1
|
Paul D, Sahoo P, Sengupta A, Tripathy U, Chatterjee S. Revealing the Role of Electronic Effect to Modulate the Photophysics and Z-Scan Responses of o-Locked GFP Chromophores. J Phys Chem B 2024. [PMID: 39480189 DOI: 10.1021/acs.jpcb.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and 1H NMR studies. The fluorescence quantum yields (ϕf) of all of the chromophores were found to be more than an order of magnitude higher (∼0.2) than the unlocked chromophores (∼0.01). It was found that the electronic effect did affect the nonradiative rates, as the quantum yields were found to vary with respect to different analogues in the same solvents. The effect of the push-pull effect was also evident by a higher Stokes-shifted emission in the case of the methyl derivative with respect to the bromo- and iodo-analogues. Furthermore, the emission spectra of these GFP chromophores were found to show positive solvatochromism, which was supported by a quantum chemical calculation. A detailed study, correlating the observed spectral changes with various solvent functions and supported by computational results, established a facile proton transfer, followed by twisted intramolecular charge transfer (TICT) to be the major nonradiative channels of these chromophores. Besides, a completely novel usage of these chromophores was explored for the first time by studying their third-order nonlinear optical characteristics in DMSO using a single-beam Z-scan technique. All of the chromophores exhibited tunable nonlinear refraction (NLR) and nonlinear absorption (NLA) properties that depend upon different substituent groups present in the chromophores. Here, the NLR was due to the effect of self-defocusing, whereas the NLA was triggered by reverse saturable absorption, which is attributed to the two-photon absorption (TPA) process. Surprisingly, the efficiency of the TPA ability of the chromophores was found to be a function of the induced electronic effect. Hence, this work opens a new route for the utility of the ortho-locked GFP chromophores in the field of nonlinear optical applications.
Collapse
Affiliation(s)
- Debasish Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Priyadarshi Sahoo
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Soumit Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India
| |
Collapse
|
2
|
Surynt P, Wojtczak BA, Chrominski M, Panecka-Hofman J, Kwapiszewska K, Kalwarczyk T, Kubacka D, Spiewla T, Kasprzyk R, Holyst R, Kowalska J, Jemielity J. Trimethylguanosine cap-fluorescent molecular rotor (TMG-FMR) conjugates are potent, specific snurportin1 ligands enabling visualization in living cells. Org Biomol Chem 2024; 22:6763-6790. [PMID: 39105613 DOI: 10.1039/d4ob01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The trimethylguanosine (TMG) cap is a motif present inter alia at the 5' end of small nuclear RNAs, which are involved in RNA splicing. The TMG cap plays a crucial role in RNA processing and stability as it protects the RNA molecule from degradation by exonucleases and facilitates its export from the nucleus. Additionally, the TMG cap plays a role in the recognition of snRNA by snurportin, a protein that facilitates nuclear import. TMG cap analogs are used in biochemical experiments as molecular tools to substitute the natural TMG cap. To expand the range of available TMG-based tools, here we conjugated the TMG cap to Fluorescent Molecular Rotors (FMRs) to open the possibility of detecting protein-ligand interactions in vitro and, potentially, in vivo, particularly visualizing interactions with snurportin. Consequently, we report the synthesis of 34 differently modified TMG cap-FMR conjugates and their evaluation as molecular probes for snurportin. As FMRs we selected three GFP-like chromophores (derived from green fluorescent protein) and one julolidine derivative. The evaluation of binding affinities for snurportin showed unexpectedly a strong stabilizing effect for TMGpppG-derived dinucleotides containing the FMR at the 2'-O-position of guanosine. These newly discovered compounds are potent snurportin ligands with nanomolar KD (dissociation constant) values, which are two orders of magnitude lower than that of natural TMGpppG. The effect is diminished by ∼50-fold for the corresponding 3'-regioisomers. To deepen the understanding of the structure-activity relationship, we synthesized and tested FMR conjugates lacking the TMG cap moiety. These studies, supported by molecular docking, suggested that the enhanced affinity arises from additional hydrophobic contacts provided by the FMR moiety. The strongest snurportin ligand, which also gave the greatest fluorescence enhancement (Fm/F0) when saturated with the protein, were tested in living cells to detect interactions and visualize complexes by fluorescence lifetime monitoring. This approach has potential applications in the study of RNA processing and RNA-protein interactions.
Collapse
Affiliation(s)
- Piotr Surynt
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Joanna Panecka-Hofman
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
3
|
Csomos A, Madarász M, Turczel G, Cseri L, Bodor A, Matuscsák A, Katona G, Kovács E, Rózsa B, Mucsi Z. A GFP Inspired 8-Methoxyquinoline-Derived Fluorescent Molecular Sensor for the Detection of Zn 2+ by Two-Photon Microscopy. Chemistry 2024; 30:e202400009. [PMID: 38446718 DOI: 10.1002/chem.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
An effective, GFP-inspired fluorescent Zn2+ sensor is developed for two-photon microscopy and related biological application that features an 8-methoxyquinoline moiety. Excellent photophysical characteristics including a 37-fold fluorescence enhancement with excitation and emission maxima at 440 nm and 505 nm, respectively, as well as a high two-photon cross-section of 73 GM at 880 nm are reported. Based on the experimental data, the relationship between the structure and properties was elucidated and explained backed up by DFT calculations, particularly the observed PeT phenomenon for the turn-on process. Biological validation and detailed experimental and theoretical characterization of the free and the zinc-bound compounds are presented.
Collapse
Affiliation(s)
- Attila Csomos
- Femtonics Ltd., Tűzoltó utca 59, H-1094, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Miklós Madarász
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111, Budapest, Hungary
| | - Andrea Bodor
- Analytical and BioNMR Laboratory, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Anett Matuscsák
- Laboratory of 3D functional network and dendritic imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, H-1083, Budapest, Hungary
| | - Gergely Katona
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
| | - Ervin Kovács
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Balázs Rózsa
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Laboratory of 3D functional network and dendritic imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, H-1083, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
| | - Zoltán Mucsi
- Femtonics Ltd., Tűzoltó utca 59, H-1094, Budapest, Hungary
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Faculty of Materials and Chemical Sciences, University of Miskolc, H-3515, Miskolc, Hungary
| |
Collapse
|
4
|
Rasmusssen AP, Pedersen HB, Andersen LH. Excited-state dynamics and fluorescence lifetime of cryogenically cooled green fluorescent protein chromophore anions. Phys Chem Chem Phys 2023. [PMID: 38048068 DOI: 10.1039/d3cp04696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Time-resolved action spectroscopy together with a fs-pump probe scheme is used in an electrostatic ion-storage ring to address lifetimes of specific vibrational levels in electronically excited states. Here we specifically consider the excited-state lifetime of cryogenically cooled green fluorescent protein (GFP) chromophore anions which is systematically measured across the S0-S1 spectral region (450-482 nm). A long lifetime of 5.2 ± 0.3 ns is measured at the S0-S1 band origin. When exciting higher vibrational levels in S1, the lifetime changes dramatically. It decreases by more than two orders of magnitude in a narrow energy region ∼250 cm-1 (31 meV) above the 0-0 transition. This is attributed to the opening of internal conversion over an excited-state energy barrier. The applied experimental technique provides a new way to uncover even small energy barriers, which are crucial for excited-state dynamics.
Collapse
Affiliation(s)
- Anne P Rasmusssen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
5
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. Angew Chem Int Ed Engl 2023; 62:e202303889. [PMID: 37191208 PMCID: PMC10952796 DOI: 10.1002/anie.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
6
|
Nadal Rodríguez P, Ghashghaei O, Schoepf AM, Benson S, Vendrell M, Lavilla R. Charting the Chemical Reaction Space around a Multicomponent Combination: Controlled Access to a Diverse Set of Biologically Relevant Scaffolds. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202303889. [PMID: 38516006 PMCID: PMC10952208 DOI: 10.1002/ange.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 03/23/2024]
Abstract
Charting the chemical reaction space around the combination of carbonyls, amines, and isocyanoacetates allows the description of new multicomponent processes leading to a variety of unsaturated imidazolone scaffolds. The resulting compounds display the chromophore of the green fluorescent protein and the core of the natural product coelenterazine. Despite the competitive nature of the pathways involved, general protocols provide selective access to the desired chemotypes. Moreover, we describe unprecedented reactivity at the C-2 position of the imidazolone core to directly afford C, S, and N-derivatives featuring natural products (e.g. leucettamines), potent kinase inhibitors, and fluorescent probes with suitable optical and biological profiles.
Collapse
Affiliation(s)
- Pau Nadal Rodríguez
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Ouldouz Ghashghaei
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Anna M. Schoepf
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Rodolfo Lavilla
- Department of Medicinal ChemistryFaculty of Pharmacy and Food SciencesUniversity of Barcelona and Institute of Biomedicine UB (IBUB)Av. De Joan XXIII, 27–3108028BarcelonaSpain
| |
Collapse
|
7
|
Dalmau D, Crespo O, Matxain JM, Urriolabeitia EP. Fluorescence Amplification of Unsaturated Oxazolones Using Palladium: Photophysical and Computational Studies. Inorg Chem 2023. [PMID: 37315074 DOI: 10.1021/acs.inorgchem.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.
Collapse
Affiliation(s)
- David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Ke HW, Sung K. 7-membered-ring effect on fluorescence quantum yield: does metal-complexation-induced twisting-inhibition of an amino GFP chromophore derivative enhance fluorescence? Phys Chem Chem Phys 2023; 25:14627-14634. [PMID: 37194347 DOI: 10.1039/d3cp00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To investigate two aspects, namely, (1) the 7-membered-ring effect on fluorescence quantum yield and (2) whether metal-complexation-induced twisting-inhibition of an amino green fluorescent protein (GFP) chromophore derivative is bound to enhance fluorescence, a novel GFP-chromophore-based triamine ligand, (Z)-o-PABDI, is designed and synthesized. Before complexation with metal ions, the S1 excited state of (Z)-o-PABDI undergoes τ-torsion relaxation (Z/E photoisomerization) with a Z/E photoisomerization quantum yield of 0.28, forming both ground-state (Z)- and (E)-o-PABDI isomers. Since (E)-o-PABDI is less stable than (Z)-o-PABDI, it is thermo-isomerized back to (Z)-o-PABDI at room temperature in acetonitrile with a first-order rate constant of (1.366 ± 0.082) × 10-6 s-1. After complexation with a Zn2+ ion, (Z)-o-PABDI as a tridentate ligand forms a 1 : 1 complex with the Zn2+ ion in acetonitrile and in the solid state, resulting in complete inhibition of the φ-torsion and τ-torsion relaxations, which does not enhance fluorescence but causes fluorescence quenching. (Z)-o-PABDI also forms complexes with other first-row transition metal ions Mn2+, Fe3+, Co2+, Ni2+ and Cu2+, generating almost the same fluorescence quenching effect. By comparison with the 2/Zn2+ complex, in which a 6-membered ring of Zn2+-complexation enhances fluorescence significantly (a positive 6-membered-ring effect on fluorescence quantum yield), we find that the flexible 7-membered rings of the (Z)-o-PABDI/Mn+ complexes trigger their S1 excited states to relax through internal conversion at a rate much faster than fluorescence (a negative 7-membered-ring effect on fluorescence quantum yield), leading to fluorescence quenching regardless of the type of transition metal that complexes with (Z)-o-PABDI.
Collapse
Affiliation(s)
- Hao-Wei Ke
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Ferreira JRM, Esteves CIC, Marques MMB, Guieu S. Locking the GFP Fluorophore to Enhance Its Emission Intensity. Molecules 2022; 28:molecules28010234. [PMID: 36615428 PMCID: PMC9822164 DOI: 10.3390/molecules28010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not emissive when isolated in solution, outside the protein environment. The most accepted explanation is that the quenching of the fluorescence results from the rotation of the aryl-alkene bond and from the Z/E isomerization. Over the years, many efforts have been performed to block these torsional rotations, mimicking the environment inside the protein β-barrel, to restore the emission intensity. Molecule rigidification through chemical modifications or complexation, or through crystallization, is one of the strategies used. This review presents an overview of the strategies developed to achieve highly emissive GFP chromophore by hindering the torsional rotations.
Collapse
Affiliation(s)
- Joana R. M. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Cátia I. C. Esteves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Maria Manuel B. Marques
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
10
|
Baleeva NS, Smirnov AY, Baranov MS. Synthesis and Optical Properties of the Conformationally Locked Diarylmethene Derivative of the GFP Chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Dalmau D, Jiménez AI, Urriolabeitia EP. Synthesis and characterization of orthopalladated complexes containing tridentate C,N,O-oxazolones. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Sinenko GD, Farkhutdinova DA, Myasnyanko IN, Baleeva NS, Baranov MS, Bochenkova AV. Designing Red-Shifted Molecular Emitters Based on the Annulated Locked GFP Chromophore Derivatives. Int J Mol Sci 2021; 22:13645. [PMID: 34948442 PMCID: PMC8703576 DOI: 10.3390/ijms222413645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Bioimaging techniques require development of a wide variety of fluorescent probes that absorb and emit red light. One way to shift absorption and emission of a chromophore to longer wavelengths is to modify its chemical structure by adding polycyclic aromatic hydrocarbon (PAH) fragments, thus increasing the conjugation length of a molecule while maintaining its rigidity. Here, we consider four novel classes of conformationally locked Green Fluorescent Protein (GFP) chromophore derivatives obtained by extending their aromatic systems in different directions. Using high-level ab initio quantum chemistry calculations, we show that the alteration of their electronic structure upon annulation may unexpectedly result in a drastic change of their fluorescent properties. A flip of optically bright and dark electronic states is most prominent in the symmetric fluorene-based derivative. The presence of a completely dark lowest-lying excited state is supported by the experimentally measured extremely low fluorescence quantum yield of the newly synthesized compound. Importantly, one of the asymmetric modes of annulation provides a very promising strategy for developing red-shifted molecular emitters with an absorption wavelength of ∼600 nm, having no significant impact on the character of the bright S-S1 transition.
Collapse
Affiliation(s)
- Gregory D. Sinenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (G.D.S.); (D.A.F.)
| | - Dilara A. Farkhutdinova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (G.D.S.); (D.A.F.)
| | - Ivan N. Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.N.M.); (N.S.B.); (M.S.B.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.N.M.); (N.S.B.); (M.S.B.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.N.M.); (N.S.B.); (M.S.B.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Anastasia V. Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (G.D.S.); (D.A.F.)
| |
Collapse
|
13
|
Eckert P, Johs A, Semrau JD, DiSpirito AA, Richardson J, Sarangi R, Herndon E, Gu B, Pierce EM. Spectroscopic and computational investigations of organometallic complexation of group 12 transition metals by methanobactins from Methylocystis sp. SB2. J Inorg Biochem 2021; 223:111496. [PMID: 34271330 PMCID: PMC10569158 DOI: 10.1016/j.jinorgbio.2021.111496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Methanotrophic bacteria catalyze the aerobic oxidation of methane to methanol using Cu-containing enzymes, thereby exerting a modulating influence on the global methane cycle. To facilitate the acquisition of Cu ions, some methanotrophic bacteria secrete small modified peptides known as "methanobactins," which strongly bind Cu and function as an extracellular Cu recruitment relay, analogous to siderophores and Fe. In addition to Cu, methanobactins form complexes with other late transition metals, including the Group 12 transition metals Zn, Cd, and Hg, although the interplay among solution-phase configurations, metal interactions, and the spectroscopic signatures of methanobactin-metal complexes remains ambiguous. In this study, the complexation of Zn, Cd, and Hg by methanobactin from Methylocystis sp. strain SB2 was studied using a combination of absorbance, fluorescence, extended x-ray absorption fine structure (EXAFS) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. We report changes in sample absorbance and fluorescence spectral dynamics, which occur on a wide range of experimental timescales and characterize a clear stoichiometric complexation dependence. Mercury L3-edge EXAFS and TD-DFT calculations suggest a linear model for HgS coordination, and TD-DFT suggests a tetrahedral model for Zn2+ and Cd2+. We observed an enhancement in the fluorescence of methanobactin upon interaction with transition metals and propose a mechanism of complexation-hindered isomerization drawing inspiration from the wild-type Green Fluorescent Protein active site. Collectively, our results represent the first combined computational and experimental spectroscopy study of methanobactins and shed new light on molecular interactions and dynamics that characterize complexes of methanobactins with Group 12 transition metals.
Collapse
Affiliation(s)
- Peter Eckert
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeremy D Semrau
- Civil & Environmental Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jocelyn Richardson
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Ritimukta Sarangi
- Structural Molecular Biology Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94306, USA
| | - Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
14
|
Fluorescent Orthopalladated Complexes of 4-Aryliden-5(4 H)-oxazolones from the Kaede Protein: Synthesis and Characterization. Molecules 2021; 26:molecules26051238. [PMID: 33669118 PMCID: PMC7956804 DOI: 10.3390/molecules26051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of the work reported here was to amplify the fluorescent properties of 4-aryliden-5(4H)-oxazolones by suppression of the hula-twist non-radiative deactivation pathway. This aim was achieved by simultaneous bonding of a Pd center to the N atom of the heterocycle and the ortho carbon of the arylidene ring. Two different 4-((Z)-arylidene)-2-((E)-styryl)-5(4H)-oxazolones, the structures of which are closely related to the chromophore of the Kaede protein and substituted at the 2- and 4-positions of the arylidene ring (1a OMe; 1b F), were used as starting materials. Oxazolones 1a and 1b were reacted with Pd(OAc)2 to give the corresponding dinuclear orthometalated palladium derivates 2a and 2b by regioselective C–H activation of the ortho-position of the arylidene ring. Reaction of 2a (2b) with LiCl promoted the metathesis of the bridging carboxylate by chloride ligands to afford dinuclear 3a (3b). Mononuclear complexes containing the orthopalladated oxazolone and a variety of ancillary ligands (acetylacetonate (4a, 4b), hydroxyquinolinate (5a), aminoquinoline (6a), bipyridine (7a), phenanthroline (8a)) were prepared from 3a or 3b through metathesis of anionic ligands or substitution of neutral weakly bonded ligands. All species were fully characterized and the X-ray determination of the molecular structure of 7a was carried out. This structure has strongly distorted ligands due to intramolecular interactions. Fluorescence measurements showed an increase in the quantum yield (QY) by up to one order of magnitude on comparing the free oxazolone (QY < 1%) with the palladated oxazolone (QY = 12% for 6a). This fact shows that the coordination of the oxazolone to the palladium efficiently suppresses the hula-twist deactivation pathway.
Collapse
|
15
|
Li W, Xin J, Zhai P, Lin J, Huang S, Gao W, Li X. Access to highly functionalized imidazolones bearing α-amino acid esters via KOH-promoted annulation of amidines, nitrosoarenes and malonic esters. Org Biomol Chem 2021; 19:6473-6477. [PMID: 34236374 DOI: 10.1039/d1ob00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to obtain highly functionalized imidazolones bearing α-amino acid esters through KOH-mediated one-pot three-component annulation of amidines, nitrosoarenes and malonic esters is reported. This reaction features broad substrate scope, a cheap and readily available promoter, good to high yields for most substrates and mild reaction conditions. The mechanism study shows that the KOH-mediated formation of the imine intermediate via the reaction of nitrosoarenes with malonic esters is a key step.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jie Xin
- Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng 271600, China
| | - Pingan Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenchao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
16
|
Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci 2020; 285:102286. [PMID: 33164780 DOI: 10.1016/j.cis.2020.102286] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Green fluorescence proteins (GFP) are appealing to a variety of biomedical and biotechnology applications, such as protein fusion, subcellular localizations, cell visualization, protein-protein interaction, and genetically encoded sensors. To mimic the fluorescence of GFP, various compounds, such as GFP chromophores analogs, hydrogen bond-rich proteins, and aromatic peptidyl nanostructures that preclude free rotation of the aryl-alkene bond, have been developed to adapt them for a fantastic range of applications. Herein, we firstly summarize the structure and luminescent mechanism of GFP. Based on this, the design strategy, fluorescent properties, and the advanced applications of GFP-inspired fluorophores are then carefully discussed. The diverse advantages of bioinspired fluorophores, such as biocompatibility, structural simplicity, and capacity to form a variety of functional nanostructures, endow them potential candidates as the next-generation bio-organic optical materials.
Collapse
|
17
|
Mali BP, Dash SR, Nikam SB, Puthuvakkal A, Vanka K, Manoj K, Gonnade RG. Five concomitant polymorphs of a green fluorescent protein chromophore (GFPc) analogue: understanding variations in photoluminescence with π-stacking interactions. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:850-864. [PMID: 33017318 DOI: 10.1107/s2052520620010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The synthetically modified green fluorescent protein chromophore analogue 3,4,5-trimethoxybenzylidene imidazolinone (1) yielded five polymorphs (I, II, III, IV, V) concomitantly irrespective of the solvent used for crystallization. The pentamorphic modification of 1 is solely due to the interplay of iso-energetic weak intermolecular interactions in molecular associations as well as the conformational flexibility offered by a C-C single bond, which connects the electron-deficient moiety imidazolinone with the electron-rich trimethoxybenzylidene group. A common structural feature observed in all the polymorphs is the formation of a `zero-dimensional' centrosymmetric dimeric unit through a short and linear C-H...O hydrogen bond engaging phenyl C-H and imidazolinone carbonyl oxygen. However, the networking of these dimeric units showed a subtle difference in all the polymorphs. The 2D isostructurality was observed between polymorphs I, II and III, while the other two polymorphs IV and V revealed only `zero-dimensional' isostructurality. The different fluorescence emissions of Form I (blue) and Forms II to V (yellow) were attributed to the differences in π-stacking interactions. It shows that one can modulate the photophysical properties of these smart materials by slightly altering their crystal structure. Such an approach will aid in developing new multi-colour organic fluorescent materials of varying crystal structures for live-cell imaging and fluorescent sensing applications.
Collapse
Affiliation(s)
- Bhupendra P Mali
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan/Pune, Maharashtra 411008, India
| | - Soumya Ranjan Dash
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan/Pune, Maharashtra 411008, India
| | - Shrikant B Nikam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan/Pune, Maharashtra 411008, India
| | - Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan/Pune, Maharashtra 411008, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
| | - Rajesh G Gonnade
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan/Pune, Maharashtra 411008, India
| |
Collapse
|
18
|
Baleeva NS, Smirnov AY, Myasnyanko IN, Baranov MS. Synthesis and Optical Properties of the Conformationally Locked Indole and Indoline Derivatives of the GFP Chromophore. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Deng H, Yu C, Yan D, Zhu X. Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission. J Phys Chem B 2020; 124:871-880. [PMID: 31928005 DOI: 10.1021/acs.jpcb.9b11329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tremendous gap of fluorescence emission of synthetic green fluorescent protein (GFP) chromophore to the protein itself makes it impossible to use for applications in molecular and cellular imaging. Here, we developed an efficient methodology to enhance the photoluminescence response of synthetic GFP chromophore analogues by constructing dual-self-restricted chromophores. Single self-restricted chromophores were first generated with 2,5-dimethoxy substitution on the aromatic ring, which were further modified with phenyl or 2,5-dimethoxy phenyl to form dual-self-restricted chromophores. These two chromophores showed an obvious solvatofluorochromic color palette across blue to yellow with a maximum emission Stokes shift of 95 nm and dramatically enhanced fluorescence emission in various aprotic solvents, especially in hexane, where the QY reached around 0.6. Importantly, in acetonitrile and dimethyl sulfoxide, the fluorescence QYs of both chromophores were over 0.22, which were the highest reported so far in high polar organic solvents. Meanwhile, the fluorescence lifetimes also improved obviously with the maximum of around 4.5 ns. Theoretical calculations revealed a more favorable Mülliken atomic charge translocation over the double-bond bridge and illustrated much higher energy barriers for the Z/E photoisomerization together with larger bond orders compared with the GFP core chromophore, p-HBDI. Our work significantly improved the fluorescence emission of synthetic GFP chromophore analogues in polar solvents while reserved the multicolor emitting function, providing a solid molecular motif for engineering high-performance fluorescent probes.
Collapse
Affiliation(s)
- Hongping Deng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
20
|
Zou J, Chen G, Du F, Yuan Y, Huang X, Dong J, Xie K, Cui X, Tang Z. A general fluorescent light-up probe for staining and quantifying protein. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190580. [PMID: 31598246 PMCID: PMC6731743 DOI: 10.1098/rsos.190580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Proteins are the primary functional agents in all cellular processes, facilitating various functions such as enzymes and structure-forming or signal-transducing molecules. In this work, we report a fluorescent dye, PyMDI-Zn, which could specifically bind with proteins and provide a red-shifted fluorescent emission. The visual analysis of protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis could be realized in 5 min by using PyMDI-Zn as a light-up dye. Based on its cell penetration and low toxicity, PyMDI-Zn could also be applied to locate protein-rich regions and organelles in live cell imaging. Moreover, the direct protein quantitation can be realized based on PyMDI-Zn, providing a method of screening for food adulteration by nitrogen-rich compounds.
Collapse
Affiliation(s)
- Jiawei Zou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Kexin Xie
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
21
|
Baleeva NS, Khavroshechkina AV, Zaitseva ER, Myasnyanko IN, Zagudaylova MB, Baranov MS. Naphthalene derivatives of a conformationally locked GFP chromophore with large stokes shifts. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Povarova NV, Zaitseva SO, Baleeva NS, Smirnov AY, Myasnyanko IN, Zagudaylova MB, Bozhanova NG, Gorbachev DA, Malyshevskaya KK, Gavrikov AS, Mishin AS, Baranov MS. Red-Shifted Substrates for FAST Fluorogen-Activating Protein Based on the GFP-Like Chromophores. Chemistry 2019; 25:9592-9596. [PMID: 31111975 DOI: 10.1002/chem.201901151] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Indexed: 11/10/2022]
Abstract
A genetically encoded fluorescent tag for live cell microscopy is presented. This tag is composed of previously published fluorogen-activating protein FAST and a novel fluorogenic derivative of green fluorescent protein (GFP)-like chromophore with red fluorescence. The reversible binding of the novel fluorogen and FAST is accompanied by three orders of magnitude increase in red fluorescence (580-650 nm). The proposed dye instantly stains target cellular proteins fused with FAST, washes out in a minute timescale, and exhibits higher photostability of the fluorescence signal in confocal and widefield microscopy, in contrast with previously published fluorogen:FAST complexes.
Collapse
Affiliation(s)
- Natalia V Povarova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Snizhana O Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Marina B Zagudaylova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Kseniya K Malyshevskaya
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Alexey S Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| |
Collapse
|
23
|
Puthuvakkal A, Manoj K. Crystal structure and spectral studies of green fluorescent protein (GFP) chromophore analogue ethyl 2-[(4Z)-(6-hydroxy naphthalen-2-yl) methylene)-2-methyl-5-oxo-4,5-di hydro-1H-imidazol-1-yl] acetate. ACTA ACUST UNITED AC 2019. [DOI: 10.5155/eurjchem.10.2.175-179.1869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetically modified green fluorescent protein chromophore derivative was prepared, its crystal structure and spectral properties were studied. Crystal data for C19H18N2O4: triclinic, space group P-1 (no. 2), a = 8.2506(17) Å, b = 11.934(2) Å, c = 17.461(4) Å, α = 102.89(3)°, β = 94.62(3)°, γ = 96.68(3)°, V = 1654.5(6) Å3, Z = 4, T = 173(2) K, μ(MoKα) = 0.096 mm-1, Dcalc = 1.358 g/cm3, 7227 reflections measured (4.722° ≤ 2Θ ≤ 53.996°), 7227 unique (Rint = 0.0453, Rsigma = 0.0662) which were used in all calculations. The final R1 was 0.0561 (I > 2σ(I)) and wR2 was 0.1658 (all data). The single crystal structure showed, the benzylidine moiety adopts Z-conformation in solid state and the molecules were associated by various O−H···O and C−H···O non-covalent interactions. The UV absorption-emission spectral analysis indicated that a significant red shift of emission observed at alkaline pH indicating its utility for live cell imaging applications.
Collapse
Affiliation(s)
- Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| |
Collapse
|
24
|
Zaitseva SO, Baranov MS. Synthesis of the New Green Fluorescent Protein Chromophore Analogue Starting from a Cinnamic Aldehyde Derivative. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Singh A, Samanta D, Boro M, Maji TK. Gfp chromophore integrated conjugated microporous polymers: topological and ESPT effects on emission properties. Chem Commun (Camb) 2019; 55:2837-2840. [PMID: 30768086 DOI: 10.1039/c9cc00357f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A metal free topological approach is demonstrated to mimic the photophysical properties of natural gfp by synthesizing two gfp chromophore integrated conjugated microporous polymers (o-HBDI-TEB-CMP and o-MBDI-TEB-CMP). Interestingly, owing to the structural rigidity, the emission (λem = 515 nm) and excited state lifetime (4.1 ns) of hydroxy substituted o-HBDI-TEB-CMP are found to be similar to the natural gfp. The crucial role of the -OH group for the green emission is further supported by -OMe substituted o-MBDI-TEB-CMP (λem = 440 nm) and also validated theoretically.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | | | | | |
Collapse
|
26
|
Zaitseva SO, Farkhutdinova DA, Baleeva NS, Smirnov AY, Zagudaylova MB, Shakhov AM, Astafiev AA, Baranov MS, Bochenkova AV. Excited-state locked amino analogues of the green fluorescent protein chromophore with a giant Stokes shift. RSC Adv 2019; 9:38730-38734. [PMID: 35540244 PMCID: PMC9076007 DOI: 10.1039/c9ra08808c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
We design a new class of excited-state locked GFP chromophores which intrinsically exhibit a very large Stokes shift.
Collapse
Affiliation(s)
| | | | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry
- Russian Academy of Sciences
- 117997 Moscow
- Russia
| | | | | | | | - Artyom A. Astafiev
- Semenov Institute of Chemical Physics of RAS
- Moscow
- Russia
- Department of Chemistry
- Lomonosov Moscow State University
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry
- Russian Academy of Sciences
- 117997 Moscow
- Russia
- Pirogov Russian National Research Medical University
| | | |
Collapse
|
27
|
Fan W, Deng H, Zhu L, Tu C, Su Y, Shi L, Yang J, Zhou L, Xu L, Zhu X. Site-dependent fluorescence enhanced polymers with a self-restricted GFP chromophore for living cell imaging. Biomater Sci 2019; 7:2421-2429. [DOI: 10.1039/c9bm00255c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphipathic copolymers with a self-restricted GFP chromophore sited on different locations were successfully synthesized, characterized and applied in cell imaging.
Collapse
|
28
|
Zaitseva SO, Golodukhina SV, Baleeva NS, Levina EA, Smirnov AY, Zagudaylova MB, Baranov MS. Azidoacetic Acid Amides in the Synthesis of Substituted Arylidene‐1‐
H
‐imidazol‐5‐(4
H
)‐ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Snizhana O. Zaitseva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Svetlana V. Golodukhina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Evgenia A. Levina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
29
|
Baleeva NS, Gorbachev DA, Baranov MS. The Role of C2-Substituents in the Imidazolone Ring in the Degradation of GFP Chromophore Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Ikejiri M, Kojima H, Fugono Y, Fujisaka A, Chihara Y, Miyashita K. Synthesis and properties of geometrical 4-diarylmethylene analogs of the green fluorescent protein chromophore. Org Biomol Chem 2018; 16:2397-2401. [DOI: 10.1039/c8ob00208h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The E- and Z-isomers of E/Z-photoisomerizable diarylmethylene analogs of the GFP chromophore (geo-DAIN) produce different colors of aggregation-induced emission (AIE).
Collapse
Affiliation(s)
| | - Haruka Kojima
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Yuumi Fugono
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Aki Fujisaka
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | | | | |
Collapse
|
31
|
Zhang B, Gu M, Liu C, Liu X, Gao N, Gao Q, Zhu Y, Tang M, Du C, Song M. An ESIPT Fluorophore Based on Zinc-Induced Intramolecular Proton Transfer between Ligands in the Complex. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bin Zhang
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Mengsi Gu
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Chunmei Liu
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Xu Liu
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Na Gao
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Qin Gao
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Mingsheng Tang
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Chenxia Du
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Maoping Song
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou P. R. China
| |
Collapse
|
32
|
Feng G, Luo C, Yi H, Yuan L, Lin B, Luo X, Hu X, Wang H, Lei C, Nie Z, Yao S. DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores. Nucleic Acids Res 2017; 45:10380-10392. [PMID: 28981852 PMCID: PMC5737560 DOI: 10.1093/nar/gkx803] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Red fluorescent proteins (RFPs) have emerged as valuable biological markers for biomolecule imaging in living systems. Developing artificial fluorogenic systems that mimic RFPs remains an unmet challenge. Here, we describe the design and synthesis of six new chromophores analogous to the chromophores in RFPs. We demonstrate, for the first time, that encapsulating RFP chromophore analogues in canonical DNA G-quadruplexes (G4) can activate bright fluorescence spanning red and far-red spectral regions (Em = 583-668 nm) that nearly match the entire RFP palette. Theoretical calculations and molecular dynamics simulations reveal that DNA G4 greatly restricts radiationless deactivation of chromophores induced by a twisted intramolecular charge transfer (TICT). These DNA mimics of RFP exhibit attractive photophysical properties comparable or superior to natural RFPs, including high quantum yield, large Stokes shifts, excellent anti-photobleaching properties, and two-photon fluorescence. Moreover, these RFP chromophore analogues are a novel and distinctive type of topology-selective G4 probe specific to parallel G4 conformation. The DNA mimics of RFP have been further exploited for imaging of target proteins. Using cancer-specific cell membrane biomarkers as targets, long-term real-time monitoring in single live cell and two-photon fluorescence imaging in tissue sections have been achieved without the need for genetic coding.
Collapse
Affiliation(s)
- Guangfu Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Haibo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine laboratory, Hunan University, Changsha 410082, PR China
| | - Honghui Wang
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
33
|
Baleeva NS, Zaitseva SO, Gorbachev DA, Smirnov AY, Zagudaylova MB, Baranov MS. The Role of N
-Substituents in Radiationless Deactivation of Aminated Derivatives of a Locked GFP Chromophore. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snezhana O. Zaitseva
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitriy A. Gorbachev
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
34
|
Huang S, Li F, Liao C, Zheng B, Du J, Xiao D. A selective and sensitive fluorescent probe for the determination of HSA and trypsin. Talanta 2017; 170:562-568. [PMID: 28501212 DOI: 10.1016/j.talanta.2017.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/26/2023]
Abstract
A simple fluorescent probe HBI-GR based on the combination of the fluorophore (p-HBI) in green fluorescent protein (GFP) and Guanine riboside (GR) for HSA was successfully synthesized. HBI-GR showed an obvious fluorescence enhancement toward HSA without interference from other proteins, amino acids, anions and commonly existing metal ions. HBI-GR exhibited high sensitivity towards HSA with a good linear relationship between the fluorescence intensity of HBI-GR and HSA concentration from 0 to 0.06mgmL-1. The limit of detection, based on a signal-to-noise ratio of 3, was 15.09ngmL-1, which was much lower than that of most other reported probes. HBI-GR was almost non-fluorescent because of the bond twisting in the exited state of chromophore HBI. After binding to the hydrophobic pocket of HSA, it showed an obvious fluorescence enhancement due to the rigidifying of the flexible chromophore HBI by the hydrophobic environment. The resulting HBI-GR/HSA system also showed a satisfactory sensing ability toward trypsin through decreased fluorescence intensity with the detection limit of 0.0282ngmL-1. The fluorescence decreasing process was occurred as the lysine and arginine amino acids residues of HSA were cleaved by trypsin, which led to further exposure of HBI-GR to the PBS buffer phase and a concomitant decrease of the HBI-GR fluorescence intensity. Moreover, the probe HBI-GR was successfully used to detect HSA in healthy human urine and human blood serum samples. The practical application of the HBI-GR/HSA system for trypsin detection in healthy human urine also achieved satisfactory result.
Collapse
Affiliation(s)
- Shanshan Huang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Fangfang Li
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Chemical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610065, PR China
| | - Caiyun Liao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Chemical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610065, PR China
| | - Juan Du
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China; College of Chemical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610065, PR China.
| |
Collapse
|
35
|
Ikejiri M, Mori K, Miyagi R, Konishi R, Chihara Y, Miyashita K. A hybrid molecule of a GFP chromophore analogue and cholestene as a viscosity-dependent and cholesterol-responsive fluorescent sensor. Org Biomol Chem 2017; 15:6948-6958. [DOI: 10.1039/c7ob01522d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylmethylenated and cholestene-hybrid analogues of the GFP chromophore showed viscosity-dependent and cholesterol-responsive fluorescent properties.
Collapse
Affiliation(s)
| | - Kenta Mori
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Rina Miyagi
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | - Rino Konishi
- Faculty of Pharmacy
- Osaka Ohtani University
- Tondabayashi
- Japan
| | | | | |
Collapse
|
36
|
Chatterjee T, Mandal M, Mandal PK. Solvent H-bond accepting ability induced conformational change and its influence towards fluorescence enhancement and dual fluorescence of hydroxy meta-GFP chromophore analogue. Phys Chem Chem Phys 2016; 18:24332-42. [PMID: 27530959 DOI: 10.1039/c6cp04219h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of structural rigidity towards enhancement of fluorescence quantum yield of GFP chromophore analogues has been documented. In the present study, a new way of enhancing the fluorescence quantum yield of two ortho-meta GFP chromophore analogues meta-methoxy-ortho-hydroxy-benzylimidazolidinone (abbreviated as mOMe-HBDI) and meta-diethylamino-ortho-hydroxyl imidazolidinone (abbreviated as MOHIM) has been reported. This enhancement is controlled by the H-bond accepting ability (denoted as β value) of the solvent and happens only in the case of GFP chromophore analogues having ortho (hydroxyl)-meta (electron donating group) and not in the case of analogues having a para electron donating group. The ground state (solid) conformation of mOMe-HBDI has been obtained from single crystal X-ray analysis, exhibiting the existence of strong intramolecular H-bonding. However, in solution phase, as the solvent β value increases, the strength of intramolecular H-bonding decreases. This process has strong influence on the relative conformational orientation of phenyl and imidazolidinone rings. For mOMe-HBDI, fluorescence quantum yield increases with increase in β value of the solvents. However, the effect of solvent polarity cannot be completely ruled out. The lower wavelength emission band (∼480 nm) has been assigned to the normal charge-transferred (CT) species, whereas the highly Stokes shifted emission band (∼660 nm) has been assigned to the proton-transferred (PT) tautomer species for mOMe-HBDI. In solvents of low β value (say hexane) only the PT band and in solvents of high β value (say DMSO) only the CT band is observed. Quite interestingly, in solvents of intermediate β value both CT and PT bands, thus dual emission, are observed. For mOMe-HBDI when fluorescence decay is monitored at the normal CT emission band, it is observed to be biexponential in nature. The short component increases from ∼0.2 ns to 0.6 ns and the long component increases from 1 to 3.6 ns as the β value of the solvent increases. For a particular solvent, when fluorescence decay is monitored at the normal CT band, as the monitoring wavelength increases the amplitude of the long lifetime component increases and that of the short lifetime component decreases. Time-resolved area-normalised emission spectral (TRANES) analysis confirms the possible existence of two conformers having differential stabilisation by solvent polarity. When fluorescence decay is monitored at the PT band an instrument response limited (<60 ps) decay is noted. Strong support in favour of the above-mentioned structural, steady state and time-resolved optical observations and analyses has been obtained from the methoxy derivative mOMe-MBDI and MOMIM.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West-Bengal 741246, India.
| | | | | |
Collapse
|
37
|
Paolino M, Gueye M, Pieri E, Manathunga M, Fusi S, Cappelli A, Latterini L, Pannacci D, Filatov M, Léonard J, Olivucci M. Design, Synthesis, and Dynamics of a Green Fluorescent Protein Fluorophore Mimic with an Ultrafast Switching Function. J Am Chem Soc 2016; 138:9807-25. [DOI: 10.1021/jacs.5b10812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Moussa Gueye
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Elisa Pieri
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Madushanka Manathunga
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
| | - Stefania Fusi
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Danilo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Michael Filatov
- Department of Chemistry,
School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica
e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling
Green, Ohio, United States
- University of Strasbourg Institute for Advanced Studies, 5, allée du Général
Rouvillois F-67083 Strasbourg, France
| |
Collapse
|
38
|
Singh A, Ramanathan G. Rational Design of Heterogeneous Silver Catalysts by Exploitation of Counteranion-Induced Coordination Geometry. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashish Singh
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
39
|
Chatterjee T, Mandal M, Das A, Bhattacharyya K, Datta A, Mandal PK. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands. J Phys Chem B 2016; 120:3503-10. [PMID: 26998908 DOI: 10.1021/acs.jpcb.6b01993] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tanmay Chatterjee
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West-Bengal 741246, India
| | - Mrinal Mandal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West-Bengal 741246, India
| | - Ananya Das
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West-Bengal 741246, India
| | - Kalishankar Bhattacharyya
- Department
of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Ayan Datta
- Department
of Spectroscopy, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Prasun K. Mandal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West-Bengal 741246, India
| |
Collapse
|
40
|
Gutiérrez S, Martínez-López D, Morón M, Sucunza D, Sampedro D, Domingo A, Salgado A, Vaquero JJ. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring. Chemistry 2015; 21:18758-63. [DOI: 10.1002/chem.201502929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 11/09/2022]
|
41
|
Deng H, Su Y, Hu M, Jin X, He L, Pang Y, Dong R, Zhu X. Multicolor Fluorescent Polymers Inspired from Green Fluorescent Protein. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongping Deng
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Su
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minxi Hu
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Jin
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin He
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Pang
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruijiao Dong
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyuan Zhu
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, and ‡Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
42
|
Walker CL, Lukyanov KA, Yampolsky IV, Mishin AS, Bommarius AS, Duraj-Thatte AM, Azizi B, Tolbert LM, Solntsev KM. Fluorescence imaging using synthetic GFP chromophores. Curr Opin Chem Biol 2015; 27:64-74. [DOI: 10.1016/j.cbpa.2015.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023]
|
43
|
Chatterjee T, Mandal M, Gude V, Bag PP, Mandal PK. Strong electron donation induced differential nonradiative decay pathways for para and meta GFP chromophore analogues. Phys Chem Chem Phys 2015; 17:20515-21. [PMID: 26176350 DOI: 10.1039/c5cp03086b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Z-E Isomerisation because of rotation around the exocyclic double bond (known as the τ-twist) and not any other internal conversion has been reported to be the major nonradiative decay channel for non-hydroxylic unconstrained para and meta GFP chromophore analogues. The equation Φf + 2ΦZE = 1 has been shown to hold well for both para and meta GFP chromophore analogues. If the above equation holds true, then upon reducing the extent of Z-E isomerisation (ΦZE), the fluorescence quantum yield (Φf) should increase. To probe the above proposition two sets of non-hydroxylic unconstrained para and meta GFP chromophore analogues were synthesized. Quite interestingly by introducing the strongly electron donating -NEt2 group to the benzenic moiety these para and meta GFP chromophore analogues were shown to exhibit differential optical behaviour w.r.t. the extent of the solvatochromic shift, Φf, ΦZE, and τf. For the first time it has been shown that the well accepted equation Φf + 2ΦZE = 1 does not hold at all for these non-hydroxylic unconstrained meta analogues. Although ΦZE has been shown to be <10%, Φf is much lower than the expected near unity value for these meta analogues. After detailed investigation into the nonradiative excited state decay channel, contrary to literature reports, energy gap law governed internal conversion and not Z-E isomerisation was shown to be the major nonradiative decay channel for these meta analogues. Two models are put forward to understand the differential optical behaviour of these para and meta GFP chromophore analogues. Support from X-ray crystal structures, NMR experiments, and computational calculations has also been provided.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Kolkata, West-Bengal 741246, India.
| | | | | | | | | |
Collapse
|
44
|
Vegh RB, Bloch DA, Bommarius AS, Verkhovsky M, Pletnev S, Iwaï H, Bochenkova AV, Solntsev KM. Hidden photoinduced reactivity of the blue fluorescent protein mKalama1. Phys Chem Chem Phys 2015; 17:12472-85. [DOI: 10.1039/c5cp00887e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a complete photocycle of the blue fluorescent protein exhibiting two delayed branches coupled to hidden proton transfer events.
Collapse
Affiliation(s)
- Russell B. Vegh
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Dmitry A. Bloch
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Andreas S. Bommarius
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Michael Verkhovsky
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Sergei Pletnev
- Synchrotron Radiation Research Section
- Macromolecular Crystallography Laboratory
- National Cancer Institute
- Argonne
- USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | | | - Kyril M. Solntsev
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
45
|
Huang GJ, Lin CJ, Liu YH, Peng SM, Yang JS. o-Amino Analogs of Green Fluorescence Protein Chromophore: Photoisomerization, Photodimerization and Aggregation-induced Emission. Photochem Photobiol 2014; 91:714-22. [DOI: 10.1111/php.12373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Guan-Jhih Huang
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Che-Jen Lin
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Yi-Hung Liu
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Shie-Ming Peng
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| | - Jye-Shane Yang
- Department of Chemistry; National Taiwan University; Taipei Taiwan
| |
Collapse
|
46
|
Hsu YH, Chen YA, Tseng HW, Zhang Z, Shen JY, Chuang WT, Lin TC, Lee CS, Hung WY, Hong BC, Liu SH, Chou PT. Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. J Am Chem Soc 2014; 136:11805-12. [PMID: 25075971 DOI: 10.1021/ja5062856] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design strategy and synthesis of a structurally locked GFP core chromophore p-LHBDI, its ortho-derivative, o-LHBDI, and H2BDI possessing both para- and ortho-hydroxyl groups such that the inherent rotational motion of the titled compounds has been partially restricted. o-LHBDI possesses a doubly locked configuration, i.e., the seven-membered ring hydrogen bond and five-membered ring C(4-5-10-13-14) cyclization, from which the excited-state intramolecular proton transfer takes place, rendering a record high tautomer emission yield (0.18 in toluene) and the generation of amplified spontaneous emission. Compared with their unlocked counterparts, a substantial increase in the emission yield is also observed for p-LHBDI and H2BDI in anionic forms in water, and accordingly the structure versus luminescence relationship is fully discussed based on their chemistry and spectroscopy aspect. In solid, o-LHBDI exhibits an H-aggregate-like molecular packing, offers narrow-bandwidth emission, and has been successfully applied to fabricate a yellow organic light emitting diodes (λmax = 568 nm, ηext = 1.9%) with an emission full width at half-maximum as narrow as 70 nm.
Collapse
Affiliation(s)
- Yen-Hao Hsu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee J. Light-Controlled Chemical Reactions and Their Applications in Biological Systems. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Frizler M, Yampolsky IV, Baranov MS, Stirnberg M, Gütschow M. Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Org Biomol Chem 2014; 11:5913-21. [PMID: 23912233 DOI: 10.1039/c3ob41341a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An activity-based probe, containing an irreversibly locked GFP-like fluorophore, was synthesized and evaluated as an inhibitor of human cathepsins and, as exemplified with cathepsin K, it proved to be suitable for ex vivo imaging and quantification of cysteine cathepsins by SDS-PAGE.
Collapse
Affiliation(s)
- Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | | | | | | | | |
Collapse
|
49
|
Tou SL, Huang GJ, Chen PC, Chang HT, Tsai JY, Yang JS. Aggregation-induced emission of GFP-like chromophores via exclusion of solvent–solute hydrogen bonding. Chem Commun (Camb) 2014; 50:620-2. [DOI: 10.1039/c3cc47262k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zhu L, Yuan Z, Simmons JT, Sreenath K. Zn(II)-coordination modulated ligand photophysical processes - the development of fluorescent indicators for imaging biological Zn(II) ions. RSC Adv 2014; 4:20398-20440. [PMID: 25071933 PMCID: PMC4111279 DOI: 10.1039/c4ra00354c] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - J. Tyler Simmons
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| | - Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, United States
| |
Collapse
|