1
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
2
|
Lamas I, González J, Longarte A, Montero R. Influence of H-bonds on the photoionization of aromatic chromophores in water: The aniline molecule. J Chem Phys 2023; 158:2890456. [PMID: 37184001 DOI: 10.1063/5.0147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a ∼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic ∼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
Collapse
Affiliation(s)
- Iker Lamas
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Jorge González
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Asier Longarte
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Raúl Montero
- Facultad de Ciencia y Tecnología, SGIKER Laser Facility, UPV/EHU, Sarriena, S/N, 48940 Leioa, Spain
| |
Collapse
|
3
|
Yamamoto YI, Suzuki T. Distortion Correction of Low-Energy Photoelectron Spectra of Liquids Using Spectroscopic Data for Solvated Electrons. J Phys Chem A 2023; 127:2440-2452. [PMID: 36917090 DOI: 10.1021/acs.jpca.2c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Time-resolved photoelectron spectroscopy (TRPES) enables real-time observation of ultrafast electronic dynamics in solutions. When extreme ultraviolet (EUV) probe pulses are employed, they can ionize solutes from all electronic states involved in the dynamics. However, EUV pulses also produce a strong ionization signal from a solvent that is typically 6 orders of magnitude greater than the pump-probe photoelectron signal of solutes. Alternatively, UV probe pulses enable highly sensitive and selective observation of photoexcited solutes because typical solvents such as water are transparent to UV radiation. An obstacle in such UV-TRPES measurements is spectral distortion caused by electron scattering and a yet to be identified mechanism in liquids. We have previously proposed the spectral retrieval (SR) method as an a posteriori approach to removing the distortion and overcoming this difficulty in UV-TRPES; however, its accuracy has not yet been verified by comparison with EUV-TRPES results. In the present study, we perform EUV-TRPES for charge transfer reactions in water, methanol, and ethanol, and verify SR analysis of UV-TRPES. We also estimate a previously undetermined energy-dependent intensity factor and expand the basis sets for SR analysis. The refined SR method is employed for reanalyzing the UV-TRPES data for the formation and relaxation dynamics of solvated electrons in various systems. The electron binding energy distributions for solvated electrons in liquid water, methanol, and ethanol are confirmed to be Gaussian centered at 3.78, 3.39, and 3.25 eV, respectively, in agreement with Nishitani et al. [ Sci. Adv. 2019, 5(8), eaaw6896]. An effective energy gap between the conduction band and the vacuum level at the gas-liquid interface is estimated to be 0.2 eV for liquid water and 0.1 eV for methanol and ethanol.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Yamamoto YI, Suzuki YI, Suzuki T. Charge Transfer Reactions from I - to Polar Protic Solvents Studied Using Ultrafast Extreme Ultraviolet Photoelectron Spectroscopy. J Phys Chem Lett 2023; 14:1052-1058. [PMID: 36693229 DOI: 10.1021/acs.jpclett.2c03849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Charge transfer reactions from I- to solvent water, methanol, and ethanol were studied using extreme ultraviolet time-resolved photoelectron spectroscopy (EUV-TRPES). This technique eliminates spectral broadening, previously seen in UV-TRPES, caused by electron inelastic scattering in liquids, and enables clear observation of the temporal evolution of the spectral shape. The peak position, width, and intensity of the electron binding energy distribution indicate electron detachment and subsequent solvation and thermalization processes. Geminate recombination between detached electrons and iodine atoms is discussed using a diffusion equation and a global fitting analysis based on a kinetics model.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Yoshi-Ichi Suzuki
- School of Medical Technology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido061-0293, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| |
Collapse
|
5
|
Dubosq C, Zanuttini D, Gervais B. RASPT2 Analysis of the F–(H2O)n=1–7 and OH–(H2O)n=1–7 CTTS States. J Phys Chem A 2018; 122:7033-7041. [DOI: 10.1021/acs.jpca.8b04970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Dubosq
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - D. Zanuttini
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B. Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| |
Collapse
|
6
|
Okuyama H, Suzuki YI, Karashima S, Suzuki T. Charge-transfer-to-solvent reactions from I− to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids. J Chem Phys 2016; 145:074502. [PMID: 27544114 DOI: 10.1063/1.4960385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Haruki Okuyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsucho, Ishikari, Hokkaido 061-0293, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Hutzler D, Werhahn JC, Heider R, Bradler M, Kienberger R, Riedle E, Iglev H. Highly Selective Relaxation of the OH Stretching Overtones in Isolated HDO Molecules Observed by Infrared Pump-Repump-Probe Spectroscopy. J Phys Chem A 2015; 119:6831-6. [PMID: 26039752 DOI: 10.1021/acs.jpca.5b05145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A quantitative investigation of the relaxation dynamics of higher-lying vibrational states is afforded by a novel method of infrared pump-repump-probe spectroscopy. The technique is used to study the dynamics of OH stretching overtones in NaClO4·HDO monohydrate. We observe a continuous decrease of the energy separation for the first four states, i.e. v01 = 3575 cm(-1), v12 = 3370 cm(-1), and v23 = 3170 cm(-1), respectively. The population lifetime of the first excited state is 7.2 ps, while the one of the second excited state is largely reduced to 1.4 ps. The relaxation of the v = 2 state proceeds nearly quantitatively to the v = 1 state. The new information on the OH stretching overtones demands improved theoretical potentials and modeling of the H bond interactions. This work shows the potential of the new technique for the precise study of complex vibrational relaxation pathways.
Collapse
Affiliation(s)
- Daniel Hutzler
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Jasper C Werhahn
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Rupert Heider
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Maximilian Bradler
- ‡Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 Munich, Germany
| | - Reinhard Kienberger
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Eberhard Riedle
- ‡Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 Munich, Germany
| | - Hristo Iglev
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| |
Collapse
|
8
|
Shkrob IA, Marin TW, Crowell RA, Wishart JF. Photo- and Radiation-Chemistry of Halide Anions in Ionic Liquids. J Phys Chem A 2013; 117:5742-56. [DOI: 10.1021/jp4042793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ilya A. Shkrob
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Timothy W. Marin
- Chemical Sciences and Engineering
Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Chemistry Department, Benedictine University, 5700 College Road, Lisle, Illinois
60532, United States
| | - R. A. Crowell
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973-5000,
United States
| | - James F. Wishart
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973-5000,
United States
| |
Collapse
|
9
|
Multidimensional Incoherent Time-Resolved Spectroscopy and Complex Kinetics. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118197714.ch1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
10
|
Fischer MK, Rossmadl H, Iglev H. Novel geminate recombination channel after indirect photoionization of water. J Chem Phys 2011; 134:214507. [PMID: 21663367 DOI: 10.1063/1.3597776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the photolysis of neat protonated and heavy water using pump-probe and pump-repump-probe spectroscopy. A novel recombination channel is reported leading to ultrafast quenching (0.7 ± 0.1 ps) of almost one third of the initial number of photo-generated electrons. The efficiency and the recombination rate of this channel are lower in heavy water, 27 ± 5% and (0.9 ± 0.1 ps)(-1), respectively. Comparison with similar data measured after photodetachment of aqueous hydroxide provides evidence for the formation of short-lived OH:e(-) (OD:e(-)) pairs after indirect photoionization of water at 9.2 eV.
Collapse
Affiliation(s)
- Martin K Fischer
- Physik-Department E 11, Technische Universität München, D-85748 Garching, Germany
| | | | | |
Collapse
|
11
|
Fischer MK, Gliserin A, Laubereau A, Iglev H. Ultrafast electron transfer processes studied by pump-repump-probe spectroscopy. JOURNAL OF BIOPHOTONICS 2011; 4:178-183. [PMID: 21287690 DOI: 10.1002/jbio.201000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
The photodetachment of Br(-), I(-) and OH(-) in aqueous solution is studied by 2- and 3-pulse femtosecond spectroscopy. The UV excitation leads to fast electron separation followed by formation of a donor-electron pairs. An additional repump pulse is used for secondary excitation of the intermediates. The 3-pulse technique allows distinguishing the pair-intermediate from the fully separated electron. Using this method we observe a novel geminate recombination channel of .OH with adjacent hydrated electrons. The process leads to an ultrafast quenching (0.7 ps) of almost half the initial number of radicals. The phenomenon is not observed in Br(-) and I(-). Our results demonstrate the potential of the 3-pulse spectroscopy to elucidate the mechanism of ultrafast ET reactions. Photodetachment of aqueous anions studied by two- and three pulse spectroscopy.
Collapse
Affiliation(s)
- Martin K Fischer
- Physics Department E11, Technical University Munich, Munich, Germany
| | | | | | | |
Collapse
|
12
|
Suzuki YI, Shen H, Tang Y, Kurahashi N, Sekiguchi K, Mizuno T, Suzuki T. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I− to water in aqueous NaI solution. Chem Sci 2011. [DOI: 10.1039/c0sc00650e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Torres-Alacan J, Kratz S, Vöhringer P. Independent pairs and Monte-Carlo simulations of the geminate recombination of solvated electrons in liquid-to-supercritical water. Phys Chem Chem Phys 2011; 13:20806-19. [DOI: 10.1039/c1cp21678c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Iglev H, Fischer MK, Gliserin A, Laubereau A. Ultrafast Geminate Recombination after Photodetachment of Aqueous Hydroxide. J Am Chem Soc 2010; 133:790-5. [DOI: 10.1021/ja103866s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hristo Iglev
- Physik-Department E11, Technische Universität München, D-85748 Garching, Germany
| | - Martin K. Fischer
- Physik-Department E11, Technische Universität München, D-85748 Garching, Germany
| | - Alexander Gliserin
- Physik-Department E11, Technische Universität München, D-85748 Garching, Germany
| | - Alfred Laubereau
- Physik-Department E11, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
15
|
Berg MA. Hilbert-space treatment of incoherent, time-resolved spectroscopy. I. Formalism, a tensorial classification of high-order orientational gratings and generalized MUPPETS “echoes”. J Chem Phys 2010; 132:144105. [DOI: 10.1063/1.3327760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|