1
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016; 55:7515-9. [PMID: 27159019 DOI: 10.1002/anie.201601529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/04/2023]
Abstract
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5-chloro-2'-deoxyuridine, 7-deaza-2'-deoxyadenosine, 5-fluoro-2'-deoxycytidine, and 7-deaza-2'deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo-) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.
Collapse
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Valerie Pezo
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Philippe Marlière
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium. .,ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France.
| |
Collapse
|
2
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Valerie Pezo
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Philippe Marlière
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| |
Collapse
|
3
|
Mitomo H, Watanabe Y, Matsuo Y, Niikura K, Ijiro K. Enzymatic synthesis of a DNA triblock copolymer that is composed of natural and unnatural nucleotides. Chem Asian J 2014; 10:455-60. [PMID: 25388958 DOI: 10.1002/asia.201403108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/23/2022]
Abstract
DNA molecules have come under the spotlight as potential templates for the fabrication of nanoscale products, such as molecular-scale electronic or photonic devices. Herein, we report an enhanced approach for the synthesis of oligoblock copolymer-type DNA by using the Klenow fragment exonuclease minus of E. coli DNA polymerase I (KF(-) ) in a multi-step reaction with natural and unnatural nucleotides. First, we confirmed the applicability of unnatural nucleotides with 7-deaza-nucleosides-which was expected because they were non-metalized nucleotides-on the unique polymerization process known as the "strand-slippage model". Because the length of the DNA sequence could be controlled by tuning the reaction time, analogous to a living polymerization reaction on this process, stepwise polymerization provided DNA block copolymers with natural and unnatural bases. AFM images showed that this DNA block copolymer could be metalized sequence-selectively. This approach could expand the utility of DNA as a template.
Collapse
Affiliation(s)
- Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0021 (Japan)
| | | | | | | | | |
Collapse
|
4
|
Kielkowski P, Brock NL, Dickschat JS, Hocek M. Nucleobase protection strategy for gene cloning and expression. Chembiochem 2013; 14:801-4. [PMID: 23532949 DOI: 10.1002/cbic.201300127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 12/20/2022]
Abstract
Protecting group chemistry meets molecular biology: Chemically modified dATP carrying a bulky triethylsilylethynyl group was used in a PCR-based synthesis of a gene internally protected against cleavage by restriction endonucleases. The unmodified flanking regions were cleaved for cloning into a plasmid which was replicated by E. coli, and used for protein production.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
5
|
Kielkowski P, Macíčková-Cahová H, Pohl R, Hocek M. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102898] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Kielkowski P, Macíčková-Cahová H, Pohl R, Hocek M. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases. Angew Chem Int Ed Engl 2011; 50:8727-30. [DOI: 10.1002/anie.201102898] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/30/2011] [Indexed: 12/13/2022]
|
7
|
Graf N, Ang WH, Zhu G, Myint M, Lippard SJ. Role of endonucleases XPF and XPG in nucleotide excision repair of platinated DNA and cisplatin/oxaliplatin cytotoxicity. Chembiochem 2011; 12:1115-23. [PMID: 21452186 DOI: 10.1002/cbic.201000724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Indexed: 12/12/2022]
Abstract
Resistance of tumor cells to platinum anticancer agents poses a major problem in cancer chemotherapy. One of the mechanisms associated with platinum-based drug resistance is the enhanced capacity of the cell to carry out nucleotide excision repair (NER) on platinum-damaged DNA. Endonucleases XPF and XPG are critical components of NER, responsible for excising the damaged DNA strand to remove the DNA lesion. Here, we investigated possible consequences of down-regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair. We further evaluated the sensitivity of such cells toward the platinum anticancer drugs cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Nora Graf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | |
Collapse
|
8
|
Ang WH, Myint M, Lippard SJ. Transcription inhibition by platinum-DNA cross-links in live mammalian cells. J Am Chem Soc 2010; 132:7429-35. [PMID: 20443565 DOI: 10.1021/ja101495v] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have investigated the processing of site-specific Pt-DNA cross-links in live mammalian cells to enhance our understanding of the mechanism of action of platinum-based anticancer drugs. The activity of platinum drugs against cancer is mediated by a combination of processes including cell entry, drug activation, DNA-binding, and transcription inhibition. These drugs bind nuclear DNA to form Pt-DNA cross-links, which arrest key cellular functions, including transcription, and trigger a variety of responses, such as repair. Mechanistic investigations into the processing of specific Pt-DNA cross-links are critical for understanding the effects of platinum-DNA damage, but conventional in vitro techniques do not adequately account for the complex and intricate environment within a live cell. With this limitation in mind, we developed a strategy to study platinum cross-links on plasmid DNAs transfected into live mammalian cells based on luciferase reporter vectors containing defined platinum-DNA lesions that are either globally or site-specifically incorporated. Using cells with either competent or deficient nucleotide excision repair systems, we demonstrate that Pt-DNA cross-links impede transcription by blocking passage of the RNA polymerase complex and that nucleotide excision repair can remove the block and restore transcription. Results are presented for approximately 3800-base pair plasmids that are either globally platinated or carry a single 1,2-d(GpG) or 1,3-d(GpTpG) intrastrand cross-link formed by either cis-{Pt(NH(3))(2)}(2+) or cis-{Pt(R,R-dach)}(2+), where {Pt(NH(3))(2)}(2+) is the platinum unit conveyed by cisplatin and carboplatin and R,R-dach is the oxaliplatin ligand, R,R-1,2-diaminocyclohexane.
Collapse
Affiliation(s)
- Wee Han Ang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
9
|
Macíčková-Cahová H, Hocek M. Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res 2009; 37:7612-22. [PMID: 19820117 PMCID: PMC2794189 DOI: 10.1093/nar/gkp845] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 12/31/2022] Open
Abstract
A set of 6 base-modified 2'-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.
Collapse
Affiliation(s)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| |
Collapse
|