2
|
Szekeres LI, Bálint S, Galbács G, Kálomista I, Kiss T, Larsen FH, Hemmingsen L, Jancsó A. Hg 2+ and Cd 2+ binding of a bioinspired hexapeptide with two cysteine units constructed as a minimalistic metal ion sensing fluorescent probe. Dalton Trans 2019; 48:8327-8339. [PMID: 31111849 DOI: 10.1039/c9dt01141b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hg2+ and Cd2+ complexation of a short hexapeptide, Ac-DCSSCY-NH2 (DY), was studied by pH-potentiometry, UV and NMR spectroscopy and fluorimetry in aqueous solutions and the Hg2+-binding ability of the ligand was also described in an immobilized form, where the peptides were anchored to a hydrophilic resin. Hg2+ was demonstrated to form a 1 : 1 complex with the ligand even at pH = 2.0 while Cd2+ coordination by the peptide takes place only above pH ∼ 3.5. Both metal ions form bis-ligand complexes by the coordination of four Cys-thiolates at ligand excess above pH ∼ 5.5 (Cd2+) and 7.0 (Hg2+). Fluorescence studies demonstrated a Hg2+ induced concentration-dependent quenching of the Tyr fluorescence until a 1 : 1 Hg2+ : DY ratio. The fluorescence emission intensity decreases linearly with the increasing Hg2+ concentration in a range of over two orders of magnitude. The fact that this occurs even in the presence of 1.0 eq. of Cd2+ per ligand reflects a complete displacement of the latter metal ion by Hg2+ from its peptide-bound form. The immobilized peptide was also shown to bind Hg2+ very efficiently even from samples at pH = 2.0. However, the existence of lower affinity binding sites was also demonstrated by binding of more than 1.0 eq. of Hg2+ per immobilized DY molecule under Hg2+-excess conditions. Experiments performed with a mixture of four metal ions, Hg2+, Cd2+, Zn2+ and Ni2+, indicate that this molecular probe may potentially be used in Hg2+-sensing systems under acidic conditions for the measurement of μM range concentrations.
Collapse
Affiliation(s)
- Levente I Szekeres
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Sára Bálint
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Ildikó Kálomista
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Tamás Kiss
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Flemming H Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Lars Hemmingsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| |
Collapse
|
3
|
Nejdl L, Nguyen HV, Richtera L, Krizkova S, Guran R, Masarik M, Hynek D, Heger Z, Lundberg K, Erikson K, Adam V, Kizek R. Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis 2015; 36:1894-904. [PMID: 26033737 DOI: 10.1002/elps.201500069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 12/12/2022]
Abstract
A novel microfluidic label-free bead-based metallothionein immunosensors was designed. To the surface of superparamagnetic agarose beads coated with protein A, polyclonal chicken IgY specifically recognizing metallothionein (MT) were immobilized via rabbit IgG. The Brdicka reaction was used for metallothionein detection in a microfluidic printed 3D chip. The assembled chip consisted of a single copper wire coated with a thin layer of amalgam as working electrode. Optimization of MT detection using designed microfluidic chip was performed in stationary system as well as in the flow arrangement at various flow rates (0-1800 μL/min). In stationary arrangement it is possible to detect MT concentrations up to 30 ng/mL level, flow arrangement allows reliable detection of even lower concentration (12.5 ng/mL). The assembled miniature flow chip was subsequently tested for the detection of MT elevated levels (at approx. level 100 μg/mL) in samples of patients with cancer. The stability of constructed device for metallothionein detection in flow arrangement was found to be several days without any maintenance needed.
Collapse
Affiliation(s)
- Lukas Nejdl
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hoai Viet Nguyen
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Roman Guran
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Hynek
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Karin Lundberg
- Lab on a Bead AΒ, Division of Research and Development, Uppsala, Sweden
| | - Kristofer Erikson
- Lab on a Bead AΒ, Division of Research and Development, Uppsala, Sweden.,Department of Engineering Sciences, Division of Solid State Physics, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|