1
|
Oldak L, Chludzinska-Kasperuk S, Milewska P, Grubczak K, Reszec J, Gorodkiewicz E. Laminin-5, Fibronectin, and Type IV Collagen as Potential Biomarkers of Brain Glioma Malignancy. Biomedicines 2022; 10:biomedicines10092290. [PMID: 36140391 PMCID: PMC9496479 DOI: 10.3390/biomedicines10092290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The presented work is based on the quantification of LN-5, FN, and COL IV in blood plasma as potential biomarkers in patients diagnosed with glioma in grades G1 to G4. The obtained concentration results were compared with the protein content in the control group, which consisted of smokers of different ages. The obtained results were statistically analysed and interpreted based on the available clinical description. Quantitative determinations of LN-5, FN, and COL IV were performed with the use of SPRi biosensors specific to the tested proteins. Comparing groups K and G4, as well as G2 and G4, statistically significant relationships between changes in the concentration of individual proteins, were observed. The analysis showed significant correlations between FN and LN-5, between FN and COL IV, and between LN-5 and COL IV. There was a moderate positive correlation between individual proteins and the age of the patient. The ROC analysis distinguished patients with advanced disease from the control group. The results of the research show that LN-5, FN, and COL IV are effective biomarkers of brain glioma that may be helpful in non-invasive diagnosis and determining the grade of the disease.
Collapse
Affiliation(s)
- Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
- Correspondence:
| | | | - Patrycja Milewska
- Biobank, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Joanna Reszec
- Biobank, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
- Department of Medical Pathology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
2
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
3
|
Jung SH, Kong DH, Jeon HY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Systematic investigation of protein kinase A substrate proteins using on-chip protein kinase kinetic profiling. Analyst 2017; 142:2239-2246. [DOI: 10.1039/c6an02682f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An on-chip protein kinase assay for profiling kinase kinetic parameters by introducing the substrate affinity (Km) and the phosphorylation rate (Vp) under physiological conditions.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Deok-Hoon Kong
- Department of Molecular and Cellular Biochemistry
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Won Sun Park
- Department of Physiology
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Seok-Ho Hong
- Department of Internal Medicine
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry
- Kangwon National University School of Medicine
- Kangwon-Do 24341
- Korea
| |
Collapse
|
4
|
Jeon HY, Jung SH, Jung YM, Kim YM, Ghandehari H, Ha KS. Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases. Anal Chem 2016; 88:5398-405. [PMID: 27109435 DOI: 10.1021/acs.analchem.6b00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of this study was to utilize an on-chip degradation assay to evaluate polymer depots and the predicted drug release from the depots. We conjugated four silk-elastinlike protein (SELP) polymers including SELP-815K, SELP-815K-RS1, SELP-815K-RS2, and SELP-815K-RS5 with a Cy5-NHS ester and fabricated SELP arrays by immobilizing the conjugated polymers onto well-type amine arrays. SELP polymer degradation rates were investigated by calculating the half-maximal effective concentration (EC50). Eight cleavage enzymes were applied, all of which exhibited distinctive EC50 values for SELP-815K and its three analogues. We successfully utilized this assay to study the in vitro release of the Cy5-conjugated C-peptide from SELP-815K hydrogel arrays. Additionally, cumulative C-peptide release from the SELP-815K depots was also demonstrated using repetitive elastase treatments. Therefore, this array-based on-chip degradation assay could potentially be used for evaluating depot degradation and controlled drug release from polymer depots at the molecular level.
Collapse
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University , Chuncheon, Kangwon-Do 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea.,Departments of Phamaceutics and Pharmaceutical Chemistry, and Bioengineering, Center for Nanomedicine, Nano Institute of Utah, University of Utah , Salt Lake City, Utah 84112, United States
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine , Chuncheon, Kangwon-Do 200-701, Korea
| |
Collapse
|
5
|
Lei Z, Gao J, Liu X, Liu D, Wang Z. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10174-10182. [PMID: 27049528 DOI: 10.1021/acsami.6b01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed a three-dimensional (3D) polymer-brush substrate for protein and peptide microarray fabrication, and this substrate was facilely prepared by copolymerization of glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) monomers via surface-initiated atom transfer radical polymerization (SI-ATRP) on a glass slide. The performance of obtained poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) (P(GMA-HEMA)) brush substrate was assessed by binding of human IgG with rabbit antihuman IgG antibodies on a protein microarray and by the determination of matrix metalloproteinase (MMP) activities on a peptide microarray. The P(GMA-HEMA) brush substrate exhibited higher immobilization capacities for proteins and peptides than those of a two-dimensional (2D) planar epoxy slide. Furthermore, the sensitivity of the P(GMA-HEMA) brush-based microarray on rabbit antihuman IgG antibody detection was much higher than that of its 2D counterpart. The enzyme activities of MMPs were determined specifically with a low detection limit of 6.0 pg mL(-1) for MMP-2 and 5.7 pg mL(-1) for MMP-9. By taking advantage of the biocompatibility of PHEMA, the P(GMA-HEMA) brush-based peptide microarray was also employed to evaluate the secretion of MMP-2 and MMP-9 by cells cultured off the chip or directly on the chip, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Jiaxue Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
6
|
Identification of transglutaminase 2 kinase substrates using a novel on-chip activity assay. Biosens Bioelectron 2016; 82:40-8. [PMID: 27040940 DOI: 10.1016/j.bios.2016.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
Transglutaminase 2 (TG2) is an enzyme that plays a critical role in a wide variety of cellular processes through its multifunctional activities. TG2 kinase has emerged as an important regulator of apoptosis, as well as of chromatin structure and function. However, systematic investigation of TG2 kinase substrates is limited due to a lack of a suitable TG2 kinase activity assays. Thus, we developed a novel on-chip TG2 kinase activity assay for quantitative determination of TG2 kinase activity and for screening TG2 kinase substrate proteins in a high-throughput manner. Quantitative TG2 kinase activity was determined by selective detection of substrate protein phosphorylation on the surface of well-type amine arrays. The limit of detection (LOD) of this assay was 4.34μg/ml. We successfully applied this new activity assay to the kinetic analysis of 27 TG2-related proteins for TG2 kinase activity in a high-throughput manner and determined Michaelis-Menten constants (Km) of these proteins. We used the Km values and cellular locations of the TG2-related proteins to construct a substrate affinity map for TG2 kinase. Therefore, this on-chip TG2 kinase activity assay has a strong potential for the systematic investigation of substrate proteins and will be helpful for studying new physiological functions.
Collapse
|
7
|
Jung SH, Ji SH, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Real-time monitoring of glucose-6-phosphate dehydrogenase activity using liquid droplet arrays and its application to human plasma samples. Biosens Bioelectron 2016; 79:930-7. [PMID: 26802575 DOI: 10.1016/j.bios.2016.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (p<0.001), with a high area under the curve value of 0.939. Therefore, this new activity assay has the potential to be used for diagnosis of G6PD-associated diseases and utilizing kinetic studies.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Su-Hyun Ji
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-Do 24341, Republic of Korea.
| |
Collapse
|
8
|
|
9
|
Krismastuti FSH, Pace S, Melville E, Cowin A, Dargaville TR, Voelcker NH. Matrix Metalloproteinase Biosensor Based on a Porous Silicon Reflector. Aust J Chem 2013. [DOI: 10.1071/ch13352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMP) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness over time. We investigated the effect of surface functionalisation on the stability of the pSi surface and evaluated sensing performance. We successfully demonstrated MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.
Collapse
|
10
|
Characterization of TAMRA- and biotin-conjugated peptide arrays for on-chip matrix metalloproteinase activity assay. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Jung SH, Lee K, Kong DH, Kim WJ, Kim YM, Ha KS. Integrative proteomic profiling of protein activity and interactions using protein arrays. Mol Cell Proteomics 2012; 11:1167-76. [PMID: 22843993 DOI: 10.1074/mcp.m112.016964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomic studies based on abundance, activity, or interactions have been used to investigate protein functions in normal and pathological processes, but their combinatory approach has not been attempted. We present an integrative proteomic profiling method to measure protein activity and interaction using fluorescence-based protein arrays. We used an on-chip assay to simultaneously monitor the transamidating activity and binding affinity of transglutaminase 2 (TG2) for 16 TG2-related proteins. The results of this assay were compared with confidential scores provided by the STRING database to analyze the functional interactions of TG2 with these proteins. We further created a quantitative activity-interaction map of TG2 with these 16 proteins, categorizing them into seven groups based upon TG2 activity and interaction. This integrative proteomic profiling method can be applied to quantitative validation of previously known protein interactions, and in understanding the functions and regulation of target proteins in biological processes of interest.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwon-Do, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Kong DH, Jung SH, Lee ST, Kim YM, Ha KS. Monitoring of proteolytic enzyme activity using phase transition-based peptide arrays. Biosens Bioelectron 2012; 36:147-53. [DOI: 10.1016/j.bios.2012.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/18/2012] [Accepted: 04/09/2012] [Indexed: 02/01/2023]
|
13
|
Lee G, Eom K, Park J, Yang J, Haam S, Huh YM, Ryu JK, Kim NH, Yook JI, Lee SW, Yoon DS, Kwon T. Real-Time Quantitative Monitoring of Specific Peptide Cleavage by a Proteinase for Cancer Diagnosis. Angew Chem Int Ed Engl 2012; 51:5837-41. [DOI: 10.1002/anie.201108830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/24/2012] [Indexed: 01/31/2023]
|
14
|
Lee G, Eom K, Park J, Yang J, Haam S, Huh YM, Ryu JK, Kim NH, Yook JI, Lee SW, Yoon DS, Kwon T. Real-Time Quantitative Monitoring of Specific Peptide Cleavage by a Proteinase for Cancer Diagnosis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Jung SH, Kong DH, Park SW, Kim YM, Ha KS. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays. Analyst 2012; 137:3814-20. [DOI: 10.1039/c2an35080g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor. Anal Biochem 2011; 419:53-60. [DOI: 10.1016/j.ab.2011.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022]
|
17
|
Krizkova S, Zitka O, Adam V, Kizek R, Masarik M, Stiborova M, Eckschlager T, Chavis GJ. Assays for determination of matrix metalloproteinases and their activity. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Feng D, Zhang Y, Feng T, Shi W, Li X, Ma H. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2. Chem Commun (Camb) 2011; 47:10680-2. [PMID: 21892449 DOI: 10.1039/c1cc13975d] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A graphene oxide-peptide based fluorescence sensor has been developed for matrix metalloproteinase 2 (MMP2), and its applicability has been demonstrated by monitoring the concentration of MMP2 secreted by HeLa cells, revealing that HeLa cells with a density of 5.48 × 10(5) cells per mL can produce 22 nM in cell culture media in 24 h.
Collapse
Affiliation(s)
- Duan Feng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
19
|
Kong DH, Jung SH, Lee ST, Ha KS. On-chip assay of matrix metalloproteinase-3 activity using fluorescence-conjugated gelatin arrays. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4308-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|