaturation. J Oleo Sci 2019; 68:493-499. [PMID: 30971645 DOI: 10.5650/jos.ess19044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel glycolipid featuring a glucosylglycerate moiety as a polar head group was synthesized in two steps from sucrose, glycerate, and N-dodecylamine. Glucosylglyceric acid was formed from sucrose and glyceric acid using sucrose synthase as a catalyst, followed by condensation with N-dodecylamine using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as a condensing agent. A white solid compound was recovered with a yield of 21% after purification by hydrophobic column chromatography. The structure and purity of the isolated compound, identified as N-dodecyl glucosylglyceric acid amide (aGGA), were confirmed by 1H and 13C nuclear magnetic resonance and liquid chromatography-electrospray ionization-mass spectrometry. aGGA was soluble in several polar solvents, including acetone, dimethyl formamide, and short chain alcohols. The dissolution of aGGA in water reduced the surface tension to 27.8 mN m-1 at a critical micellar concentration of 1.57 × 10-4 M. In addition, the presence of aGGA at concentrations as low at 0.68 mM protected egg white from heat-induced denaturation. These results suggest that aGGA could be useful as a protein-protecting surfactant.
Collapse
Affiliation(s)
- Shun Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Atsushi Kishimoto
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science
| | - Dai Kitamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yutaka Takahashi
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science.,Present address: New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Yukishige Kondo
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).,Present address: Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
7
|
Glucosylglycerate Phosphorylase, an Enzyme with Novel Specificity Involved in Compatible Solute Metabolism. Appl Environ Microbiol 2017; 83:AEM.01434-17. [PMID: 28754708 DOI: 10.1128/aem.01434-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Family GH13_18 of the carbohydrate-active enzyme database consists of retaining glycoside phosphorylases that have attracted interest with their potential for synthesizing valuable α-sugars and glucosides. Sucrose phosphorylase was believed to be the only enzyme with specificity in this subfamily for many years, but recent work revealed an enzyme with a different function and hinted at an even broader diversity that is left to discover. In this study, a putative sucrose phosphorylase from Meiothermus silvanus that resides in a previously unexplored branch of the family's phylogenetic tree was expressed and characterized. Unexpectedly, no activity on sucrose was observed. Guided by a thorough inspection of the genomic landscape surrounding other genes in the branch, the enzyme was found to be a glucosylglycerate phosphorylase, with a specificity never before reported. Homology modeling, docking, and mutagenesis pinpointed particular acceptor site residues (Asn275 and Glu383) involved in the binding of glycerate. Various organisms known to synthesize and accumulate glucosylglycerate as a compatible solute possess a putative glucosylglycerate phosphorylase gene, indicating that the phosphorylase may be a regulator of its intracellular levels. Moreover, homologs of this novel enzyme appear to be distributed among diverse bacterial phyla, a finding which suggests that many more organisms may be capable of assimilating or synthesizing glucosylglycerate than previously assumed.IMPORTANCE Glycoside phosphorylases are an intriguing group of carbohydrate-active enzymes that have been used for the synthesis of various economically appealing glycosides and sugars, and they are frequently subjected to enzyme engineering to further expand their application potential. The novel specificity discovered in this work broadens the diversity of these phosphorylases and opens up new possibilities for the efficient production of glucosylglycerate, which is a remarkably potent and versatile stabilizer for protein formulations. Finally, it is a new piece of the puzzle of glucosylglycerate metabolism, being the only known enzyme capable of catalyzing the breakdown of glucosylglycerate in numerous bacterial phyla.
Collapse
|
8
|
Nunes-Costa D, Maranha A, Costa M, Alarico S, Empadinhas N. Glucosylglycerate metabolism, bioversatility and mycobacterial survival. Glycobiology 2016; 27:213-227. [DOI: 10.1093/glycob/cww132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
|
9
|
Ferreira C, Soares AR, Lamosa P, Santos MA, da Costa MS. Comparison of the compatible solute pool of two slightly halophilic planctomycetes species, Gimesia maris and Rubinisphaera brasiliensis. Extremophiles 2016; 20:811-820. [PMID: 27502056 DOI: 10.1007/s00792-016-0868-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
Gimesia maris and Rubinisphaera brasiliensis are slightly halophilic representatives of the deep-branching phylum Planctomycetes. For osmoadaptation both species accumulated α-glutamate, sucrose, ectoine and hydroxyectoine. A major role was found for ectoine, hydroxyectoine as well as sucrose under hyper-osmotic shock conditions. Nevertheless, the levels of sucrose were up-regulated by the increased salinity levels and also by low nitrogen availability. Additionally, G. maris accumulated glucosylglycerate (GG) as major solute specifically under low nitrogen levels, which prompted us to analyse the transcript abundance of two homologues genes known for the biosynthesis of GG, namely glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP). By qPCR using a suitable reference gene selected in this study, the transcript abundance of the biosynthetic genes was quantified in G. maris cells under hyper-osmotic shock or under low nitrogen conditions. The gpgS gene was induced under nitrogen-limiting conditions suggesting that GG synthesis is regulated primarily at the transcription level. Moreover, the expression of a gene coding for a putative sucrose-phosphorylase (Spase) located upstream the gpgS and gpgP genes was up-regulated, predicting a metabolic role of Spase probably related to GG synthesis.
Collapse
Affiliation(s)
- Catarina Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ana R Soares
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Lamosa
- Centro de Ressonância Magnética António Xavier, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901, Oeiras, Portugal
| | - Manuel A Santos
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Milton S da Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
10
|
Chiku K, Nihira T, Suzuki E, Nishimoto M, Kitaoka M, Ohtsubo K, Nakai H. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. PLoS One 2014; 9:e114882. [PMID: 25500577 PMCID: PMC4264767 DOI: 10.1371/journal.pone.0114882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Abstract
We characterized Teth514_1788 and Teth514_1789, belonging to glycoside hydrolase family 130, from Thermoanaerobacter sp. X-514. These two enzymes catalyzed the synthesis of 1,2-β-oligomannan using β-1,2-mannobiose and d-mannose as the optimal acceptors, respectively, in the presence of the donor α-d-mannose 1-phosphate. Kinetic analysis of the phosphorolytic reaction toward 1,2-β-oligomannan revealed that these enzymes followed a typical sequential Bi Bi mechanism. The kinetic parameters of the phosphorolysis of 1,2-β-oligomannan indicate that Teth514_1788 and Teth514_1789 prefer 1,2-β-oligomannans containing a DP ≥3 and β-1,2-Man2, respectively. These results indicate that the two enzymes are novel inverting phosphorylases that exhibit distinct chain-length specificities toward 1,2-β-oligomannan. Here, we propose 1,2-β-oligomannan:phosphate α-d-mannosyltransferase as the systematic name and 1,2-β-oligomannan phosphorylase as the short name for Teth514_1788 and β-1,2-mannobiose:phosphate α-d-mannosyltransferase as the systematic name and β-1,2-mannobiose phosphorylase as the short name for Teth514_1789.
Collapse
Affiliation(s)
- Kazuhiro Chiku
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | - Erika Suzuki
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Sato S, Kitamoto D, Habe H. In vitro evaluation of glyceric acid and its glucosyl derivative, α-glucosylglyceric acid, as cell proliferation inducers and protective solutes. Biosci Biotechnol Biochem 2014; 78:1183-6. [PMID: 25229854 DOI: 10.1080/09168451.2014.885823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We demonstrate that 0.78 mm glyceric acid activated the proliferation of human dermal fibroblasts by about 45%, whereas 34 mm α-glucosylglyceric acid (GGA) increased collagen synthesis by the fibroblasts by 1.4-fold compared to that in the absence of GGA. The two substances also exerted protective effects on both DNA scission by the hydroxyl radical and protein aggregation by heat in vitro.
Collapse
Affiliation(s)
- Shun Sato
- a Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba, Ibaraki , Japan
| | | | | |
Collapse
|
12
|
Wildberger P, Brecker L, Nidetzky B. Chiral resolution through stereoselective transglycosylation by sucrose phosphorylase: application to the synthesis of a new biomimetic compatible solute, (R)-2-O-α-D-glucopyranosyl glyceric acid amide. Chem Commun (Camb) 2014; 50:436-8. [PMID: 24253490 DOI: 10.1039/c3cc47249c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sucrose phosphorylase catalysed glycosylation of glyceric acid amide with complete regio- and diastereo-selectivity is studied. (R)-2-O-α-D-Glucopyranosyl glyceric acid amide was obtained in high yield from single-step transformation of racemic glyceric acid amide and sucrose. Non-productive binding of (S)-glyceric acid amide appeared to underlie strict enantiodiscrimination by the enzyme, thus supporting chiral resolutions based on stereoselective transglycosylation.
Collapse
Affiliation(s)
- Patricia Wildberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, A-8010 Graz, Austria.
| | | | | |
Collapse
|
13
|
Qi P, You C, Zhang YHP. One-Pot Enzymatic Conversion of Sucrose to Synthetic Amylose by using Enzyme Cascades. ACS Catal 2014. [DOI: 10.1021/cs400961a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peng Qi
- Biological
Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, United States
| | - Chun You
- Biological
Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, United States
| | - Y.-H. Percival Zhang
- Biological
Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, United States
- Cell Free Bioinnovations,
Inc., Blacksburg, Virginia 24060, United States
| |
Collapse
|
14
|
Cunha S, d'Avó AF, Mingote A, Lamosa P, da Costa MS, Costa J. Mannosylglucosylglycerate biosynthesis in the deep-branching phylum Planctomycetes: characterization of the uncommon enzymes from Rhodopirellula baltica. Sci Rep 2014; 3:2378. [PMID: 23921581 PMCID: PMC3736172 DOI: 10.1038/srep02378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/23/2013] [Indexed: 11/24/2022] Open
Abstract
The biosynthetic pathway for the rare compatible solute mannosylglucosylglycerate (MGG) accumulated by Rhodopirellula baltica, a marine member of the phylum Planctomycetes, has been elucidated. Like one of the pathways used in the thermophilic bacterium Petrotoga mobilis, it has genes coding for glucosyl-3-phosphoglycerate synthase (GpgS) and mannosylglucosyl-3-phosphoglycerate (MGPG) synthase (MggA). However, unlike Ptg. mobilis, the mesophilic R. baltica uses a novel and very specific MGPG phosphatase (MggB). It also lacks a key enzyme of the alternative pathway in Ptg. mobilis – the mannosylglucosylglycerate synthase (MggS) that catalyses the condensation of glucosylglycerate with GDP-mannose to produce MGG. The R. baltica enzymes GpgS, MggA, and MggB were expressed in E. coli and characterized in terms of kinetic parameters, substrate specificity, temperature and pH dependence. This is the first characterization of genes and enzymes for the synthesis of compatible solutes in the phylum Planctomycetes and for the synthesis of MGG in a mesophile.
Collapse
Affiliation(s)
- Sofia Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate. PLoS One 2014; 9:e86548. [PMID: 24466148 PMCID: PMC3899277 DOI: 10.1371/journal.pone.0086548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates.
Collapse
|
16
|
Nihira T, Miyajima F, Chiku K, Nishimoto M, Kitaoka M, Ohtsubo K, Nakai H. One Pot Enzymatic Production of Nigerose from Common Sugar Resources Employing Nigerose Phosphorylase. J Appl Glycosci (1999) 2014. [DOI: 10.5458/jag.jag.jag-2013_012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 2013; 17:301-9. [PMID: 23403067 DOI: 10.1016/j.cbpa.2013.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylases are one group of carbohydrate active enzymes involved in the cleavage and formation of glycosidic linkages together with glycoside hydrolases and sugar nucleotide-dependent glycosyltransferases. Noticeably, the catalyzed phosphorolysis is reversible, making phosphorylases suitable catalysts for efficient synthesis of particular oligosaccharides from a donor sugar 1-phosphate and suitable carbohydrate acceptors with strict regioselectivity. Although utilization of phosphorylases for oligosaccharide synthesis has been limited because only few different enzymes are known, recently the number of reported phosphorylases has gradually increased, providing the variation making these enzymes useful tools for efficient synthesis of diverse oligosaccharides.
Collapse
|
18
|
De Winter K, Soetaert W, Desmet T. An imprinted cross-linked enzyme aggregate (iCLEA) of sucrose phosphorylase: combining improved stability with altered specificity. Int J Mol Sci 2012; 13:11333-11342. [PMID: 23109856 PMCID: PMC3472748 DOI: 10.3390/ijms130911333] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/04/2022] Open
Abstract
The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme's specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C. This procedure can be performed in an aqueous environment and gives rise to a new enzyme formulation called iCLEA.
Collapse
Affiliation(s)
- Karel De Winter
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: (K.D.W.); (W.S.)
| | - Wim Soetaert
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: (K.D.W.); (W.S.)
| | - Tom Desmet
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: (K.D.W.); (W.S.)
| |
Collapse
|
19
|
Nihira T, Saito Y, Kitaoka M, Nishimoto M, Otsubo K, Nakai H. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Carbohydr Res 2012; 361:49-54. [PMID: 22982171 DOI: 10.1016/j.carres.2012.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
We identified a glycoside hydrolase family 94 homolog (ACL0729) from Acholeplasma laidlawii PG-8A as a laminaribiose (1,3-β-D-glucobiose) phosphorylase (EC 2.4.1.31). The recombinant ACL0729 produced in Escherichia coli catalyzed phosphorolysis of laminaribiose with inversion of the anomeric configuration in a typical sequential bi bi mechanism releasing α-D-glucose 1-phosphate and D-glucose. Laminaritriose (1,3-β-D-glucotriose) was not an efficient substrate for ACL0729. The phosphorolysis is reversible, enabling synthesis of 1,3-β-D-glucosyl disaccharides by reverse phosphorolysis with strict regioselectivity from α-D-glucose 1-phosphate as the donor and suitable monosaccharide acceptors (D-glucose, 2-deoxy-D-arabino-hexopyranose, D-xylose, D-glucuronic acid, 1,5-anhydro-D-glucitol, and D-mannose) with C-3 and C-4 equatorial hydroxyl groups. The D-glucose and 2-deoxy-D-arabino-hexopyranose caused significantly strong competitive substrate inhibition compared with other glucobiose phosphorylases reported, in which the acceptor competitively inhibited the binding of the donor substrate. By contrast, none of the examined disaccharides served as acceptor in the synthetic reaction.
Collapse
Affiliation(s)
- Takanori Nihira
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides. Carbohydr Res 2012; 360:25-30. [PMID: 22940176 DOI: 10.1016/j.carres.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
We discovered an inverting maltose phosphorylase (Bsel2056) belonging to glycoside hydrolase family 65 from Bacillus selenitireducens MLS10, which possesses synthetic ability for α-D-glucosyl disaccharides and trisaccharides through the reverse phosphorolysis with β-D-glucose 1-phosphate as the donor. Bsel2056 showed the flexibility for monosaccharide acceptors with alternative C2 substituent (2-amino-2-deoxy-D-glucose, 2-deoxy-D-arabino-hexose, 2-acetamido-2-deoxy-D-glucose, D-mannose), resulting in production of 1,4-α-D-glucosyl disaccharides with strict regioselectivity. In addition, Bsel2056 synthesized two maltose derivatives possessing additional D-glucosyl residue bound to C2 position of the D-glucose residue at the reducing end, 1,4-α-D-glucopyranosyl-[1,2-α-D-glucopyranosyl]-D-glucose and 1,4-α-D-glucopyranosyl-[1,2-β-D-glucopyranosyl]-D-glucose, from 1,2-α-D-glucopyranosyl-D-glucose (kojibiose) and 1,2-β-D-glucopyranosyl-D-glucose (sophorose), respectively, as the acceptors. These results suggested that Bsel2056 possessed a binding space to accommodate the bulky C2 substituent of D-glucose.
Collapse
|
21
|
De Winter K, Cerdobbel A, Soetaert W, Desmet T. Operational stability of immobilized sucrose phosphorylase: Continuous production of α-glucose-1-phosphate at elevated temperatures. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Aerts D, Verhaeghe TF, Roman BI, Stevens CV, Desmet T, Soetaert W. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors. Carbohydr Res 2011; 346:1860-7. [DOI: 10.1016/j.carres.2011.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/20/2011] [Indexed: 01/06/2023]
|
23
|
Discovery of nigerose phosphorylase from Clostridium phytofermentans. Appl Microbiol Biotechnol 2011; 93:1513-22. [PMID: 21808968 DOI: 10.1007/s00253-011-3515-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/15/2011] [Accepted: 07/24/2011] [Indexed: 10/17/2022]
Abstract
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of D-glucose and β-D-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k(cat) = 67 s(-1) and K(m) = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using D-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on D-xylose, 1,5-anhydro-D-glucitol, D-galactose, and methyl-α-D-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with D-xylose and methyl-α-D-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-D-glucosyl-D-glucose:phosphate β-D-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.
Collapse
|
24
|
Luley-Goedl C, Nidetzky B. Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences. Biotechnol J 2011; 5:1324-38. [PMID: 21154671 DOI: 10.1002/biot.201000217] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Disaccharide phosphorylases are glycosyltransferases (EC 2.4.1.α) of specialized carbohydrate metabolism in microorganisms. They catalyze glycosyl transfer to phosphate using a disaccharide as donor substrate. Phosphorylases for the conversion of naturally abundant disaccharides including sucrose, maltose, α,α-trehalose, cellobiose, chitobiose, and laminaribiose have been described. Structurally, these disaccharide phosphorylases are often closely related to glycoside hydrolases and transglycosidases. Mechanistically, they are categorized according the stereochemical course of the reaction catalyzed, whereby the anomeric configuration of the disaccharide donor substrate may be retained or inverted in the sugar 1-phosphate product. Glycosyl transfer with inversion is thought to occur through a single displacement-like catalytic mechanism, exemplified by the reaction coordinate of cellobiose/chitobiose phosphorylase. Reaction via configurational retention takes place through the double displacement-like mechanism employed by sucrose phosphorylase. Retaining α,α-trehalose phosphorylase (from fungi) utilizes a different catalytic strategy, perhaps best described by a direct displacement mechanism, to achieve stereochemical control in an overall retentive transformation. Disaccharide phosphorylases have recently attracted renewed interest as catalysts for synthesis of glycosides to be applied as food additives and cosmetic ingredients. Relevant examples are lacto-N-biose and glucosylglycerol whose enzymatic production was achieved on multikilogram scale. Protein engineering of phosphorylases is currently pursued in different laboratories with the aim of broadening the donor and acceptor substrate specificities of naturally existing enzyme forms, to eventually generate a toolbox of new catalysts for glycoside synthesis.
Collapse
Affiliation(s)
- Christiane Luley-Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, Austria
| | | |
Collapse
|
25
|
Luley-Goedl C, Nidetzky B. Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep 2011; 28:875-96. [DOI: 10.1039/c0np00067a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Empadinhas N, da Costa MS. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea. Environ Microbiol 2010; 13:2056-77. [PMID: 21176052 DOI: 10.1111/j.1462-2920.2010.02390.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their interactions with biomolecules have already fuelled several emerging applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | |
Collapse
|
27
|
Cerdobbel A, De Winter K, Desmet T, Soetaert W. Sucrose phosphorylase as cross-linked enzyme aggregate: Improved thermal stability for industrial applications. Biotechnol J 2010; 5:1192-7. [DOI: 10.1002/biot.201000202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 11/10/2022]
|
28
|
Luley-Goedl C, Sawangwan T, Brecker L, Wildberger P, Nidetzky B. Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Carbohydr Res 2010; 345:1736-40. [DOI: 10.1016/j.carres.2010.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/12/2010] [Accepted: 05/22/2010] [Indexed: 12/31/2022]
|
29
|
Luley-Goedl C, Nidetzky B. Small-molecule glucosylation by sucrose phosphorylase: structure–activity relationships for acceptor substrates revisited. Carbohydr Res 2010; 345:1492-6. [DOI: 10.1016/j.carres.2010.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 11/24/2022]
|
30
|
Goedl C, Sawangwan T, Wildberger P, Nidetzky B. Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420903411595] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Sawangwan T, Goedl C, Nidetzky B. Glucosylglycerol and glucosylglycerate as enzyme stabilizers. Biotechnol J 2009; 5:187-91. [DOI: 10.1002/biot.200900197] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|