1
|
Abel S, Naumann C. Evolution of phosphate scouting in the terrestrial biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230355. [PMID: 39343020 PMCID: PMC11528361 DOI: 10.1098/rstb.2023.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle06120, Germany
- Department of Plant Sciences, University of California-Davis, Davis, CA95616, USA
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle06120, Germany
| |
Collapse
|
2
|
Burguera S, Vidal L, Bauzá A. Aluminum Fluorides as Noncovalent Lewis Acids in Proteins: The Case of Phosphoryl Transfer Enzymes. Chempluschem 2024:e202400578. [PMID: 39363715 DOI: 10.1002/cplu.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The Protein Data Bank (PDB) was scrutinized for the presence of noncovalent O ⋅ ⋅ ⋅ Al Triel Bonding (TrB) interactions, involving protein residues (e. g. GLU and GLN), adenosine/guanine diphosphate moieties (ADP and GDP), water molecules and two aluminum fluorides (AlF3 and AlF4 -). The results were statistically analyzed, revealing a vast number of O ⋅ ⋅ ⋅ Al contacts in the active sites of phosphoryl transfer enzymes, with a marked directionality towards the Al σ-/π-hole. The physical nature of the TrBs studied herein was analyzed using Molecular Electrostatic Potential (MEP) maps, the Quantum Theory of Atoms in Molecules (QTAIM), the Non Covalent Interaction plot (NCIplot) visual index and Natural Bonding Orbital (NBO) studies. As far as our knowledge extends, it is the first time that O ⋅ ⋅ ⋅ Al TrBs are analyzed within a biological context, participating in protein trapping mechanisms related to phosphoryl transfer enzymes. Moreover, since they are involved in the stabilization of aluminum fluorides inside the protein's active site, we believe the results reported herein will be valuable for those scientists working in supramolecular chemistry, catalysis and rational drug design.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Lenin Vidal
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| |
Collapse
|
3
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
4
|
Lu Y, Yue CX, Zhang L, Yao D, Xia Y, Zhang Q, Zhang X, Li S, Shen Y, Cao M, Guo CR, Qin A, Zhao J, Zhou L, Yu Y, Cao Y. Structural basis for inositol pyrophosphate gating of the phosphate channel XPR1. Science 2024:eadp3252. [PMID: 39325866 DOI: 10.1126/science.adp3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Precise regulation of intracellular phosphate (Pi) is critical for cellular function, with XPR1 serving as the sole Pi exporter in humans. The mechanism of Pi efflux, activated by inositol pyrophosphates (PP-IPs), has remained unclear. This study presents cryo-electron microscopy structures of XPR1 in multiple conformations, revealing a transmembrane pathway for Pi export and a dual-binding activation pattern by PP-IPs. A canonical binding site is located at the dimeric interface of SPX domains, and a second site, biased toward PP-IPs, is found between the transmembrane and SPX domains. By integrating structural studies with electrophysiological analyses, we characterize XPR1 as an IPs/PP-IPs-activated phosphate channel. The interplay among its TMDs, SPX domains, and IPs/PP-IPs orchestrates the conformational transition between its closed and open states.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Li Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xinchen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Howells CL, Stocker AJ, Lea JN, Halcovitch NR, Patel H, Fletcher NC. Transition Metal Complexes with Appended Benzimidazole Groups for Sensing Dihydrogenphosphate. Chemistry 2024; 30:e202401385. [PMID: 38967595 DOI: 10.1002/chem.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Four new complexes [Ru(bpy)2(bbib)](PF6)2, [Ru(phen)2(bbib)](PF6)2, [Re(CO)3(bbib)(py)](PF6) and [Ir(ppy)2(bbib)](PF6) [where bbib=4,4'-bis(benzimidazol-2-yl)-2,2'-bipyridine] have been prepared and their photophysical properties determined. Their behaviour has been studied with a variety of anions in acetonitrile, DMSO and 10 % aquated DMSO. Acetate and dihydrogenphosphate demonstrate a redshift in the bbib ligand associated absorptions suggesting that the ligand is strongly interacting with these anions. The 3MLCT emissive state is sensitive to the introduction of small quantities of anion (sub-stoichiometric quantities) and significant quenching is typically observed with acetate, although this is less pronounced in the presence of water. The emissive behaviour with dihydrogenphosphate is variable, showing systematic changes as anion concentration increases with several distinct interactions evident. 1H- and 31P-NMR titrations in a 10 % D2O-DMSO-D6 mixture suggest that with dihydrogenphosphate, the imidazole group is able to act as both a proton acceptor and donor. It appears that all four complexes can form a {[complex]2-H2PO4} "dimer", a one-to-one species (which the X-ray crystallography study suggests is dimeric in the solid-state), and a complex with a combined bis(dihydrogenphosphate) complex anion. The speciation relies on complex equilibria dependent on several factors including the complex charge, the hydrophobicity of the associated ligands, and the solvent.
Collapse
Affiliation(s)
- Chloe L Howells
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Andrew J Stocker
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Joshua N Lea
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Humaira Patel
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nicholas C Fletcher
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| |
Collapse
|
6
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
7
|
Maldonado-Pava J, Tapia-Perdomo V, Estupinan-Cardenas L, Puentes-Cala E, Castillo-Villamizar GA. Exploring the biotechnological potential of novel soil-derived Klebsiella sp. and Chryseobacterium sp. strains using phytate as sole carbon source. Front Bioeng Biotechnol 2024; 12:1426208. [PMID: 38962663 PMCID: PMC11219571 DOI: 10.3389/fbioe.2024.1426208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.
Collapse
|
8
|
Liang J, Li O, Fang L, Han F, Chen Y, Tang S, Li Z. Hydrothermally Stimulated Molecular Interfaces for Augmented Electron Delocalization in Wet-Chemical Phosphorus Recovery from Incineration Ash of Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10839-10851. [PMID: 38850558 DOI: 10.1021/acs.est.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Wet-chemically recovering phosphorus (P) from sewage sludge incineration ash (SSIA) has already become a global initiative to address P deficit, but effectively isolating P from these accompanying metals (AMs) through adsorption in a SSIA-derived extract remains elusive. Here, we devised a hydrothermal stimulus-motivated thermodynamic and kinetic enhancement to gain anionic ethylenediaminetetraacetic acid (EDTA) molecular interfaces for AM enclosure to resolve this conundrum. A new dosage rule based on the EDTA coordination ratio with AMs was established for the first time. Upon hydrothermal extraction at 140 °C for 1 h, the P extraction efficiency reached 96.7% or higher for these obtained SSIA samples, and then exceptional P sequestration from these EDTA-chelated AMs was realized by the peculiar lanthanum (La)-based nanoadsorbent (having 188.86 mg P/g adsorbent at pH ∼ 3.0). Relevant theoretical calculations unraveled that these delocalized electrons of tetravalent EDTA molecules boosted the enclosure of liberated AMs, thereby entailing a substantially increased negative adsorption energy (-408.7 kcal/mol) of P in the form of H2PO4- through intruding lattice-edged carbonates to coordinate La with monodentate mononuclear over LaCO5(1 0 1). This work highlights the prospect of molecular adaptation of these common extractants in wet-chemical P recovery from various P-included wastes, further sustaining global P circularity.
Collapse
Affiliation(s)
- Jiaming Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Ouyang Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Le Fang
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, People's Republic of China
| | - Fulei Han
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Yundan Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Siqi Tang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Zhenshan Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
9
|
Saito Y, Cho SM, Danieli LA, Matsunaga A, Kobayashi S. A highly efficient catalytic method for the synthesis of phosphite diesters. Chem Sci 2024; 15:8190-8196. [PMID: 38817565 PMCID: PMC11134407 DOI: 10.1039/d4sc01401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
In contrast to conventional methods that rely on stoichiometric activation of phosphonylating reagents, we have developed a highly efficient catalytic method for the synthesis of phosphite diesters using a readily available phosphonylation reagent and alcohols with environmentally benign Zn(ii) catalysts. Two alcohols could be introduced consecutively on the P center with release of trifluoroethanol as the sole byproduct, without any additive, under mild conditions. The products could be oxidized smoothly to access phosphate triesters. A range of alcohols, including sterically demanding and highly functionalized alcohols such as carbohydrates and nucleosides, can be applied in this reaction.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Soo Min Cho
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Luca Alessandro Danieli
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Akira Matsunaga
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
10
|
Yu C, E R, An Y, Guo X, Bao G, Li Y, Xie J, Sun W. Michael Addition Reaction between Dehydroalanines and Phosphites Enabled the Introduction of Phosphonates into Oligopeptides. Org Lett 2024. [PMID: 38780227 DOI: 10.1021/acs.orglett.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
12
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Walton CR, Hao J, Huang F, Jenner FE, Williams H, Zerkle AL, Lipp A, Hazen RM, Peters SE, Shorttle O. Evolution of the crustal phosphorus reservoir. SCIENCE ADVANCES 2023; 9:eade6923. [PMID: 37146138 PMCID: PMC10162663 DOI: 10.1126/sciadv.ade6923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutrient-rich crust at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- Craig R Walton
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Jihua Hao
- Deep Space Exploration Lab/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, 96 Jinzhai Rd., Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| | - Fang Huang
- CSIRO Mineral Resources, Kensington WA 6151, Australia
| | - Frances E Jenner
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Helen Williams
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Aubrey L Zerkle
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Alex Lipp
- Department of Earth Sciences and Engineering, Imperial College London, London, UK
| | - Robert M Hazen
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015, USA
| | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK
| |
Collapse
|
14
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. PLANT, CELL & ENVIRONMENT 2023; 46:1264-1277. [PMID: 35909262 DOI: 10.1111/pce.14414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Victoria, Australia
| | - Mao Chuanzao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
15
|
Yan J, Wang J, Chen J, Shi H, Liao X, Pan C, Liu Y, Yang X, Ren Z, Yang X. Adjusting phosphate feeding regimen according to daily rhythm increases eggshell quality via enhancing medullary bone remodeling in laying hens. J Anim Sci Biotechnol 2023; 14:17. [PMID: 36894995 PMCID: PMC9999492 DOI: 10.1186/s40104-023-00829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Body phosphorus metabolism exhibits a circadian rhythm over the 24-h daily cycle. The egg laying behavior makes laying hens a very special model for investigating phosphorus circadian rhythms. There is lack of information about the impact of adjusting phosphate feeding regimen according to daily rhythm on the phosphorus homeostasis and bone remodeling of laying hens. METHODS AND RESULTS Two experiments were conducted. In Exp. 1, Hy-Line Brown laying hens (n = 45) were sampled according the oviposition cycle (at 0, 6, 12, and 18 h post-oviposition, and at the next oviposition, respectively; n = 9 at each time point). Diurnal rhythms of body calcium/phosphorus ingestions and excretions, serum calcium/phosphorus levels, oviduct uterus calcium transporter expressions, and medullary bone (MB) remodeling were illustrated. In Exp. 2, two diets with different phosphorus levels (0.32% and 0.14% non-phytate phosphorus (NPP), respectively) were alternately presented to the laying hens. Briefly, four phosphorus feeding regimens in total (each included 6 replicates of 5 hens): (1) fed 0.32% NPP at both 09:00 and 17:00; (2) fed 0.32% NPP at 09:00 and 0.14% NPP at 17:00; (3) fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00; (4) fed 0.14% NPP at both 09:00 and 17:00. As a result, the regimen fed 0.14% NPP at 09:00 and 0.32% NPP at 17:00, which was designed to strengthen intrinsic phosphate circadian rhythms according to the findings in Exp. 1, enhanced (P < 0.05) MB remodeling (indicated by histological images, serum markers and bone mineralization gene expressions), elevated (P < 0.05) oviduct uterus calcium transportation (indicated by transient receptor potential vanilloid 6 protein expression), and subsequently increased (P < 0.05) eggshell thickness, eggshell strength, egg specific gravity and eggshell index in laying hens. CONCLUSIONS These results underscore the importance of manipulating the sequence of daily phosphorus ingestion, instead of simply controlling dietary phosphate concentrations, in modifying the bone remodeling process. Body phosphorus rhythms will need to be maintained during the daily eggshell calcification cycle.
Collapse
Affiliation(s)
- Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiajie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chong Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Li H, He K, Zhang Z, Hu Y. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:121-129. [PMID: 36706691 DOI: 10.1016/j.plaphy.2023.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins, flavonoid compounds derived from secondary metabolic pathways, play important roles in various biological processes. Phosphorus (P) is an essential macroelement for plant growth and development, and P-starvation usually results in anthocyanin accumulation. However, the molecular mechanism of P deficiency promotes anthocyanin biosynthesis has not been well characterized. Here, we provided evidence that the P signaling core protein PHOSPHATE STARVATION RESPONSE1 (PHR1) is physically associate with transcription factors (TFs) involved in anthocyanidin biosynthesis, including PRODUCTION OF ANTHOCYANIN PIGMENTS1 (PAP1/MYB75), MYB DOMAIN PROTEIN 113 (MYB113) and TRANSPARENT TESTA 8 (TT8). PHR1 and its homologies positively regulated anthocyanin accumulation in Arabidopsis seedlings under P-deficient conditions. Disruption of PHR1 simultaneously rendered seedlings hyposensitive to limiting P, whereas the overexpression of PHR1 enhanced P- deficiency-induced anthocyanin accumulation. Genetic analysis demonstrated that 35S:PHR1-2HA-5 seedlings partially recovers the P deficiency insensitive phenotype of myb-RNAi and tt8 mutants. In summary, our study indicated that protein complexes formed by PHR1 and MBW complex directly mediate the process of P-deficiency-induced anthocyanin accumulation, providing a new mechanistic understanding of how P-deficient signaling depends on the endogenous anthocyanin synthesis pathway to promote anthocyanin accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - ZhiQiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China.
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
17
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
18
|
Ma G, Satheesh V, Lei M. Intracellular phosphate sensing in plants. MOLECULAR PLANT 2022; 15:1831-1833. [PMID: 36348624 DOI: 10.1016/j.molp.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Guojie Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
20
|
Mahato M, Tohora N, Rahman Z, Sultana T, Ghanta S, Kumar Das S. A benzoxazole-based smart molecule for relay detection of zinc and phosphate ions and its implication towards molecular logic gate constructions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Cao XY, Ni YZ, Li J, Li L, Zhao YL, Yang GP. Sorption and distribution performance of organophosphorus compound (Adenosine 5'-monophosphate)on marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119993. [PMID: 35995290 DOI: 10.1016/j.envpol.2022.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/18/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the kinetics and thermodynamics of Adenosine 5'-monophosphate (AMP) sorption on the sediments obtained from the Yangtze River Estuary and adjacent areas were studied, in combination with the effects of the sediments' properties and media conditions. The kinetics curves could be described by a two-compartment first-order equation, and the equilibrium isotherms fitted well with the modified Langmuir and Freundlich models. The analysis of organic phosphorus (OP) fractions changes after sorption indicated that the contents of exchangeable or loosely sorbed PO increased most significantly. Higher organic matter (OM) of the sediments were favorable for the sorption ability. It was also found that the content of OP and OM in the sediments showed an obvious positive correlation, indicating that organic matter rather than Fe/Al oxides played an important role in the migration of OP in the Yangtze River estuary and its adjacent area. Temperature, salinity and pH of the media influenced the sorption of AMP significantly. Increase of temperature was of benefit to the sorption of AMP, which was a spontaneous and exothermic process according to the calculations of the thermodynamic parameters. The sorption capacity was higher at a moderate salinity in the range of our study. With the pH changing from 3 to 10, the sorption capacity exhibited as a "U-trend" curve.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuan-Zhe Ni
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jing Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ling Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi-Lin Zhao
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
22
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
23
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
24
|
Gong X, Jensen E, Bucerius S, Parniske M. A CCaMK/Cyclops response element in the promoter of Lotus japonicus calcium-binding protein 1 (CBP1) mediates transcriptional activation in root symbioses. THE NEW PHYTOLOGIST 2022; 235:1196-1211. [PMID: 35318667 DOI: 10.1111/nph.18112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Early gene expression in arbuscular mycorrhiza (AM) and the nitrogen-fixing root nodule symbiosis (RNS) is governed by a shared regulatory complex. Yet many symbiosis-induced genes are specifically activated in only one of the two symbioses. The Lotus japonicus T-DNA insertion line T90, carrying a promoterless uidA (GUS) gene in the promoter of Calcium Binding Protein 1 (CBP1) is exceptional as it exhibits GUS activity in both root endosymbioses. To identify the responsible cis- and trans-acting factors, we subjected deletion/modification series of CBP1 promoter : reporter fusions to transactivation and spatio-temporal expression analysis and screened ethyl methanesulphonate (EMS)-mutagenized T90 populations for aberrant GUS expression. We identified one cis-regulatory element required for GUS expression in the epidermis and a second element, necessary and sufficient for transactivation by the calcium and calmodulin-dependent protein kinase (CCaMK) in combination with the transcription factor Cyclops and conferring gene expression during both AM and RNS. Lack of GUS expression in T90 white mutants could be traced to DNA hypermethylation detected in and around this element. We concluded that the CCaMK/Cyclops complex can contribute to at least three distinct gene expression patterns on its direct target promoters NIN (RNS), RAM1 (AM), and CBP1 (AM and RNS), calling for yet-to-be identified specificity-conferring factors.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| | - Elaine Jensen
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, Ceredigion, SY23 3EB, UK
| | - Simone Bucerius
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
| | - Martin Parniske
- Genetics, Faculty of Biology, LMU Munich, Grosshaderner Str. 2-4, D-82152, Martinsried, Germany
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
25
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
26
|
Lu LN, Liu C, Yang ZZ, Zhao DX. Refined models of coordination between Al3+/Mg2+ and enzyme in molecular dynamics simulation in terms of ABEEM polarizable force field. J Mol Graph Model 2022; 114:108190. [DOI: 10.1016/j.jmgm.2022.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
27
|
Abstract
![]()
We
report a computational study of the little-studied neutral bisulfite,
bisulfate, dihydro-phosphite, and dihydro-phosphate radicals (HSOx•, H2POx•, x =
3,4), calling special attention to their various tautomeric structures
together with pKa values estimated from
the Gibbs free energies of their dissociations (at the G4 and CAM-B3LYP
levels of density functional theory). The energetics of microhydration
clusters with up to four water molecules for the S-based species and
up to eight water molecules for the P-based species were investigated.
The number of microhydrating water molecules needed to induce spontaneous
de-protonation is found to correlate the acid strength of each radical.
According to the computed Gibbs free reaction and activation energies,
S- and P-centered radicals preferentially add to the double bond of
propene (a lipid model), whereas the O-centered radical tautomers
prefer H-abstraction. The likely downstream reactions of these radicals
in biological media are discussed.
Collapse
Affiliation(s)
- Michael Bühl
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - Tallulah Hutson
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - Alice Missio
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| | - John C Walton
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
28
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
29
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
30
|
Liu T, Yuan L, Deng S, Zhang X, Cai H, Ding G, Xu F, Shi L, Wu G, Wang C. Improved the Activity of Phosphite Dehydrogenase and its Application in Plant Biotechnology. Front Bioeng Biotechnol 2021; 9:764188. [PMID: 34900961 PMCID: PMC8655118 DOI: 10.3389/fbioe.2021.764188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Phosphorus (P) is a nonrenewable resource, which is one of the major challenges for sustainable agriculture. Although phosphite (Phi) can be absorbed by the plant cells through the Pi transporters, it cannot be metabolized by plant and unable to use as P fertilizers for crops. However, transgenic plants that overexpressed phosphite dehydrogenase (PtxD) from bacteria can utilize phosphite as the sole P source. In this study, we aimed to improve the catalytic efficiency of PtxD from Ralstonia sp.4506 (PtxDR4506), by directed evolution. Five mutations were generated by saturation mutagenesis at the 139th site of PtxD R4506 and showed higher catalytic efficiency than native PtxDR4506. The PtxDQ showed the highest catalytic efficiency (5.83-fold as compared to PtxDR4506) contributed by the 41.1% decrease in the K m and 2.5-fold increase in the k cat values. Overexpression of PtxDQ in Arabidopsis and rice showed increased efficiency of phosphite utilization and excellent development when phosphite was used as the primary source of P. High-efficiency PtxD transgenic plant is an essential prerequisite for future agricultural production using phosphite as P fertilizers.
Collapse
Affiliation(s)
- Tongtong Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lili Yuan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Suren Deng
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiangxian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Knouse KW, Flood DT, Vantourout JC, Schmidt MA, Mcdonald IM, Eastgate MD, Baran PS. Nature Chose Phosphates and Chemists Should Too: How Emerging P(V) Methods Can Augment Existing Strategies. ACS CENTRAL SCIENCE 2021; 7:1473-1485. [PMID: 34584948 PMCID: PMC8461637 DOI: 10.1021/acscentsci.1c00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 05/27/2023]
Abstract
Phosphate linkages govern life as we know it. Their unique properties provide the foundation for many natural systems from cell biology and biosynthesis to the backbone of nucleic acids. Phosphates are ideal natural moieties; existing as ionized species in a stable P(V)-oxidation state, they are endowed with high stability but exhibit enzymatically unlockable potential. Despite intense interest in phosphorus catalysis and condensation chemistry, organic chemistry has not fully embraced the potential of P(V) reagents. To be sure, within the world of chemical oligonucleotide synthesis, modern approaches utilize P(III) reagent systems to create phosphate linkages and their analogs. In this Outlook, we present recent studies from our laboratories suggesting that numerous exciting opportunities for P(V) chemistry exist at the nexus of organic synthesis and biochemistry. Applications to the synthesis of stereopure antisense oligonucleotides, cyclic dinucleotides, methylphosphonates, and phosphines are reviewed as well as chemoselective modification to peptides, proteins, and nucleic acids. Finally, an outlook into what may be possible in the future with P(V) chemistry is previewed, suggesting these examples represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Kyle W. Knouse
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael A. Schmidt
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ivar M. Mcdonald
- Small
Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin D. Eastgate
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Phil S. Baran
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
33
|
Bandara CD, Schmidt M, Davoudpour Y, Stryhanyuk H, Richnow HH, Musat N. Microbial Identification, High-Resolution Microscopy and Spectrometry of the Rhizosphere in Its Native Spatial Context. FRONTIERS IN PLANT SCIENCE 2021; 12:668929. [PMID: 34305970 PMCID: PMC8293618 DOI: 10.3389/fpls.2021.668929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 05/12/2023]
Abstract
During the past decades, several stand-alone and combinatorial methods have been developed to investigate the chemistry (i.e., mapping of elemental, isotopic, and molecular composition) and the role of microbes in soil and rhizosphere. However, none of these approaches are currently applicable to characterize soil-root-microbe interactions simultaneously in their spatial arrangement. Here we present a novel approach that allows for simultaneous microbial identification and chemical analysis of the rhizosphere at micro- to nano-meter spatial resolution. Our approach includes (i) a resin embedding and sectioning method suitable for simultaneous correlative characterization of Zea mays rhizosphere, (ii) an analytical work flow that allows up to six instruments/techniques to be used correlatively, and (iii) data and image correlation. Hydrophilic, immunohistochemistry compatible, low viscosity LR white resin was used to embed the rhizosphere sample. We employed waterjet cutting and avoided polishing the surface to prevent smearing of the sample surface at nanoscale. The quality of embedding was analyzed by Helium Ion Microscopy (HIM). Bacteria in the embedded soil were identified by Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) to avoid interferences from high levels of autofluorescence emitted by soil particles and organic matter. Chemical mapping of the rhizosphere was done by Scanning Electron Microscopy (SEM) with Energy-dispersive X-ray analysis (SEM-EDX), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), nano-focused Secondary Ion mass Spectrometry (nanoSIMS), and confocal Raman spectroscopy (μ-Raman). High-resolution correlative characterization by six different techniques followed by image registration shows that this method can meet the demanding requirements of multiple characterization techniques to identify spatial organization of bacteria and chemically map the rhizosphere. Finally, we presented individual and correlative workflows for imaging and image registration to analyze data. We hope this method will be a platform to combine various 2D analytics for an improved understanding of the rhizosphere processes and their ecological significance.
Collapse
|
34
|
Song J. Adenosine triphosphate energy-independently controls protein homeostasis with unique structure and diverse mechanisms. Protein Sci 2021; 30:1277-1293. [PMID: 33829608 PMCID: PMC8197423 DOI: 10.1002/pro.4079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Proteins function in the crowded cellular environments with high salt concentrations, thus facing tremendous challenges of misfolding/aggregation which represents a pathological hallmark of aging and an increasing spectrum of human diseases. Recently, intrinsically disordered regions (IDRs) were recognized to drive liquid-liquid phase separation (LLPS), a common principle for organizing cellular membraneless organelles (MLOs). ATP, the universal energy currency for all living cells, mysteriously has concentrations of 2-12 mM, much higher than required for its previously-known functions. Only recently, ATP was decoded to behave as a biological hydrotrope to inhibit protein LLPS and aggregation at mM. We further revealed that ATP also acts as a bivalent binder, which not only biphasically modulates LLPS driven by IDRs of human and viral proteins, but also bind to the conserved nucleic-acid-binding surfaces of the folded proteins. Most unexpectedly, ATP appears to act as a hydration mediator to antagonize the crowding-induced destabilization as well as to enhance folding of proteins without significant binding. Here, this review focuses on summarizing the results of these biophysical studies and discussing their implications in an evolutionary context. By linking triphosphate with unique hydration property to adenosine, ATP appears to couple the ability for establishing hydrophobic, π-π, π-cation and electrostatic interactions to the capacity in mediating hydration of proteins, which is at the heart of folding, dynamics, stability, phase separation and aggregation. Consequently, ATP acquired a category of functions at ~mM to energy-independently control protein homeostasis with diverse mechanisms, thus implying a link between cellular ATP concentrations and protein-aggregation diseases.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| |
Collapse
|
35
|
Diethyl (2-(4-Phenyl-1H-1,2,3-triazol-1-yl)benzyl) Phosphate. MOLBANK 2021. [DOI: 10.3390/m1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we describe a full structural elucidation of the diethyl (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzyl) phosphate. This compound is a common by-product present in the synthetic protocols to access the α-hydroxy phosphonate compounds through of a Phospha-Brook rearrangement. Thus, a complete NMR structural characterization of this rearrangement by-product was performed by 1H, 13C{1H}, 31P{1H}, COSY, HSQC, and HMBC NMR experiments. Additionally, we have demonstrated that the 1H-31P HMBC is a 2D heteroatom NMR experiment which combines the simple identification by 31P chemical shift with the detection sensitivity by 1H spectrum in a practical procedure.
Collapse
|
36
|
Dašková V, Buter J, Schoonen AK, Lutz M, de Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021; 60:11120-11126. [PMID: 33605523 PMCID: PMC8252365 DOI: 10.1002/anie.202014955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Indexed: 01/22/2023]
Abstract
The origin of biomolecular homochirality continues to be one of the most fascinating aspects of prebiotic chemistry. Various amplification strategies for chiral compounds to enhance a small chiral preference have been reported, but none of these involves phosphorylation, one of nature's essential chemical reactions. Here we present a simple and robust concept of phosphorylation-based chiral amplification of amines and amino acids in water. By exploiting the difference in solubility of a racemic phosphoramidate and its enantiopure form, we achieved enantioenrichment in solution. Starting with near racemic, phenylethylamine-based phosphoramidates, ee's of up to 95 % are reached in a single amplification step. Particularly noteworthy is the enantioenrichment of phosphorylated amino acids and their derivatives, which might point to a potential role of phosphorus en-route to prebiotic homochirality.
Collapse
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jeffrey Buter
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Martin Lutz
- Crystal and Structural ChemistryBijvoet Centre for Biomolecular ResearchUtrecht UniversityPadualaan 83584CHUtrechtThe Netherlands
| | - Folkert de Vries
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
37
|
Dašková V, Buter J, Schoonen AK, Lutz M, Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Folkert Vries
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
38
|
Mikalčiūtė A, Vilčiauskas L. Insights into the hydrogen bond network topology of phosphoric acid and water systems. Phys Chem Chem Phys 2021; 23:6213-6224. [PMID: 33687381 DOI: 10.1039/d0cp05126h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphoric acid and its mixtures with water are some of the best proton conducting materials known to science. Although the proton conductivity in pure phosphoric acid decreases upon external doping with excess H+ or OH-, the addition of water improves it substantially. A number of experimental and theoretical studies indicate that these systems form a very special case of hydrogen bond networks which not only facilitate fast proton transport but also show a number of other interesting properties such as glass forming ability. In this work, we present the molecular dynamics simulation results of the H3PO4-H2O system over the entire concentration range. The hydrogen bond networks were analyzed in terms of conventional microscopic as well as topological properties based on graph and network theory. The results show that the hydrogen bond network of H3PO4 is fundamentally different from that of H2O. On average, each phosphoric acid molecule tends to form more and stronger hydrogen bonds than water which leads to a much more connected and clustered network showing small-world properties which are absent in pure water. Moreover, these hydrogen bond network properties persist in the H3PO4-H2O mixtures as well, even at relatively high water contents. Finally, many of the physical properties such as molecular diffusion coefficients seem to be also intimately related to the network topological properties and follow similar trends with respect to system content. These results strongly indicate that many important properties such as proton transport in phosphoric acid and its aqueous systems are fundamentally related to their hydrogen bond network topology and might hold the key for their ultimate molecular understanding.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania.
| | - Linas Vilčiauskas
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania. and Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
39
|
Sahoo J, Jaiswar S, Chatterjee PB, Subramanian PS, Jena HS. Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. NANOMATERIALS 2020; 11:nano11010053. [PMID: 33379340 PMCID: PMC7824681 DOI: 10.3390/nano11010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42−, SO42−, CH3COO−, I−, Br−, Cl−, F−, NO3−, CO32−/HCO3−, and HSO4− at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42− showed an excellent luminescence change with all three complexes. Job’s plot and ESI-MS support the 1:2 association between the receptors and HPO42−. Systematic spectrophotometric titrations of 1–3 against HPO42− demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42− in the range 0.01–1 equiv and 0.01–2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42− by complexes 1 and 2 were determined as 0.1–4 mM and 0.4–3.2 mM, respectively, while complex 3 covered 0.2–100 μM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42−.
Collapse
Affiliation(s)
- Jashobanta Sahoo
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Department of Chemistry, Hindol College, Khajuriakata, Higher Education Department, State Government of Odisha, Bhubaneswar, Odisha 751001, India
| | - Santlal Jaiswar
- Discipline of Marine Biotechnology and Ecology, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
| | - Pabitra B. Chatterjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Analytical Discipline and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Correspondence: or (P.S.S.); or (H.S.J.)
| | - Himanshu Sekhar Jena
- Department of Chemistry, Ghent University, Krijgslaan 281-S3 B, 9000 Ghent, Belgium
- Correspondence: or (P.S.S.); or (H.S.J.)
| |
Collapse
|
40
|
Recabarren R, Zinovjev K, Tuñón I, Alzate-Morales J. How a Second Mg 2+ Ion Affects the Phosphoryl-Transfer Mechanism in a Protein Kinase: A Computational Study. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo Recabarren
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| | - Kirill Zinovjev
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, Valencia 46010, Spain
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| |
Collapse
|
41
|
Lima YR, Da Costa GP, Xavier MCDF, De Moraes MC, Barcellos T, Alves D, Silva MS. Synthesis of
α
‐Hydroxyphosphonates Containing Functionalized 1,2,3‐Triazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanka R. Lima
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Gabriel P. Da Costa
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Maurício C. D. F. Xavier
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Maiara C. De Moraes
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul - UCS Caxias do Sul RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul - UCS Caxias do Sul RS Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa - LASOL CCQFA Universidade Federal de Pelotas - UFPel P. O. Box 354 96010-900 Pelotas RS Brazil (MSS
| |
Collapse
|
42
|
Winkler D, Banke S, Kurz P. Fluorimetric Detection of Phosphates in Water Using a Disassembly Approach: A Comparison of Fe
III
‐, Zn
II
‐, Mn
II
‐ and Mn
III
‐salen Complexes. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Winkler
- Institut für Anorganische und Analytische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Sophie Banke
- Institut für Anorganische und Analytische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie Albert‐Ludwigs‐Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
43
|
Fallek A, Weiss-Shtofman M, Kramer M, Dobrovetsky R, Portnoy M. Phosphorylation Organocatalysts Highly Active by Design. Org Lett 2020; 22:3722-3727. [PMID: 32319783 DOI: 10.1021/acs.orglett.0c01226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of nucleophilic organocatalysts for alcohol/phenol phosphorylation was enhanced through attaching oligoether appendages to a benzyl substituent on imidazole- or aminopyridine-based active units, presumably because of stabilizing n-cation interactions of the ethereal oxygens with the positively charged aza-heterocycle in the catalytic intermediates, and was substantially higher than that of known benchmark catalysts for a range of substrates. Density functional theory calculations and the study of analogues having a lower potential for such stabilizing interactions support our hypothesis.
Collapse
Affiliation(s)
- Amit Fallek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Weiss-Shtofman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Kramer
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
44
|
Ramachandran M, Anandan S. Triazole appending ruthenium(ii) polypyridine complex for selective sensing of phosphate anions through C–H–anion interaction and copper(ii) ions via cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj00273a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective fluorescence enhancement by H2PO4−/H2P2O72− anions and maximum fluorescence quenching by Cu2+ ions were attained upon treatment with different types of anions and cations, respectively.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620 015
- India
| |
Collapse
|
45
|
Ramanjaneyulu BT, Vidyacharan S, Yim SJ, Kim DP. Fast-Synthesis of α-Phosphonyloxy Ketones as Drug Scaffolds in a Capillary Microreactor. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Se Jun Yim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis; Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 37673 Pohang Korea
| |
Collapse
|
46
|
Yang CH, Fan H, Li H, Hou S, Sun X, Luo D, Zhang Y, Yang Z, Chang J. Direct Access to Allenylphosphine Oxides via a Metal Free Coupling of Propargylic Substrates with P(O)H Compounds. Org Lett 2019; 21:9438-9441. [DOI: 10.1021/acs.orglett.9b03645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Huihui Fan
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Huimin Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Shenyin Hou
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Xiangkun Sun
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Donghao Luo
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Yinchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
| | - Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian’ge Road, Anyang 455000, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junbiao Chang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
47
|
Dong J, Ma G, Sui L, Wei M, Satheesh V, Zhang R, Ge S, Li J, Zhang TE, Wittwer C, Jessen HJ, Zhang H, An GY, Chao DY, Liu D, Lei M. Inositol Pyrophosphate InsP 8 Acts as an Intracellular Phosphate Signal in Arabidopsis. MOLECULAR PLANT 2019; 12:1463-1473. [PMID: 31419530 DOI: 10.1016/j.molp.2019.08.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
The maintenance of cellular phosphate (Pi) homeostasis is of great importance in living organisms. The SPX domain-containing protein 1 (SPX1) proteins from both Arabidopsis and rice have been proposed to act as sensors of Pi status. The molecular signal indicating the cellular Pi status and regulating Pi homeostasis in plants, however, remains to be identified, as Pi itself does not bind to the SPX domain. Here, we report the identification of the inositol pyrophosphate InsP8 as a signaling molecule that regulates Pi homeostasis in Arabidopsis. Polyacrylamide gel electrophoresis profiling of InsPs revealed that InsP8 level positively correlates with cellular Pi concentration. We demonstrated that the homologs of diphosphoinositol pentakisphosphate kinase (PPIP5K), VIH1 and VIH2, function redundantly to synthesize InsP8, and that the vih1 vih2 double mutant overaccumulates Pi. SPX1 directly interacts with PHR1, the central regulator of Pi starvation responses, to inhibit its function under Pi-replete conditions. However, this interaction is compromised in the vih1 vih2 double mutant, resulting in the constitutive induction of Pi starvation-induced genes, indicating that plant cells cannot sense cellular Pi status without InsP8. Furthermore, we showed that InsP8 could directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1 and PHR1. Collectively, our study suggests that InsP8 is the intracellular Pi signaling molecule serving as the ligand of SPX1 for controlling Pi homeostasis in plants.
Collapse
Affiliation(s)
- Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guojie Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqian Sui
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengwei Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyue Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghong Ge
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-En Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christopher Wittwer
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academic of Sciences, Shanghai 200032, China
| | - Dong Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
48
|
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens 2019; 4:2571-2587. [PMID: 31475522 DOI: 10.1021/acssensors.9b01114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic thin-film transistors (OTFTs) have attracted intense attention as promising electronic devices owing to their various applications such as rollable active-matrix displays, flexible nonvolatile memories, and radiofrequency identification (RFID) tags. To further broaden the scope of the application of OTFTs, we focus on the host-guest chemistry combined with the electronic devices. Extended-gate types of OTFTs functionalized with artificial receptors were fabricated to achieve chemical sensing of targets in complete aqueous media. Organic and inorganic ions (cations and anions), neutral molecules, and proteins, which are regarded as target analytes in the field of host-guest chemistry, were electrically detected by artificial receptors. Molecular recognition phenomena on the extended-gate electrode were evaluated by several analytical methods such as photoemission yield spectroscopy in the air, contact angle goniometry, and X-ray photoelectron spectroscopy. Interestingly, the electrical responses of the OTFTs were highly sensitive to the chemical structures of the guests. Thus, the OTFTs will facilitate the selective sensing of target analytes and the understanding of chemical conversions in biological and environmental systems. Furthermore, such cross-reactive responses observed in our studies will provide some important insights into next-generation sensing systems such as OTFT arrays. We strongly believe that our approach will enable the development of new intriguing sensor platforms in the field of host-guest chemistry, analytical chemistry, and organic electronics.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| |
Collapse
|
49
|
Dey S, Sukul PK. Selective Detection of Pyrophosphate Anions in Aqueous Medium Using Aggregation of Perylene Diimide as a Fluorescent Probe. ACS OMEGA 2019; 4:16191-16200. [PMID: 31592486 PMCID: PMC6777299 DOI: 10.1021/acsomega.9b02405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 05/05/2023]
Abstract
A water-soluble perylene diimide, aspartic acid-functionalized perylene diimide (APDI), has shown significant sequential "turn-off" and "turn-on" responses toward Cu2+ and inorganic pyrophosphate (PPi), respectively. APDI was found to show selectivity toward Cu2+ and inorganic PPi over adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The detection has been studied by absorption and emission spectroscopy techniques. Incorporation of Cu2+ into the solution of APDI results in a distinct quenching of the fluorescence intensity, while there was no spectral change in the presence of other metal ions. The formed APDI-Cu2+ ensemble can turn on its fluorescence signal when PPi is present. The detection of PPi could be traced by looking at the change in color of the solution under the naked eye. No interference was observed from other anions, making the APDI-Cu2+aggregate a highly selective biosensor for PPi.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Chemistry,
Amity Institute of Applied Sciences, Amity
University Kolkata, Action Area-II, Kadampukur, New Town, Rajarhat, West Bengal 700135, India
| | - Pradip Kr. Sukul
- Department of Chemistry,
Amity Institute of Applied Sciences, Amity
University Kolkata, Action Area-II, Kadampukur, New Town, Rajarhat, West Bengal 700135, India
| |
Collapse
|
50
|
How Prebiotic Chemistry and Early Life Chose Phosphate. Life (Basel) 2019; 9:life9010026. [PMID: 30832398 PMCID: PMC6462974 DOI: 10.3390/life9010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
The very specific thermodynamic instability and kinetic stability of phosphate esters and anhydrides impart them invaluable properties in living organisms in which highly efficient enzyme catalysts compensate for their low intrinsic reactivity. Considering their role in protein biosynthesis, these properties raise a paradox about early stages: How could these species be selected in the absence of enzymes? This review is aimed at demonstrating that considering mixed anhydrides or other species more reactive than esters and anhydrides can help in solving the paradox. The consequences of this approach for chemical evolution and early stages of life are analysed.
Collapse
|