1
|
Henry SJ, Stephanopoulos N. Functionalizing DNA nanostructures for therapeutic applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1729. [PMID: 34008347 PMCID: PMC8526372 DOI: 10.1002/wnan.1729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self-assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus-responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Skylar J.W. Henry
- School of Molecular Sciences, Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ
| |
Collapse
|
2
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Chakraborty A, Ravi SP, Shamiya Y, Cui C, Paul A. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chem Soc Rev 2021; 50:7779-7819. [PMID: 34036968 DOI: 10.1039/d0cs01387k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The biological purpose of DNA is to store, replicate, and convey genetic information in cells. Progress in molecular genetics have led to its widespread applications in gene editing, gene therapy, and forensic science. However, in addition to its role as a genetic material, DNA has also emerged as a nongenetic, generic material for diverse biomedical applications. DNA is essentially a natural biopolymer that can be precisely programed by simple chemical modifications to construct materials with desired mechanical, biological, and structural properties. This review critically deciphers the chemical tools and strategies that are currently being employed to harness the nongenetic functions of DNA. Here, the primary product of interest has been crosslinked, hydrated polymers, or hydrogels. State-of-the-art applications of macroscopic, DNA-based hydrogels in the fields of environment, electrochemistry, biologics delivery, and regenerative therapy have been extensively reviewed. Additionally, the review encompasses the status of DNA as a clinically and commercially viable material and provides insight into future possibilities.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Caroline Cui
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada. and School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada and Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
5
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|
6
|
Mollarasouli F, Badilli U, Bakirhan NK, Ozkan SA, Ozkan Y. Advanced DNA nanomachines: Strategies and bioapplications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
8
|
Tan M, Takahashi N, Fujii S, Sakurai K, Kusamori K, Takahashi Y, Takakura Y, Nishikawa M. Analysis of Tertiary Structural Features of Branched DNA Nanostructures with Partially Common Sequences Using Small-Angle X-ray Scattering. ACS APPLIED BIO MATERIALS 2019; 3:308-314. [DOI: 10.1021/acsabm.9b00829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mengmeng Tan
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
- Structural Materials Science Laboratory SPring-8 Center, RIKEN Harima Institute Research, 1-1-1 Kouto, Sayo-cho, Sayo, Hyogo 679-5148, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Kogikoski S, Paschoalino WJ, Cantelli L, Silva W, Kubota LT. Electrochemical sensing based on DNA nanotechnology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Tateishi-Karimata H, Sugimoto N. Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophys Rev 2018; 10:931-940. [PMID: 29687271 DOI: 10.1007/s12551-018-0422-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 12/23/2022] Open
Abstract
Nucleic acids have emerged as powerful biological and nanotechnological tools. In biological and nanotechnological experiments, methods of extracting and purifying nucleic acids from various types of cells and their storage are critical for obtaining reproducible experimental results. In nanotechnological experiments, methods for regulating the conformational polymorphism of nucleic acids and increasing sequence selectivity for base pairing of nucleic acids are important for developing nucleic acid-based nanomaterials. However, dearth of media that foster favourable behaviour of nucleic acids has been a bottleneck for promoting the biology and nanotechnology using the nucleic acids. Ionic liquids (ILs) are solvents that may be potentially used for controlling the properties of the nucleic acids. Here, we review researches regarding the behaviour of nucleic acids in ILs. The efficiency of extraction and purification of nucleic acids from biological samples is increased by IL addition. Moreover, nucleic acids in ILs show long-term stability, which maintains their structures and enhances nuclease resistance. Nucleic acids in ILs can be used directly in polymerase chain reaction and gene expression analysis with high efficiency. Moreover, the stabilities of the nucleic acids for duplex, triplex, and quadruplex (G-quadruplex and i-motif) structures change drastically with IL cation-nucleic acid interactions. Highly sensitive DNA sensors have been developed based on the unique changes in the stability of nucleic acids in ILs. The behaviours of nucleic acids in ILs detailed here should be useful in the design of nucleic acids to use as biological and nanotechnological tools.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan. .,Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
11
|
Srivithya V, Roun H, Sekhar Babu M, Jae Hyung P, Sung Ha P. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules. NANOTECHNOLOGY 2018; 29:095602. [PMID: 29271356 DOI: 10.1088/1361-6528/aaa3cb] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)-conjugated DNA nano-ring intercalated with doxorubicin (DNRA-DOX) as potential therapeutics for breast cancer. DNRA-DOX exhibited significantly higher cytotoxicity to the MCF-7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano-ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA-DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.
Collapse
Affiliation(s)
- Vellampatti Srivithya
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Xavier PL, Chandrasekaran AR. DNA-based construction at the nanoscale: emerging trends and applications. NANOTECHNOLOGY 2018; 29:062001. [PMID: 29232197 DOI: 10.1088/1361-6528/aaa120] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The field of structural DNA nanotechnology has evolved remarkably-from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes-in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.
Collapse
Affiliation(s)
- P Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY) and Department of Physics, University of Hamburg, D-22607 Hamburg, Germany. Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | |
Collapse
|
13
|
Xu J, Wu ZS, Chen Y, Zheng T, Le J, Jia L. Collapse of chain anadiplosis-structured DNA nanowires for highly sensitive colorimetric assay of nucleic acids. Analyst 2017; 142:613-620. [DOI: 10.1039/c6an02526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we have proposed a chain anadiplosis-structured DNA nanowire by using two well-defined assembly strands (AS1 and AS2).
Collapse
Affiliation(s)
- Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Yanru Chen
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Jingqing Le
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002
- China
| |
Collapse
|
14
|
Tiet P, Clark KC, McNamara JO, Berlin JM. Colorimetric Detection of Staphylococcus aureus Contaminated Solutions without Purification. Bioconjug Chem 2016; 28:183-193. [DOI: 10.1021/acs.bioconjchem.6b00571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Karen C. Clark
- Department
of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, United States
| | - James O. McNamara
- Department
of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 285 Newton Road, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
15
|
Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and Multistage Signal Amplification Strategy. Biosens Bioelectron 2016; 86:907-912. [DOI: 10.1016/j.bios.2016.07.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
|
16
|
Maruani A, Richards DA, Chudasama V. Dual modification of biomolecules. Org Biomol Chem 2016; 14:6165-78. [PMID: 27278999 DOI: 10.1039/c6ob01010e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the advent of novel bioorthogonal reactions and "click" chemistry, an increasing number of strategies for the single labelling of proteins and oligonucleotides have emerged. Whilst several methods exist for the site-selective introduction of a single chemical moiety, site-selective and bioorthogonal dual modification of biomolecules remains a challenge. The introduction of multiple modules enables a plethora of permutations and combinations and can generate a variety of bioconjuguates with many potential applications. From de novo approaches on oligomers to the post-translational functionalisation of proteins, this review will highlight the main strategies to dually modify biomolecules.
Collapse
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK.
| | | | | |
Collapse
|
17
|
Two-wheel drive-based DNA nanomachine and its sensing potential for highly sensitive analysis of cancer-related gene. Biomaterials 2016; 100:110-7. [PMID: 27254471 DOI: 10.1016/j.biomaterials.2016.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
With the biological significance and important advances of nano-scale DNA devices, scientific activities have been directed toward developing molecular machinery. In this work, we present a novel two-wheel drive-based DNA nanomachine composed of one signaling recognition probe (SRP), one label-free recognition probe (LRP), and one driving primer (DP). Target DNA hybridization can activate LRP-based wheel driving by resorting to DP-mediated polymerization/nicking/displacement cycles. This in turn results in the accumulation of nicked strand 1 (NS1) that can initiate extended SRP-based wheel driving. As a result, the hairpin structure of SRP is stretched and pre-quenched fluorescence is restored. Meanwhile, lots of nicked strand 2 (NS2) are produced, which could hybridize perfectly with SRP and lead to further fluorescence amplification. It is worth noting that, because the nanomachine operation relies strongly on inputted target trigger, the unwanted background is completely eliminated. The detection limit of 1 pM and an excellent capability to recognize the single-base mutation were achieved. Significantly, the interrogating of target trigger extracted from cancer cells is already available, reflecting the potential for practical applications. As a proof-of-concept building, the unique analytical properties would significantly benefit the DNA nanomachines and reveal great promise in biochemical and biomedical studies.
Collapse
|
18
|
Tateishi-Karimata H, Pramanik S, Sugimoto N. DNA sensor's selectivity enhancement and protection from contaminating nucleases due to a hydrated ionic liquid. Analyst 2016; 140:4393-8. [PMID: 25919083 DOI: 10.1039/c5an00545k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The thermodynamic stability of certain mismatched base pairs has made the development of DNA sequence sensing systems challenging. Thus, the stability of fully matched and mismatched DNA oligonucleotides in the hydrated ionic liquid choline dihydrogen phosphate (choline dhp) was investigated. Mismatched base pairs were significantly destabilized in choline dhp relative to those in aqueous buffer. A molecular beacon that forms a triplex with a conserved HIV-1 sequence was then designed and tested in choline dhp. The molecular beacon specifically detected the target duplex via triplex formation at concentrations as low as 1 pmol per 10 μL with 10,000-fold sequence selectivity. Moreover, the molecular beacon was protected from a contaminating nuclease in choline dhp, and DNAs in aqueous solutions were not sufficiently stable for practical use.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamachi, Kobe 650-0047, Japan
| | | | | |
Collapse
|
19
|
Paul T, Mishra PP. Direct observation of spatial configuration and structural stability of locked Y-shaped DNA structure. RSC Adv 2016. [DOI: 10.1039/c6ra23983h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A new building block unit (locked Y-DNA) and its structural properties for self-assembled, bottom-up, three-dimensional supramolecular nanoarchitectural probe have been introduced using single-molecule FRET imaging.
Collapse
Affiliation(s)
- Tapas Paul
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Padmaja P. Mishra
- Chemical Sciences Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| |
Collapse
|
20
|
Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 2015; 43:6405-38. [PMID: 24901032 DOI: 10.1039/c4cs00083h] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast, reliable and sensitive methods for nucleic acid detection are of growing practical interest with respect to molecular diagnostics of cancer, infectious and genetic diseases. Currently, PCR-based and other target amplification strategies are most extensively used in practice. At the same time, such assays have limitations that can be overcome by alternative approaches. There is a recent explosion in the design of methods that amplify the signal produced by a nucleic acid target, without changing its copy number. This review aims at systematization and critical analysis of the enzyme-assisted target recycling (EATR) signal amplification technique. The approach uses nucleases to recognize and cleave the probe-target complex. Cleavage reactions produce a detectable signal. The advantages of such techniques are potentially low sensitivity to contamination and lack of the requirement of a thermal cycler. Nucleases used for EATR include sequence-dependent restriction or nicking endonucleases or sequence independent exonuclease III, lambda exonuclease, RNase H, RNase HII, AP endonuclease, duplex-specific nuclease, DNase I, or T7 exonuclease. EATR-based assays are potentially useful for point-of-care diagnostics, single nucleotide polymorphisms genotyping and microRNA analysis. Specificity, limit of detection and the potential impact of EATR strategies on molecular diagnostics are discussed.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | | |
Collapse
|
21
|
Changenet-Barret P, Hua Y, Markovitsi D. Electronic excitations in Guanine quadruplexes. Top Curr Chem (Cham) 2015; 356:183-201. [PMID: 24563011 DOI: 10.1007/128_2013_511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Guanine rich DNA strands, such as those encountered at the extremities of human chromosomes, have the ability to form four-stranded structures (G-quadruplexes) whose building blocks are guanine tetrads. G-quadruplex structures are intensively studied in respect of their biological role, as targets for anticancer therapy and, more recently, of their potential applications in the field of molecular electronics. Here we focus on their electronic excited states which are compared to those of non-interacting mono-nucleotides and those of single and double stranded structures. Particular emphasis is given to excited state relaxation processes studied by time-resolved fluorescence spectroscopy from femtosecond to nanosecond time scales. They include ultrafast energy transfer and trapping of ππ* excitations by charge transfer states. The effect of various structural parameters, such as the nature of the metal cations located in the central cavity of G-quadruplexes, the number of tetrads or the conformation of the constitutive single strands, are examined.
Collapse
|
22
|
Liu S, Gong H, Sun X, Liu T, Wang L. A programmable Y-shaped junction scaffold-mediated modular and cascade amplification strategy for the one-step, isothermal and ultrasensitive detection of target DNA. Chem Commun (Camb) 2015; 51:17756-9. [DOI: 10.1039/c5cc07659e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A programmable Y-shaped junction probe-mediated modular and cascade amplification strategy was proposed for the one-pot, isothermal and ultrasensitive detection of target DNA.
Collapse
Affiliation(s)
- Shufeng Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Hongwei Gong
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xinya Sun
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Tao Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Li Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
23
|
Tateishi-Karimata H, Sugimoto N. Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res 2014; 42:8831-44. [PMID: 25013178 PMCID: PMC4132699 DOI: 10.1093/nar/gku499] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are 'green' solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A-T base pairs are more stable than G-C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson-Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Kobe 650-0047, Japan
| |
Collapse
|
24
|
Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 2014; 47:1902-11. [PMID: 24884022 DOI: 10.1021/ar5001082] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.
Collapse
Affiliation(s)
- Dayong Yang
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mark R. Hartman
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Thomas L. Derrien
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shogo Hamada
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Duo An
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kenneth G. Yancey
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ru Cheng
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Minglin Ma
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Pujari SS, Leonard P, Seela F. Oligonucleotides with "clickable" sugar residues: synthesis, duplex stability, and terminal versus central interstrand cross-linking of 2'-O-propargylated 2-aminoadenosine with a bifunctional azide. J Org Chem 2014; 79:4423-37. [PMID: 24693949 DOI: 10.1021/jo500392j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Duplex DNA with terminal and internal sugar cross-links were synthesized by the CuAAC reaction from oligonucleotides containing 2'-O-propargyl-2-aminoadenosine as a clickable site and a bifunctional azide (4). Stepwise click chemistry was employed to introduce cross-links at internal and terminal positions. Copper turnings were used as catalyst, reducing the copper load of the reaction mixture and avoiding complexing agents. For oligonucleotide building block synthesis, a protecting group strategy was developed for 2'-O-propargyl-2-aminoadenosine owing to the rather different reactivities of the two amino groups. Phosphoramidites were synthesized bearing clickable 2'-O-propargyl residues (14 and 18) as well as a 2'-deoxyribofuranosyl residue (10). Hybridization experiments of non-cross-linked oligonucleotides with 2,6-diaminopurine as nucleobase showed no significant thermal stability changes over those containing adenine. Surprisingly, an isobutyryl group protecting the 2-amino function has no negative impact on the stability of DNA-DNA and DNA-RNA duplexes. Oligonucleotide duplexes with cross-linked 2'-O-propargylated 2-aminoadenosine (1) and 2'-O-propargylated adenosine (3) at terminal positions are significantly stabilized (ΔT(m) = +29 °C). The stability results from a molecularity change from duplex to hairpin melting and is influenced by the ligation position. Terminal ligation led to higher melting duplexes than corresponding hairpins, while duplexes with central ligation sites were less stable.
Collapse
Affiliation(s)
- Suresh S Pujari
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
26
|
Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate. Sci Rep 2014; 4:3593. [PMID: 24399194 PMCID: PMC3884231 DOI: 10.1038/srep03593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.
Collapse
|
27
|
Hartman MR, Ruiz RCH, Hamada S, Xu C, Yancey KG, Yu Y, Han W, Luo D. Point-of-care nucleic acid detection using nanotechnology. NANOSCALE 2013; 5:10141-54. [PMID: 24057263 DOI: 10.1039/c3nr04015a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent developments in nanotechnology have led to significant advancements in point-of-care (POC) nucleic acid detection. The ability to sense DNA and RNA in a portable format leads to important applications for a range of settings, from on-site detection in the field to bedside diagnostics, in both developing and developed countries. We review recent innovations in three key process components for nucleic acid detection: sample preparation, target amplification, and read-out modalities. We discuss how the advancements realized by nanotechnology are making POC nucleic acid detection increasingly applicable for decentralized and accessible testing, in particular for the developing world.
Collapse
Affiliation(s)
- Mark R Hartman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pujari SS, Seela F. Parallel stranded DNA stabilized with internal sugar cross-links: synthesis and click ligation of oligonucleotides containing 2'-propargylated isoguanosine. J Org Chem 2013; 78:8545-61. [PMID: 23915305 DOI: 10.1021/jo4012706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Internal sugar cross-links were introduced for the first time into oligonucleotides with parallel chain orientation by click ligation. For this, the 2'- or 3'-position of the isoguanosine ribose moiety was functionalized with clickable propargyl residues, and the synthesis of propargylated cytosine building blocks was significantly improved. Phosphoramidites were prepared and employed in solid-phase synthesis. A series of oligo-2'-deoxyribonucleotides with parallel (ps) and antiparallel (aps) strand orientation were constructed containing isoguanine-cytosine, isoguanine-isocytosine, and adenine-thymine base pairs. Complementary oligonucleotides with propargylated sugar residues were ligated in a stepwise manner with a chelating bis-azide under copper catalysis. Cross-links were introduced within a base pair or in positions separated by two base pairs. From T(m) stability studies it is evident that cross-linking stabilizes DNA with parallel strand orientation strongly (ΔT(m) from +16 to +18.5 °C) with a similar increase as for aps DNA.
Collapse
Affiliation(s)
- Suresh S Pujari
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | | |
Collapse
|
29
|
Astakhova IK, Wengel J. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes. Chemistry 2012. [PMID: 23180379 DOI: 10.1002/chem.201202621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2'-O-propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM).
Collapse
Affiliation(s)
- I Kira Astakhova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | |
Collapse
|
30
|
Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS NANO 2012; 6:5931-40. [PMID: 22721419 DOI: 10.1021/nn300727j] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The immunostimulatory activity of phosphodiester DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG motifs, was significantly increased by the formation of Y-, X-, or dendrimer-like multibranched shape. These results suggest the possibility that the activity of CpG DNA is a function of the structural properties of branched DNA assemblies. To elucidate the relationship between them, we have designed and developed nanosized DNA assemblies in polypod-like structures (polypod-like structured DNA, or polypodna for short) using oligodeoxynucleotides (ODNs) containing CpG motifs and investigated their structural and immunological properties. Those assemblies consisting of three (tripodna) to eight (octapodna) ODNs were successfully obtained, but one consisting of 12 ODNs was not when 36-mer ODNs were annealed under physiological sodium chloride concentration. High-speed atomic force microscopy revealed that these assemblies were in polypod-like structures. The apparent size of the products was about 10 nm in diameter, and there was an increasing trend with an increase in ODN length or with the pod number. Circular dichroism spectral data showed that DNA in polypodna preparations were in the B-form. The melting temperature of polypodna decreased with increasing pod number. Each polypodna induced the secretion of tumor necrosis factor-α and interleukin-6 from macrophage-like RAW264.7 cells, with the greatest induction by those with hexa- and octapodna. Increasing the pod number increased the uptake by RAW264.7 cells but reduced the stability in serum. These results indicate that CpG DNA-containing polypodna preparations with six or more pods are a promising nanosized device with biodegradability and high immunostimulatory activity.
Collapse
Affiliation(s)
- Kohta Mohri
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chatterjee S, Lee JB, Valappil NV, Luo D, Menon VM. Probing Y-shaped DNA structure with time-resolved FRET. NANOSCALE 2012; 4:1568-1571. [PMID: 22297682 DOI: 10.1039/c2nr12039a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Self-assembly based on nucleic acid systems has become highly attractive for bottom-up fabrication of programmable matter due to the highly selective molecular recognition property of biomolecules. In this context, Y-shaped DNA (Y-DNA) provides an effective building block for forming unique self-assembled large-scale architectures. The dimension and growth of the nano- and microstructures depend significantly on the configurational stability of Y-DNA as a building block. Here we present structural studies of Y-DNA systems using a time-resolved FRET (Förster resonance energy transfer) technique. A fluorophore (Alexa 488) and an acceptor (DABCYL) were placed at two different ends of Y-DNA, and the lifetime of the fluorophore was measured to probe the relative distance between the donor and acceptor. Our results confirmed different distances between the arms of the Y-DNA and highlighted the overall structural integrity of the Y-DNA system as a leading building block for molecular self-assembly. Temperature dependent lifetime measurements indicated configurational changes in the overall Y-DNA nanoarchitecture above 40 °C.
Collapse
Affiliation(s)
- Subhasish Chatterjee
- Department of Physics, Queens College, and the Graduate Center of CUNY, 65-30 Kissena Blvd., Flushing, NY 13367, USA
| | | | | | | | | |
Collapse
|
32
|
Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 2012; 170:2-27. [PMID: 22154364 DOI: 10.1016/j.cis.2011.11.001] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 02/02/2023]
Abstract
This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices.
Collapse
Affiliation(s)
- Abhijit Biswas
- Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy. Nat Commun 2011; 2:449. [PMID: 21863016 PMCID: PMC3265375 DOI: 10.1038/ncomms1452] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/22/2011] [Indexed: 01/28/2023] Open
Abstract
DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. DNA origami involves the folding of long single-stranded DNA into designed structures that may aid the development of useful nanomechanical DNA devices. In this study, DNA origami pliers and forceps are shown to undergo conformational changes on single-molecule binding.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | | | | | | | | |
Collapse
|
34
|
Xiangying S, Bin L, Ying Z. Rhodamine B aggregation in self-assembled multilayers induced by polyelectrolyte and interfacial fluorescence recognition for DNA. Talanta 2011; 85:1187-92. [DOI: 10.1016/j.talanta.2011.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/14/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
35
|
Sakakibara K, Hill JP, Ariga K. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1288-308. [PMID: 21506267 DOI: 10.1002/smll.201002350] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Indexed: 05/19/2023]
Abstract
Controlling the organization of molecular building blocks at the nanometer level is of utmost importance, not only from the viewpoint of scientific curiosity, but also for the development of next-generation organic devices with electrical, optical, chemical, or biological functions. Self-assembly offers great potential for the manufacture of nanoarchitectures (nanostructures and nanopatterns) over large areas by using low-energy and inexpensive spontaneous processes. However, self-assembled structures in 3D media, such as solutions or solids, are not easily incorporated into current device-oriented nanotechnology. The scope of this review is therefore to introduce the expanding methodology for the construction of thin-film-based nanoarchitectures on solid surfaces and to try to address a general concept with emphasis on the availability of dynamic interfaces for the creation and manipulation of nanoarchitectures. In this review, the strategies for the construction of nanostructures, the control and manipulation of nanopatterns, and the application of nanoarchitectures are described; the construction strategies are categorized into three classes: i) π-conjugated molecular assembly in two dimensions, ii) bio-directed molecular assembly on surfaces, and iii) recent thin-film preparation technologies.
Collapse
Affiliation(s)
- Keita Sakakibara
- World Premier International Research Center for Materials, Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
36
|
Wang H, Yang C, Wang L, Kong D, Zhang Y, Yang Z. Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem Commun (Camb) 2011; 47:4439-41. [PMID: 21387062 DOI: 10.1039/c1cc10506j] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we reported on the first example of a Folic acid-based molecular hydrogel with nanosphere morphology as a delivery system for Taxol.
Collapse
Affiliation(s)
- Huaimin Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Qu W, Liu Y, Liu D, Wang Z, Jiang X. Copper-Mediated Amplification Allows Readout of Immunoassays by the Naked Eye. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Qu W, Liu Y, Liu D, Wang Z, Jiang X. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed Engl 2011; 50:3442-5. [PMID: 21387505 DOI: 10.1002/anie.201006025] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/28/2010] [Indexed: 01/19/2023]
Affiliation(s)
- Weisi Qu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing 100190, P.R. China
| | | | | | | | | |
Collapse
|
39
|
Ranasinghe RT, Brown T. Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. Chem Commun (Camb) 2011; 47:3717-35. [DOI: 10.1039/c0cc04215c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Guo W, Yuan J, Wang E. Strand exchange reaction modulated fluorescence “off–on” switching of hybridized DNA duplex stabilized silver nanoclusters. Chem Commun (Camb) 2011; 47:10930-2. [DOI: 10.1039/c1cc11921d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Yang D, Campolongo MJ, Nhi Tran TN, Ruiz RCH, Kahn JS, Luo D. Novel DNA materials and their applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:648-69. [PMID: 20730873 PMCID: PMC7169675 DOI: 10.1002/wnan.111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks. Scientists have used DNA in this way to construct various amazing nanostructures, such as ordered lattices, origami, supramolecular assemblies, and even three-dimensional objects. In addition, DNA has been utilized as a guide and template to direct the assembly of other nanomaterials including nanowires, free-standing membranes, and crystals. Furthermore, DNA can also be used as structural components to construct bulk materials such as DNA hydrogels, demonstrating its ability to behave as a unique polymer. Overall, these novel DNA materials have found applications in various areas in the biomedical field in general, and nanomedicine in particular. In this review, we summarize the development of DNA assemblies, describe the innovative progress of multifunctional and bulk DNA materials, and highlight some real-world nanomedical applications of these DNA materials. We also show our insights throughout this article for the future direction of DNA materials.
Collapse
Affiliation(s)
- Dayong Yang
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
42
|
Astakhova IV, Lindegaard D, Korshun VA, Wengel J. Novel interstrand communication systems within DNA duplexes based on 1-, 2- and 4-(phenylethynyl)pyrenes attached to 2'-amino-LNA: high-affinity hybridization and fluorescence sensing. Chem Commun (Camb) 2010; 46:8362-4. [PMID: 20922231 DOI: 10.1039/c0cc03026k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functionalisation of 2'-amino-LNA oligonucleotides with 1-, 2- and 4-(phenylethynyl)pyrene fluorophores via a carbonyl linker (PEPyc) resulted in efficient interstrand communication systems in nucleic acid duplexes, providing effective tools for stabilization of nanostructures and fluorescence monitoring of DNA self-assembly.
Collapse
Affiliation(s)
- Irina V Astakhova
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|