1
|
Wang P, Wang R. Ionic Liquid-Catalyzed CO 2 Conversion for Valuable Chemicals. Molecules 2024; 29:3805. [PMID: 39202884 PMCID: PMC11357070 DOI: 10.3390/molecules29163805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
CO2 is not only the main gas that causes the greenhouse effect but also a resource with abundant reserves, low price, and low toxicity. It is expected to become an important "carbon source" to replace oil and natural gas in the future. The efficient and clean resource utilization of CO2 has shown important scientific and economic value. Making full use of abundant CO2 resources is in line with the development direction of green chemistry and has attracted the attention of scientists. Environmentally friendly ionic liquids show unique advantages in the capture and conversion of CO2 due to their non-volatilization, designable structure, and good solubility, and show broad application prospects. The purpose of this paper is to discuss the research on the use of an ionic liquid as a catalyst to promote the synthesis of various value-added chemicals in CO2, hoping to make full use of CO2 resources while avoiding the defects of the traditional synthesis route, such as the use of highly toxic raw materials, complicated operation, or harsh reaction conditions. The purpose of this paper is to provide reference for the application and development of ionic liquids in CO2 capture and conversion.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No. 72 Seaside Road, Qingdao 266237, China
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Molecular modelling of ionic liquids: Perfluorinated anionic species with enlarged halogen substitutions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
5
|
Shi Y, Xia C, Huang Y, He L. Electrochemical Approaches to Carbonylative Coupling Reactions. Chem Asian J 2021; 16:2830-2841. [PMID: 34378346 DOI: 10.1002/asia.202100800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Indexed: 11/08/2022]
Abstract
The carbonylation reaction is an effective way to introduce CO or other carbonyl groups into organic compounds, and widely used in the preparation of aldehydes, ketones, amides, and esters. The replacement of conventional reaction approaches by greener electrochemical methods is appealing with great synthetic potential as well as inherent safety, owing to the avoidance of external oxidants or reductants and a more facile control in product selectivity. In this minireview, we give a summary of the recent development of carbonylation reactions via the electrochemical approach.
Collapse
Affiliation(s)
- Yunru Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yang Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
6
|
Maniam KK, Paul S. Ionic Liquids and Deep Eutectic Solvents for CO 2 Conversion Technologies-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4519. [PMID: 34443042 PMCID: PMC8399058 DOI: 10.3390/ma14164519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) have a wide range of potential uses in renewable energy, including CO2 capture and electrochemical conversion. With the goal of providing a critical overview of the progression, new challenges, and prospects of ILs for evolving green renewable energy processes, this review emphasizes the significance of ILs as electrolytes and reaction media in two primary areas of interest: CO2 electroreduction and organic molecule electrosynthesis via CO2 transformation. Herein, we briefly summarize the most recent advances in the field, as well as approaches based on the electrochemical conversion of CO2 to industrially important compounds employing ILs as an electrolyte and/or reaction media. In addition, the review also discusses the advances made possible by deep eutectic solvents (DESs) in CO2 electroreduction to CO. Finally, the critical techno-commercial issues connected with employing ILs and DESs as an electrolyte or ILs as reaction media are reviewed, along with a future perspective on the path to rapid industrialization.
Collapse
Affiliation(s)
- Kranthi Kumar Maniam
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK;
| | - Shiladitya Paul
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK;
- Materials and Structural and Integrity Technology Group, TWI, Cambridge CB21 6AL, UK
| |
Collapse
|
7
|
Senboku H. Electrochemical Fixation of Carbon Dioxide: Synthesis of Carboxylic Acids. CHEM REC 2021; 21:2354-2374. [PMID: 33955143 DOI: 10.1002/tcr.202100081] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023]
Abstract
In the past three decades, we have focused on the fixation of carbon dioxide by electrochemical method with a carbon-carbon bond forming reaction to yield carboxylic acid, so-called electrochemical carboxylation. Vinyl bromides and triflates, difluoroethylbenzenes, polyfluoroarenes, benzal diacetates, phenyl-substituted alkenes and enamides, and α-aminosulfones were found to be effective as substrates for electrochemical carboxylation. Phenylacetic acids and phenylpropanoic acids including non-steroidal anti-inflammatory agents and their fluorinated analogues, polyfluorobenzoic acids, mandel acetates, and α- and β-amino acids were successfully synthesized. Electrochemical double carboxylation of dibenzyl carbonates, reuse of carbon dioxide in benzyl carbonates for fixation of carbon dioxide (recycle-electrochemical carboxylation), sequential aryl/vinyl radical cyclization-electrochemical carboxylation, sacrificial anode-free electrochemical carboxylation, and the use of supercritical carbon dioxide both as a reaction media and a reagent were also developed. In this personal account, our efforts in and results of electrochemical fixation of carbon dioxide to organic compounds with carbon-carbon bond forming reactions yielding novel and useful carboxylic acids are introduced along with their applications and some new results.
Collapse
Affiliation(s)
- H Senboku
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0608628, Japan
| |
Collapse
|
8
|
Electrochemical conversion of pressurized CO2 at simple silver-based cathodes in undivided cells: study of the effect of pressure and other operative parameters. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01505-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Electrochemical reduction of pressurized CO2 is proposed as an interesting approach to overcome the main hurdle of the CO2 electrochemical conversion in aqueous solution, its low solubility (ca. 0.033 M), and to achieve good faradaic efficiency in CO using simple sheet silver cathodes and undivided cells, thus lowering the overall costs of the process. The effect on the process of CO2 pressure (1–30 bar), current density, nature of the supporting electrolyte and other operative conditions, such as the surface of the cathode or the mixing rate, was studied to enhance the production of CO. It was shown that pressurized conditions allow to improve drastically the current efficiency of CO (CECO). Furthermore, at relatively high pressure (20 bars), the utilization of simple sheet silver cathodes and silver electrodes with high surfaces gave similar CECO. The stability of the system was monitored for 10 h; it was shown that at a relatively high pressure (15 bar) in aqueous electrolyte of KOH using a simple plate silver cathode a constant current efficiency of CO close to 70% was obtained.
Graphic abstract
Collapse
|
9
|
Senboku H, Sakai K, Fukui A, Sato Y, Yamauchi Y. Efficient Synthesis of Mandel Acetates by Electrochemical Carboxylation of Benzal Diacetates. ChemElectroChem 2019. [DOI: 10.1002/celc.201900200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hisanori Senboku
- Faculty of EngineeringHokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| | - Kanae Sakai
- Graduate School of EngineeringHokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| | - Akihiro Fukui
- Graduate School of Chemical Sciences and EngineeringHokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| | - Yusuke Sato
- Graduate School of Chemical Sciences and EngineeringHokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| | - Yusuke Yamauchi
- Graduate School of EngineeringHokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
10
|
|
11
|
Martin ET, McGuire CM, Mubarak MS, Peters DG. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev 2016; 116:15198-15234. [DOI: 10.1021/acs.chemrev.6b00531] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erin T. Martin
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caitlyn M. McGuire
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Dennis G. Peters
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Katayama A, Senboku H. Sequential Vinyl Radical Cyclization/Fixation of Carbon Dioxide through Electrochemical Reduction of Vinyl Bromide in the Presence of an Electron-Transfer Mediator. ChemElectroChem 2016. [DOI: 10.1002/celc.201600508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asahi Katayama
- Graduate School of Chemical Sciences and Engineering; Hokkaido University; Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| | - Hisanori Senboku
- Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8, Kita-ku, Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
13
|
Aryl radical cyclization with alkyne followed by tandem carboxylation in methyl 4-tert-butylbenzoate-mediated electrochemical reduction of 2-(2-propynyloxy)bromobenzenes in the presence of carbon dioxide. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Senboku H, Yoneda K, Hara S. Electrochemical direct carboxylation of benzyl alcohols having an electron-withdrawing group on the phenyl ring: one-step formation of phenylacetic acids from benzyl alcohols under mild conditions. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Three-component coupling reaction of benzylic halides, carbon dioxide, and N,N-dimethylformamide by using paired electrolysis: sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Electrochemical fixation of CO2 to organohalides in room-temperature ionic liquids under supercritical CO2. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhao SF, Horne M, Bond AM, Zhang J. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution. Phys Chem Chem Phys 2015; 17:19247-54. [DOI: 10.1039/c5cp00095e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The yield of electrocarboxylation of aromatic ketone depends on the imidazolium-based ionic liquid anion and the ketone substituent.
Collapse
Affiliation(s)
- Shu-Feng Zhao
- School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science
- Monash University
- Clayton
- Australia
- CSIRO Process Science and Engineering
| | - Mike Horne
- CSIRO Process Science and Engineering
- Clayton South
- Australia
| | - Alan M. Bond
- School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science
- Monash University
- Clayton
- Australia
| | - Jie Zhang
- School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science
- Monash University
- Clayton
- Australia
| |
Collapse
|
18
|
Kathiresan M, Velayutham D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem Commun (Camb) 2015; 51:17499-516. [DOI: 10.1039/c5cc06961k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed.
Collapse
Affiliation(s)
- Murugavel Kathiresan
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| | - David Velayutham
- Electro Organic Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630003
- India
| |
Collapse
|
19
|
Matthessen R, Fransaer J, Binnemans K, De Vos DE. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J Org Chem 2014; 10:2484-500. [PMID: 25383120 PMCID: PMC4222387 DOI: 10.3762/bjoc.10.260] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process.
Collapse
Affiliation(s)
- Roman Matthessen
- Centre for Surface Chemistry and Catalysis, KU Leuven, Arenbergpark 23, B-3001 Leuven, Belgium
| | - Jan Fransaer
- Department of Metallurgy and Materials Engineering, KU Leuven, Arenbergpark 44, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, KU Leuven, Arenbergpark 23, B-3001 Leuven, Belgium
| |
Collapse
|
20
|
Li J, Inagi S, Fuchigami T, Hosono H, Ito S. Selective monocarboxylation of olefins at 12CaO·7Al2O3 electride cathode. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
|
22
|
SENBOKU H, YONEDA K, HARA S. Regioselective Electrochemical Carboxylation of Polyfluoroarenes. ELECTROCHEMISTRY 2013. [DOI: 10.5796/electrochemistry.81.380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Matthessen R, Fransaer J, Binnemans K, Vos DED. Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide. RSC Adv 2013. [DOI: 10.1039/c3ra00129f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Some mechanistic studies on electrochemical carboxylation of flavones to yield flavanone-2-carboxylic acids. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lan YC, Wang H, Wu LX, Zhao SF, Gu YQ, Lu JX. Electroreduction of dibromobenzenes on silver electrode in the presence of CO2. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
26
|
SENBOKU H, YAMAUCHI Y, KOBAYASHI N, FUKUI A, HARA S. Electrochemical Carboxylation of Flavones: Facile Synthesis of Flavanone-2-carboxylic Acids. ELECTROCHEMISTRY 2011. [DOI: 10.5796/electrochemistry.79.862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Jutz F, Andanson JM, Baiker A. Ionic liquids and dense carbon dioxide: a beneficial biphasic system for catalysis. Chem Rev 2010; 111:322-53. [PMID: 21053968 DOI: 10.1021/cr100194q] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fabian Jutz
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Hönggerberg, HCI, Zurich, Switzerland
| | | | | |
Collapse
|