Thaplyal P, Ganguly A, Hammes-Schiffer S, Bevilacqua PC. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density.
Biochemistry 2015;
54:2160-75. [PMID:
25799319 PMCID:
PMC4824481 DOI:
10.1021/acs.biochem.5b00190]
[Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
hepatitis delta virus (HDV) ribozyme self-cleaves in the presence
of a wide range of monovalent and divalent ions. Prior theoretical
studies provided evidence that self-cleavage proceeds via a concerted
or stepwise pathway, with the outcome dictated by the valency of the
metal ion. In the present study, we measure stereospecific thio effects
at the nonbridging oxygens of the scissile phosphate under a wide
range of experimental conditions, including varying concentrations
of diverse monovalent and divalent ions, and combine these with quantum
mechanical/molecular mechanical (QM/MM) free energy simulations on
the stereospecific thio substrates. The RP substrate gives large normal thio effects in the presence of all
monovalent ions. The SP substrate also
gives normal or no thio effects, but only for smaller monovalent and
divalent cations, such as Li+, Mg2+, Ca2+, and Sr2+; in contrast, sizable inverse thio
effects are found for larger monovalent and divalent cations, including
Na+, K+, NH4+, and Ba2+. Proton inventories are found to be unity in the presence
of the larger monovalent and divalent ions, but two in the presence
of Mg2+. Additionally, rate–pH profiles are inverted
for the low charge density ions, and only imidazole plus ammonium
ions rescue an inactive C75Δ variant in the absence of Mg2+. Results from the thio effect experiments, rate–pH
profiles, proton inventories, and ammonium/imidazole rescue experiments,
combined with QM/MM free energy simulations, support a change in the
mechanism of HDV ribozyme self-cleavage from concerted and metal ion-stabilized
to stepwise and proton transfer-stabilized as the charge density of
the metal ion decreases.
Collapse