1
|
Islam M, Shaikh AY, Hotha S. Transition Metals for the Synthesis of Glycopolymers and Glycopolypeptides. Isr J Chem 2015. [DOI: 10.1002/ijch.201400202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Panda SS, Jones RA, Hall CD, Katritzky AR. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. Top Curr Chem (Cham) 2015; 362:229-65. [PMID: 25805142 DOI: 10.1007/128_2014_608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The utility of native chemical ligation (NCL) in the solution or solid phase synthesis of peptides, cyclic peptides, glycopeptides, and neoglycoconjugates is reviewed. In addition, the mechanistic details of inter- or intra-molecular NCLs are discussed from experimental and computational points of view.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, FL, 32611-7200, USA,
| | | | | | | |
Collapse
|
3
|
Ma J, Zeng J, Wan Q. Postligation-Desulfurization: A General Approach for Chemical Protein Synthesis. Top Curr Chem (Cham) 2014; 363:57-101. [DOI: 10.1007/128_2014_594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar Drugs 2013; 11:2013-41. [PMID: 23752356 PMCID: PMC3721219 DOI: 10.3390/md11062013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
Antifreeze proteins (AFPs) and glycoproteins (AFGPs), collectively called AF(G)Ps, constitute a diverse class of proteins found in various Arctic and Antarctic fish, as well as in amphibians, plants, and insects. These compounds possess the ability to inhibit the formation of ice and are therefore essential to the survival of many marine teleost fishes that routinely encounter sub-zero temperatures. Owing to this property, AF(G)Ps have potential applications in many areas such as storage of cells or tissues at low temperature, ice slurries for refrigeration systems, and food storage. In contrast to AFGPs, which are composed of repeated tripeptide units (Ala-Ala-Thr)n with minor sequence variations, AFPs possess very different primary, secondary, and tertiary structures. The isolation and purification of AFGPs is laborious, costly, and often results in mixtures, making characterization difficult. Recent structural investigations into the mechanism by which linear and cyclic AFGPs inhibit ice crystallization have led to significant progress toward the synthesis and assessment of several synthetic mimics of AFGPs. This review article will summarize synthetic AFGP mimics as well as current challenges in designing compounds capable of mimicking AFGPs. It will also cover our recent efforts in exploring whether peptoid mimics can serve as structural and functional mimics of native AFGPs.
Collapse
Affiliation(s)
- Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hye Yeon Koh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hye-Eun Shim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hyun-Cheol Kim
- Division of Polar Climate Research, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hak Jun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-32-760-5550; Fax: +82-32-760-5598
| |
Collapse
|
5
|
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ. Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules. Bioorg Med Chem 2013; 21:3569-81. [DOI: 10.1016/j.bmc.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
|
6
|
Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura SI. Microwave-Assisted Solid-Phase Synthesis of Antifreeze Glycopeptides. Chemistry 2013; 19:3913-20. [DOI: 10.1002/chem.201203731] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 12/29/2022]
|
7
|
Al Sheikha D, Wilkinson BL, Santhakumar G, Thaysen-Andersen M, Payne RJ. Synthesis of homogeneous MUC1 oligomers via a bi-directional ligation strategy. Org Biomol Chem 2013; 11:6090-6. [DOI: 10.1039/c3ob41363b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Chalker JM. Prospects in the Total Synthesis of Protein Therapeutics. Chem Biol Drug Des 2012; 81:122-35. [DOI: 10.1111/cbdd.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Wilkinson BL, Stone RS, Capicciotti CJ, Thaysen-Andersen M, Matthews JM, Packer NH, Ben RN, Payne RJ. Total Synthesis of Homogeneous Antifreeze Glycopeptides and Glycoproteins. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108682] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Wilkinson BL, Stone RS, Capicciotti CJ, Thaysen-Andersen M, Matthews JM, Packer NH, Ben RN, Payne RJ. Total Synthesis of Homogeneous Antifreeze Glycopeptides and Glycoproteins. Angew Chem Int Ed Engl 2012; 51:3606-10. [DOI: 10.1002/anie.201108682] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/26/2012] [Indexed: 01/30/2023]
|
11
|
Abstract
Antifreeze glycoproteins are an important class of biological antifreezes that have potential applications in many areas of medicine, agriculture and industry in which ice crystal growth is damaging. While the synthesis of antifreeze glycoproteins as pure glycoforms has recently been achieved by using ligation and polymerisation strategies, the routine production of large quantities of pure glycoforms remains challenging. A range of C-linked analogues that are readily produced by solid-phase synthesis have delivered novel compounds that are not biological antifreezes, but are potent, non-cytotoxic, ice-recrystallisation inhibitors. Structure-activity studies, the identification of cyclic antifreeze glycoproteins and conformational studies have provided further insight into the requirements for antifreeze activity. These results, coupled with significant advances in approaches to the routine synthesis of different glycoproteins and mimics, present opportunities for the design and synthesis of novel ice-growth-inhibiting and antifreeze compounds.
Collapse
Affiliation(s)
- James Garner
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
12
|
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M. Antifreeze glycoprotein activity correlates with long-range protein-water dynamics. J Am Chem Soc 2010; 132:12210-1. [PMID: 20712311 DOI: 10.1021/ja1051632] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) enable the survival of organisms living in subfreezing habitats and serve as preservatives. Although their function is known, the underlying molecular mechanism was not understood. Mutagenesis experiments questioned the previous assumption of hydrogen bonding as the dominant mechanism. We use terahertz spectroscopy to show that antifreeze activity is directly correlated with long-range collective hydration dynamics. Our results provide evidence for a new model of how AFGPs prevent water from freezing. We suggest that antifreeze activity may be induced because the AFGP perturbs the aqueous solvent over long distances. Retarded water dynamics in the large hydration shell does not favor freezing. The complexation of the carbohydrate cis-hydroxyl groups by borate suppresses the long-range hydration shell detected by terahertz absorption. The hydration dynamics shift toward bulk water behavior strongly reduces the AFGP antifreeze activity, further supporting our model.
Collapse
Affiliation(s)
- Simon Ebbinghaus
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
13
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
14
|
Corzana F, Busto JH, García de Luis M, Fernández-Tejada A, Rodríguez F, Jiménez-Barbero J, Avenoza A, Peregrina JM. Dynamics and Hydration Properties of Small Antifreeze-Like Glycopeptides Containing Non-Natural Amino Acids. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Wong MSY, Jolliffe KA. Synthesis of Cyclogossine B Using a Traceless Pseudoproline Turn-Inducer. Aust J Chem 2010. [DOI: 10.1071/ch09643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The first synthesis of the cyclic octapeptide, cyclogossine B, has been achieved, confirming the reported structure of this natural product. Cyclization of a linear precursor containing a cysteine-derived thiazolidine as a traceless turn-inducer occurred in significantly higher yields than cyclization of the analogous alanine-containing precursor under identical conditions. Deprotection of the thiazolidine followed by desulfurization provided cyclogossine B in good overall yield, indicating that cysteine-derived pseudoprolines can be effectively used as traceless turn-inducers to facilitate the cyclization of small peptides.
Collapse
|
16
|
Peltier R, Brimble MA, Wojnar JM, Williams DE, Evans CW, DeVries AL. Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem Sci 2010. [DOI: 10.1039/c0sc00194e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|