1
|
Bernitzky CCM, Caserta G, Frielingsdorf S, Schoknecht J, Schmidt A, Scheerer P, Lenz O, Hildebrandt P, Lorent C, Zebger I, Horch M. Expanding the scope of resonance Raman spectroscopy in hydrogenase research: New observable states and reporter vibrations. J Inorg Biochem 2024; 262:112741. [PMID: 39326301 DOI: 10.1016/j.jinorgbio.2024.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Oxygen-tolerant [NiFe] hydrogenases are valuable blueprints for the activation and evolution of molecular hydrogen under application-relevant conditions. Vibrational spectroscopic techniques play a key role in the investigation of these metalloenzymes. For instance, resonance Raman spectroscopy has been introduced as a site-selective approach for probing metal-ligand coordinates of the [NiFe] active site and FeS clusters. Despite its success, this approach is still challenged by a limited number of detectable active-site states - due to missing resonance enhancement or intrinsic light sensitivity - and difficulties in their assignment. Utilizing two oxygen-tolerant [NiFe] hydrogenases as model systems, we illustrate how these challenges can be met by extending excitation and detection wavelength regimes in resonance Raman spectroscopic studies. Specifically, we observe that this technique does not only probe low-frequency metal-ligand vibrations but also high-frequency intra-ligand modes of the diatomic CO/CN- ligands at the active site of [NiFe] hydrogenases. These reporter vibrations are routinely probed by infrared absorption spectroscopy, so that direct comparison of spectra from both techniques allows an unambiguous assignment of states detected by resonance Raman spectroscopy. Moreover, we find that a previously undetected state featuring a bridging hydroxo ligand between Ni and Fe can be probed using higher excitation wavelengths, as photoconversion occurring at lower wavelengths is avoided. In summary, this study expands the applicability of resonance Raman spectroscopy to hydrogenases and other complex metalloenzymes by introducing new strategies for probing and assigning redox-structural states of the active site.
Collapse
Affiliation(s)
- Cornelius C M Bernitzky
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Oliver Lenz
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Ingo Zebger
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Marius Horch
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
2
|
Abstract
Hydrogenases catalyze the simple yet important interconversion between H2 and protons and electrons. Found throughout prokaryotes, lower eukaryotes, and archaea, hydrogenases are used for a variety of redox and signaling purposes and are found in many different forms. This diverse group of metalloenzymes is divided into [NiFe], [FeFe], and [Fe] variants, based on the transition metal contents of their active sites. A wide array of biochemical and spectroscopic methods has been used to elucidate hydrogenases, and this along with a general description of the main enzyme types and catalytic mechanisms is discussed in this chapter.
Collapse
|
3
|
Bader K, Schlindwein SH, Gudat D, van Slageren J. Molecular qubits based on potentially nuclear-spin-free nickel ions. Phys Chem Chem Phys 2017; 19:2525-2529. [PMID: 28058424 DOI: 10.1039/c6cp08161d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular qubits with the longest coherence times thus far are based on nuclear-spin-carrying central ions. These nuclear spins can cause quantum state leakage, which is detrimental to quantum algorithm performance. We present two novel molecular qubits based on potentially nuclear spin-free Ni in the formal oxidation state 3+. (d20-PPh4)[Ni(mnt)2] (Ni-mnt, mnt2- = maleonitrile-1,2-dithiolate) possesses a coherence time of up to 38.7 μs at 7 K. Functionalization of the dithiolate ligand decreases the coherence time by a factor of only four in (HNEt3)[Ni(dip)2] (Ni-dip, dip2- = 3-(diphenylphosphoryl)-methylbenzene-1,2-dithiolate), indicating that monoanionic Ni-dithiolene complexes are promising and robust building blocks for polynuclear molecular qubit gates.
Collapse
Affiliation(s)
- K Bader
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - S H Schlindwein
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - D Gudat
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - J van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany. and Center for Integrated Quantum Science and Technology (IQST), Stuttgart/Ulm, Germany
| |
Collapse
|
4
|
Löwenstein J, Lauterbach L, Teutloff C, Lenz O, Bittl R. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy. J Phys Chem B 2015. [PMID: 26214595 DOI: 10.1021/acs.jpcb.5b04144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pulsed ENDOR and HYSCORE measurements were carried out to characterize the active site of the oxygen-tolerant NAD(+)-reducing hydrogenase of Ralstonia eutropha. The catalytically active Nia-C state exhibits a bridging hydride between iron and nickel in the active site, which is photodissociated upon illumination. Its hyperfine coupling is comparable to that of standard hydrogenases. In addition, a histidine residue could be identified, which shows hyperfine and nuclear quadrupole parameters in significant variance from comparable histidine residues that are conserved in standard [NiFe] hydrogenases, and might be related to the O2 tolerance of the enzyme.
Collapse
Affiliation(s)
- Julia Löwenstein
- Fachbereich Physik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Lars Lauterbach
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Teutloff
- Fachbereich Physik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Robert Bittl
- Fachbereich Physik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
5
|
Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O 2 -tolerant and O 2 -sensitive hydrogenases studied by X-ray absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:162-170. [DOI: 10.1016/j.bbabio.2014.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022]
|
6
|
Mössbauer spectroscopy of Fe/S proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1395-405. [PMID: 25498248 DOI: 10.1016/j.bbamcr.2014.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Iron-sulfur (Fe/S) clusters are structurally and functionally diverse cofactors that are found in all domains of life. (57)Fe Mössbauer spectroscopy is a technique that provides information about the chemical nature of all chemically distinct Fe species contained in a sample, such as Fe oxidation and spin state, nuclearity of a cluster with more than one metal ion, electron spin ground state of the cluster, and delocalization properties in mixed-valent clusters. Moreover, the technique allows for quantitation of all Fe species, when it is used in conjunction with electron paramagnetic resonance (EPR) spectroscopy and analytical methods. (57)Fe-Mössbauer spectroscopy played a pivotal role in unraveling the electronic structures of the "well-established" [2Fe-2S](2+/+), [3Fe-4S](1+/0), and [4Fe-4S](3+/2+/1+/0) clusters and -more-recently- was used to characterize novel Fe/S clustsers, including the [4Fe-3S] cluster of the O2-tolerant hydrogenase from Aquifex aeolicus and the 3Fe-cluster intermediate observed during the reaction of lipoyl synthase, a member of the radical SAM enzyme superfamily.
Collapse
|
7
|
Frielingsdorf S, Fritsch J, Schmidt A, Hammer M, Löwenstein J, Siebert E, Pelmenschikov V, Jaenicke T, Kalms J, Rippers Y, Lendzian F, Zebger I, Teutloff C, Kaupp M, Bittl R, Hildebrandt P, Friedrich B, Lenz O, Scheerer P. Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase. Nat Chem Biol 2014; 10:378-85. [DOI: 10.1038/nchembio.1500] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/13/2014] [Indexed: 12/27/2022]
|
8
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Lauterbach L, Lenz O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2. J Am Chem Soc 2013; 135:17897-905. [PMID: 24180286 DOI: 10.1021/ja408420d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogenases control the H2-related metabolism in many microbes. Most of these enzymes are prone to immediate inactivation by O2. However, a few members of the subclass of [NiFe]-hydrogenases are able to convert H2 into protons and electrons even in the presence of O2, making them attractive for biotechnological application. Recent studies on O2-tolerant membrane-bound hydrogenases indicate that the mechanism of O2 tolerance relies on their capability to completely reduce O2 with four electrons to harmless water. In order to verify this hypothesis, we probed the O2 reduction capacity of the soluble, NAD(+)-reducing [NiFe]-hydrogenase (SH) from Ralstonia eutropha H16. A newly established, homologous overexpression allowed the purification of up to 90 mg of homogeneous and highly active enzyme from 10 g of cell material. We showed that the SH produces trace amounts of superoxide in the course of H2-driven NAD(+) reduction in the presence of O2. However, the major products of the SH-mediated oxidase activity was in fact hydrogen peroxide and water as shown by the mass spectrometric detection of H2(18)O formed from H2 and isotopically labeled (18)O2. Water release was also observed when the enzyme was incubated with NADH and (18)O2, demonstrating the importance of reverse electron flow to the [NiFe] active site for O2 reduction. A comparison of the turnover rates for H2 and O2 revealed that in the presence of twice the ambient level of O2, up to 3% of the electrons generated through H2 oxidation serve as "health insurance" and are reused for O2 reduction.
Collapse
Affiliation(s)
- Lars Lauterbach
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin , Chausseestrasse 117, 10115 Berlin, Germany
| | | |
Collapse
|
10
|
[NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:986-1002. [PMID: 23399489 DOI: 10.1016/j.bbabio.2013.01.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023]
Abstract
Hydrogenase proteins catalyze the reversible conversion of molecular hydrogen to protons and electrons. The most abundant hydrogenases contain a [NiFe] active site; these proteins are generally biased towards hydrogen oxidation activity and are reversibly inhibited by oxygen. However, there are [NiFe] hydrogenase that exhibit unique properties, including aerobic hydrogen oxidation and preferential hydrogen production activity; these proteins are highly relevant in the context of biotechnological devices. This review describes four classes of these "nonstandard" [NiFe] hydrogenases and discusses the electrochemical, spectroscopic, and structural studies that have been used to understand the mechanisms behind this exceptional behavior. A revised classification protocol is suggested in the conclusions, particularly with respect to the term "oxygen-tolerance". This article is part of a special issue entitled: metals in bioenergetics and biomimetics systems.
Collapse
|
11
|
Roessler MM, Evans RM, Davies RA, Harmer J, Armstrong FA. EPR Spectroscopic Studies of the Fe–S Clusters in the O2-Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe–3S] Cluster by HYSCORE. J Am Chem Soc 2012; 134:15581-94. [DOI: 10.1021/ja307117y] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Maxie M. Roessler
- Department of Chemistry and ‡Center for Advanced Electron Spin Resonance, Oxford University, South Parks Road,
OX1 3QR Oxford, United Kingdom
| | - Rhiannon M. Evans
- Department of Chemistry and ‡Center for Advanced Electron Spin Resonance, Oxford University, South Parks Road,
OX1 3QR Oxford, United Kingdom
| | - Rosalind A. Davies
- Department of Chemistry and ‡Center for Advanced Electron Spin Resonance, Oxford University, South Parks Road,
OX1 3QR Oxford, United Kingdom
| | - Jeffrey Harmer
- Department of Chemistry and ‡Center for Advanced Electron Spin Resonance, Oxford University, South Parks Road,
OX1 3QR Oxford, United Kingdom
| | - Fraser A. Armstrong
- Department of Chemistry and ‡Center for Advanced Electron Spin Resonance, Oxford University, South Parks Road,
OX1 3QR Oxford, United Kingdom
| |
Collapse
|
12
|
Reijerse E, Lendzian F, Isaacson R, Lubitz W. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:237-43. [PMID: 22196894 DOI: 10.1016/j.jmr.2011.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 05/22/2023]
Abstract
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.
Collapse
Affiliation(s)
- Edward Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Stiftstr. 34-36, Germany.
| | | | | | | |
Collapse
|
13
|
Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA. Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster. J Am Chem Soc 2011; 133:16881-92. [DOI: 10.1021/ja205393w] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Oliver Lenz
- Department of Microbiology, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | - Baerbel Friedrich
- Department of Microbiology, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | - Frank Sargent
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | | |
Collapse
|
14
|
Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 2011; 286:40614-23. [PMID: 21930709 DOI: 10.1074/jbc.m111.283648] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ∼50% decrease of the number of ∼2.7-Å Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Camilla Lambertz
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sezer M, Frielingsdorf S, Millo D, Heidary N, Utesch T, Mroginski MA, Friedrich B, Hildebrandt P, Zebger I, Weidinger IM. Role of the HoxZ Subunit in the Electron Transfer Pathway of the Membrane-Bound [NiFe]-Hydrogenase from Ralstonia eutropha Immobilized on Electrodes. J Phys Chem B 2011; 115:10368-74. [DOI: 10.1021/jp204665r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Murat Sezer
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | | | - Diego Millo
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Nina Heidary
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Tillman Utesch
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Maria-Andrea Mroginski
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Bärbel Friedrich
- Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | - Peter Hildebrandt
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | - Inez M. Weidinger
- Insitut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| |
Collapse
|
16
|
Fritsch J, Löscher S, Sanganas O, Siebert E, Zebger I, Stein M, Ludwig M, De Lacey AL, Dau H, Friedrich B, Lenz O, Haumann M. [NiFe] and [FeS] Cofactors in the Membrane-Bound Hydrogenase of Ralstonia eutropha Investigated by X-ray Absorption Spectroscopy: Insights into O2-Tolerant H2 Cleavage. Biochemistry 2011; 50:5858-69. [DOI: 10.1021/bi200367u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Johannes Fritsch
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Simone Löscher
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Oliver Sanganas
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Elisabeth Siebert
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Matthias Stein
- Max-Planck-Institut für Dynamik komplexer technischer Systeme, 39106 Magdeburg, Germany
| | - Marcus Ludwig
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | | | - Holger Dau
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Bärbel Friedrich
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Oliver Lenz
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
17
|
Friedrich B, Fritsch J, Lenz O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr Opin Biotechnol 2011; 22:358-64. [DOI: 10.1016/j.copbio.2011.01.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/30/2022]
|
18
|
The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 2011; 193:2487-97. [PMID: 21441514 DOI: 10.1128/jb.01427-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.
Collapse
|
19
|
Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 2011; 7:310-8. [PMID: 21390036 DOI: 10.1038/nchembio.555] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Hydrogenases are essential for H(2) cycling in microbial metabolism and serve as valuable blueprints for H(2)-based biotechnological applications. However, most hydrogenases are extremely oxygen sensitive and prone to inactivation by even traces of O(2). The O(2)-tolerant membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha H16 is one of the few examples that can perform H(2) uptake in the presence of ambient O(2). Here we show that O(2) tolerance is crucially related to a modification of the internal electron-transfer chain. The iron-sulfur cluster proximal to the active site is surrounded by six instead of four conserved coordinating cysteines. Removal of the two additional cysteines alters the electronic structure of the proximal iron-sulfur cluster and renders the catalytic activity sensitive to O(2) as shown by physiological, biochemical, spectroscopic and electrochemical studies. The data indicate that the mechanism of O(2) tolerance relies on the reductive removal of oxygenic species guided by the unique architecture of the electron relay rather than a restricted access of O(2) to the active site.
Collapse
Affiliation(s)
- Tobias Goris
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ogata H, Kellers P, Lubitz W. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). J Mol Biol 2010; 402:428-44. [PMID: 20673834 DOI: 10.1016/j.jmb.2010.07.041] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022]
Abstract
The crystal structure of the membrane-associated [NiFe] hydrogenase from Allochromatium vinosum has been determined to 2.1 Å resolution. Electron paramagnetic resonance (EPR) and Fourier transform infrared spectroscopy on dissolved crystals showed that it is present in the Ni-A state (>90%). The structure of the A. vinosum [NiFe] hydrogenase shows significant similarities with [NiFe] hydrogenase structures derived from Desulfovibrio species. The amino acid sequence identity is ∼ 50%. The bimetallic [NiFe] active site is located in the large subunit of the heterodimer and possesses three diatomic non-protein ligands coordinated to the Fe (two CN(-) , one CO). Ni is bound to the protein backbone via four cysteine thiolates; two of them also bridge the two metals. One of the bridging cysteines (Cys64) exhibits a modified thiolate in part of the sample. A mono-oxo bridging ligand was assigned between the metal ions of the catalytic center. This is in contrast to a proposal for Desulfovibrio sp. hydrogenases that show a di-oxo species in this position for the Ni-A state. The additional metal site located in the large subunit appears to be a Mg(2+) ion. Three iron-sulfur clusters were found in the small subunit that forms the electron transfer chain connecting the catalytic site with the molecular surface. The calculated anomalous Fourier map indicates a distorted proximal iron-sulfur cluster in part of the crystals. This altered proximal cluster is supposed to be paramagnetic and is exchange coupled to the Ni(3+) ion and the medial [Fe(3)S(4)](+) cluster that are both EPR active (S=1/2 species). This finding of a modified proximal cluster in the [NiFe] hydrogenase might explain the observation of split EPR signals that are occasionally detected in the oxidized state of membrane-bound [NiFe] hydrogenases as from A. vinosum.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | |
Collapse
|
21
|
Pandelia ME, Ogata H, Lubitz W. Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. Chemphyschem 2010; 11:1127-40. [PMID: 20301175 DOI: 10.1002/cphc.200900950] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The [NiFe] hydrogenase from the anaerobic sulphate reducing bacterium Desulfovibrio vulgaris Miyazaki F is an excellent model for constructing a mechanism for the function of the so-called 'oxygen-sensitive' hydrogenases. The present review focuses on spectroscopic investigations of the active site intermediates playing a role in the activation/deactivation and catalytic cycle of this enzyme as well as in the inhibition by carbon monoxide or molecular oxygen and the light-sensitivity of the hydrogenase. The methods employed include magnetic resonance and vibrational (FTIR) techniques combined with electrochemistry that deliver information about details of the geometrical and electronic structure of the intermediates and their redox behaviour. Based on these data a mechanistic scheme is developed.
Collapse
Affiliation(s)
- Maria-Eirini Pandelia
- Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
22
|
Saggu M, Ludwig M, Friedrich B, Hildebrandt P, Bittl R, Lendzian F, Lenz O, Zebger I. Impact of Amino Acid Substitutions near the Catalytic Site on the Spectral Properties of an O2-Tolerant Membrane-Bound [NiFe] Hydrogenase. Chemphyschem 2010; 11:1215-24. [DOI: 10.1002/cphc.200900988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|