1
|
Sterkhova IV, Chipanina NN, Oznobikhina LP, Tolstikova LL, Shainyan BA. Supramolecular structure of the product of unusual [2C=C + 2C=N] cycloaddition of dicyclohexylcarbodiimide to N-(3-methylbut-2-en-1-ylidene)triflamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Zhang C, Zhao DX, Feng Y, Wang J, Yang ZZ. Energetics and J-coupling constants for Ala, Gly, and Val peptides demonstrated using ABEEM polarizable force field in vacuo and an aqueous solution. Phys Chem Chem Phys 2022; 24:4232-4250. [DOI: 10.1039/d1cp05676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an atom-bond electronegativity equalisation method at the σπ-level (ABEEM) polarisable force field (PFF) for peptides is presented. ABEEM PFF utilises a fluctuating charge model to explicitly describe...
Collapse
|
3
|
Nikonov AY, Sterkhova IV, Serykh VY, Kolyvanov NA, Lazareva NF. Synthesis and structural features of N-[(2-(trimethylsilyl)oxy)phenyl]-arylsulfonamides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Maxwell PI, Popelier PLA. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective. J Comput Chem 2017; 38:2459-2474. [PMID: 28841241 PMCID: PMC5659141 DOI: 10.1002/jcc.24904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (Oi-1 , Ci , Ni , Ni+1 ) and some sidechain hydrogen atoms (Hγ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the Oi-1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter I. Maxwell
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great Britain and School of Chemistry, University of Manchester, Oxford RoadManchesterGreat BritainM13 9PL
| | - Paul L. A. Popelier
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great Britain and School of Chemistry, University of Manchester, Oxford RoadManchesterGreat BritainM13 9PL
| |
Collapse
|
6
|
Szabla R, Havrila M, Kruse H, Šponer J. Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. J Phys Chem B 2016; 120:10635-10648. [PMID: 27681853 DOI: 10.1021/acs.jpcb.6b07551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Classical force field (FF) molecular dynamics (MD) simulations of RNA tetranucleotides have substantial problems in reproducing conformer populations indicated by NMR experiments. To provide more information about the possible sources of errors, we performed quantum mechanical (QM, TPSS-D3/def2-TZVP) and molecular mechanics (MM, AMBER parm99bsc0+χOL3) calculations of different r(CCCC), r(GACC), and r(UUUU) conformers obtained from explicit solvent MD simulations. Solvent effects in the static QM and MM calculations were mimicked using implicit solvent models (COSMO and Poisson-Boltzmann, respectively). The comparison of QM and MM geometries and energies revealed that the two methodologies provide qualitatively consistent results in most of the cases. Even though we found some differences, these were insufficient to indicate any systematic corrections of the RNA FF terms that could improve the performance of classical MD in simulating tetranucleotides. On the basis of these findings, we inferred that the overpopulation of intercalated conformers in the MD simulations of RNA tetramers, which were not observed experimentally, might be predominantly caused by imbalanced water-solvent and water-water interactions. Apart from the large-scale QM calculations performed to assess the performance of the AMBER FF, a representative spectrum of faster QM methods was tested.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
7
|
Abstract
This chapter examines the structural characterisation of isolated neutral amino-acids and peptides. After a presentation of the experimental and theoretical state-of-the-art in the field, a review of the major structures and shaping interactions is presented. Special focus is made on conformationally-resolved studies which enable one to go beyond simple structural characterisation; probing flexibility and excited-state photophysics are given as examples of promising future directions.
Collapse
|
8
|
Bouchoux G. Gas-phase basicities of polyfunctional molecules. Part 4: Carbonyl groups as basic sites. MASS SPECTROMETRY REVIEWS 2015; 34:493-534. [PMID: 24399766 DOI: 10.1002/mas.21416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
This article constitutes the fourth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435). This fourth part is devoted to carbonyl containing polyfunctional molecules. After a short reminder of the methods of determination of gas-phase basicity and the underlying physicochemical concepts, specific examples are examined under two major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) ketones, diketones, ketoalcohols, and ketoethers are considered. A second chapter describes the protonation energetic of gaseous acids and derivatives including diacids, diesters, diamides, anhydrides, imides, ureas, carbamates, amino acid derivatives, and peptides. Experimental data were re-evaluated according to the presently adopted basicity scale. Structural and energetic information given by G3 and G4 quantum chemistry computations on typical systems are presented.
Collapse
Affiliation(s)
- Guy Bouchoux
- Département de Chimie, Laboratoire des Mécanismes Réactionnels, Ecole Polytechnique, 91120, Palaiseau, France
| |
Collapse
|
9
|
Toroz D, Rosbottom I, Turner TD, Corzo DMC, Hammond RB, Lai X, Roberts KJ. Towards an understanding of the nucleation of alpha-para amino benzoic acid from ethanolic solutions: a multi-scale approach. Faraday Discuss 2015; 179:79-114. [PMID: 25920721 DOI: 10.1039/c4fd00275j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular assembly and subsequent nucleation of para-amino benzoic acid (PABA) from ethanolic solutions is probed using a multi-scale and multi-technique approach. This is applied by examining and interrelating information regarding the molecular, solution-state, cluster, solid-state and surface structures to understand why the alpha form of PABA is crystallised in preference to its low temperature beta form. Calculations suggest that conformational changes within the solute molecule play little or no role in directing the nucleation of either the alpha or beta crystal forms. Combined ab initio and molecular dynamics calculations of the stability of small clusters in solution suggests that the hydrogen-bonded carboxylic acid dimers, present in the alpha structure, are the most stable in solution and play a major role in the self-assembly and polymorphic expression of the alpha form in ethanol in preference to the beta form. These calculations are in good agreement with X-ray small-angle scattering analysis which reveals the presence of PABA clusters in ethanol which are consistent with the size and shape of a carboxylic acid dimer. SAXS studies also reveal the presence of larger cluster structures in a size range 10-40 nm which appear to grow, perhaps reflecting a change in the balance between monomers and dimers within the solution during the nucleation process. The results of crystallisation-kinetics experiments indicate an instantaneous nucleation mechanism where the number of instantaneously nucleated crystallites is calculated to be 1360-660 nuclei per ml and the subsequent growth is found to be only rate limited by diffusion of the growth unit to the crystallite surface. A linear dependence of growth rate with respect to supersaturation is observed for the (0 1 -1) capping face, which is associated with strong π-π stacking interactions. This is consistent with a solid-on-solid mechanism associated with surface roughened growth and concomitant poor lattice-perfection. Conversely, the side (1 0 -1) surface has a growth mechanism consistent with a 2D nucleation birth and spread mechanism. Hence, these mechanisms result in very fast growth along the b-axis and the needle-like morphology that is observed for alpha-PABA.
Collapse
Affiliation(s)
- D Toroz
- Institute of Particle Science and Engineering and Institute of Process, Research and Development, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Gregori B, Guidoni L, Chiavarino B, Scuderi D, Nicol E, Frison G, Fornarini S, Crestoni ME. Vibrational Signatures of S-Nitrosoglutathione as Gaseous, Protonated Species. J Phys Chem B 2014; 118:12371-82. [DOI: 10.1021/jp5072742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Leonardo Guidoni
- Dipartimento
di Scienza Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio 2, Coppito, L’Aquila I-64100, Italy
| | | | - Debora Scuderi
- Laboratoire
de Chimie Physique, UMR8000 CNRS, Faculté des Sciences, Université Paris-Sud, Batiment 350, 91405 Orsay Cedex, France
| | - Edith Nicol
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | - Gilles Frison
- Laboratoire
de Chimie Moléculaire, Ecole Polytechnique and CNRS, 91128 Palaiseau Cedex, France
| | | | | |
Collapse
|
11
|
Yuan Y, Mills MJL, Popelier PLA, Jensen F. Comprehensive analysis of energy minima of the 20 natural amino acids. J Phys Chem A 2014; 118:7876-91. [PMID: 25084473 DOI: 10.1021/jp503460m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Energy minima of the 20 natural amino acids (capped by a peptide bond at both the N and the C termini, CH3-C(═O)-N(H)-(H)Cα(R)-C(═O)-N(H)-CH3), were obtained by ab initio geometry optimization. Starting with a large number of minima, quickly generated by MarvinView, geometry optimization at the HF/6-31G(d,p) level of theory reduced the number of minima, followed by further optimization at the B3LYP/apc-1 and MP2/cc-pVDZ levels, which caused some minima to disappear and some stable minima to migrate on the Ramachandran map. There is a relation between the number of minima and the size and the flexibility of the side chain. The energy minima of the 20 amino acids are mainly located in the regions of βL, γL, δL, and αL of the Ramachandran map. Multipole moments of atoms occurring in the fragment [-NH-Cα-C(═O)-] common to all 20 amino acids were calculated at the three levels of theory mentioned above. The near parallelism in behavior of these moments between levels of theory is beneficial toward estimating moments with the more expensive B3LYP and MP2 methods from data calculated with the cheaper HF method. Finally, we explored the transferability of properties between different amino acids: the bond length and angles of the common fragment [-NH-Cα(HαCβ)-C'(═O)-] in all amino acids except Gly and Pro. All bond lengths are highly transferable between different amino acids, and the standard deviations are small.
Collapse
Affiliation(s)
- Yongna Yuan
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street, Manchester M1 7DN, Great Britain and
| | | | | | | |
Collapse
|
12
|
Dorofeeva OV, Ryzhova ON. Gas-phase enthalpies of formation and enthalpies of sublimation of amino acids based on isodesmic reaction calculations. J Phys Chem A 2014; 118:3490-502. [PMID: 24766636 DOI: 10.1021/jp501357y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate gas-phase enthalpies of formation (ΔfH298°) of 20 common α-amino acids, seven uncommon amino acids, and three small peptides were calculated by combining G4 theory calculations with an isodesmic reaction approach. The internal consistency over a set of ΔfH298°(g) values was achieved by sequential adjustment of their values through the isodesmic reactions. Four amino acids, alanine, β-alanine, sarcosine, and glycine, with reliable internally self-consistent experimental data, were chosen as the key reference compounds. These amino acids together with about 100 compounds with reliable experimental data (their accuracy was supported by G4 calculations) were used to estimate the enthalpies of formation of remaining amino acids. All of the amino acids with the previously established enthalpies of formation were later used as the reference species in the isodesmic reactions for the other amino acids. A systematic comparison was made of 14 experimentally determined enthalpies of formation with the results of calculations. The experimental enthalpies of formation for 10 amino acids were reproduced with good accuracy, but the experimental and calculated values for 4 compounds differed by 11–21 kJ/mol. For these species, the theoretical ΔfH298°(g) values were suggested as more reliable than the experimental values. On the basis of theoretical results, the recommended values for the gas-phase enthalpies of formation were also provided for amino acids for which the experimental ΔfH298°(g) were not available. The enthalpies of sublimation were evaluated for all compounds by taking into account the literature data on the solid-phase enthalpies of formation and the ΔfH298°(g) values recommended in our work. A special attention was paid to the accurate prediction of enthalpies of formation of amino acids from the atomization reactions. The problems associated with conformational flexibility of these compounds and harmonic treatment of low frequency torsional modes were discussed. The surprisingly good agreement between the ΔfH298°(g) values calculated from the atomization and isodesmic reactions is largely the result of a fortuitous mutual compensation of various corrections used in the atomization reaction procedure.
Collapse
Affiliation(s)
- Olga V Dorofeeva
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia
| | | |
Collapse
|
13
|
Richard RM, Lao KU, Herbert JM. Approaching the complete-basis limit with a truncated many-body expansion. J Chem Phys 2013; 139:224102. [DOI: 10.1063/1.4836637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Yogeswari B, Kanakaraju R, Boopathi S, Kolandaivel P. Combined theoretical studies on solvation and hydrogen bond interactions in glycine tripeptide. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.828837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Richard RM, Lao KU, Herbert JM. Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion. J Phys Chem Lett 2013; 4:2674-2680. [PMID: 26706713 DOI: 10.1021/jz401368u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An efficient procedure is introduced to obtain the basis-set limit in electronic structure calculations of large molecular and ionic clusters. This approach is based on a Boys-Bernardi-style counterpoise correction for clusters containing arbitrarily many monomer units, which is rendered computationally feasible by means of a truncated many-body expansion. This affords a tractable way to apply the sequence of correlation-consistent basis sets (aug-cc-pVXZ) to large systems and thereby obtain energies extrapolated to the complete basis set (CBS) limit. A three-body expansion with three-body counterpoise corrections is shown to afford errors of ≲0.1-0.2 kcal/mol with respect to traditional MP2/CBS results, even for challenging systems such as fluoride-water clusters. A triples correction, δCCSD(T) = ECCSD(T) - EMP2, can be estimated accurately and efficiently as well. Because the procedure is embarrassingly parallelizable and requires no electronic structure calculations in systems larger than trimers, it is extendible to very large clusters. As compared to traditional CBS extrapolations, computational time is dramatically reduced even without parallelization.
Collapse
Affiliation(s)
- Ryan M Richard
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Barone V, Biczysko M, Bloino J, Puzzarini C. Accurate structure, thermodynamic and spectroscopic parameters from CC and CC/DFT schemes: the challenge of the conformational equilibrium in glycine. Phys Chem Chem Phys 2013; 15:10094-111. [PMID: 23599122 DOI: 10.1039/c3cp50439e] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures, relative stabilities, and infrared spectra of the six low-energy conformers of glycine have been characterized using a state-of-the-art quantum-mechanical approach allowing the bond distances, conformational enthalpies and vibrational frequencies to be determined well within the chemical accuracy. Transition state structures governing interconversion among the different energy minima have also been characterized. In detail, the gas-phase thermodynamic properties (at 15 K and 410 K) of the glycine conformers considered have been obtained with a 1 kJ mol(-1) accuracy, and it has been shown that the employment of DFT geometries usually reduces such accuracy by at most 0.1 kJ mol(-1). Regarding molecular structures, the use of two different composite schemes allowed us to further confirm the suitability of a rather cost-effective approach and provide geometrical parameters with an overall accuracy better than 0.002 Å for distances and 1 degree for angles. Thanks to a hybrid CC/DFT approach, the infrared spectra of all conformers considered and of several deuterated isotopologues have been reproduced (when experimental data were available) or predicted with an accuracy of 10 cm(-1). Finally, the joint thermodynamic and spectroscopic investigation allowed us to shed some light on the possible observation of elusive conformers. On the whole, the high accuracy of the computational results allows us to draw a fully consistent interpretation of the available experimental data and to obtain a more complete characterization of the potential energy surface of glycine.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | | | |
Collapse
|
17
|
Morishima F, Inokuchi Y, Ebata T. Laser Spectroscopic Study of β-Estradiol and Its Monohydrated Clusters in a Supersonic Jet. J Phys Chem A 2012; 116:8201-8. [DOI: 10.1021/jp302209z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fumiya Morishima
- Department of Chemistry, Graduate
School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate
School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takayuki Ebata
- Department of Chemistry, Graduate
School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
18
|
Marochkin II, Dorofeeva OV. Amide bond dissociation enthalpies: Effect of substitution on NC bond strength. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Peptide bond distortions from planarity: new insights from quantum mechanical calculations and peptide/protein crystal structures. PLoS One 2011; 6:e24533. [PMID: 21949726 PMCID: PMC3174960 DOI: 10.1371/journal.pone.0024533] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022] Open
Abstract
By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of C(α) substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed.
Collapse
|
20
|
Plumley JA, Dannenberg JJ. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J Comput Chem 2011; 32:1519-27. [PMID: 21328398 PMCID: PMC3073166 DOI: 10.1002/jcc.21729] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 11/07/2022]
Abstract
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP.
Collapse
Affiliation(s)
- Joshua A. Plumley
- Department of Chemistry, Hunter College and the Graduate School, City University of New York, 695 Park Avenue, New York, New York 10065
| | - J. J. Dannenberg
- Department of Chemistry, Hunter College and the Graduate School, City University of New York, 695 Park Avenue, New York, New York 10065
| |
Collapse
|
21
|
|
22
|
Kang YK, Byun BJ. Assessment of density functionals with long-range and/or empirical dispersion corrections for conformational energy calculations of peptides. J Comput Chem 2010; 31:2915-23. [DOI: 10.1002/jcc.21587] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|