1
|
Maier J, Weller T, Thelakkat M, Köhler J. Long-term switching of single photochromic triads based on dithienylcyclopentene and fluorophores at cryogenic temperatures. J Chem Phys 2021; 155:014901. [PMID: 34241405 DOI: 10.1063/5.0056815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecules can be reversibly converted between two bistable forms by light. These systems have been intensively studied for applications as molecular memories, sensing devices, or super-resolution optical microscopy. Here, we study the long-term switching behavior of single photochromic triads under oxygen-free conditions at 10 K. The triads consist of a photochromic unit that is covalently linked to two strong fluorophores that were employed for monitoring the light-induced conversions of the switch via changes in the fluorescence intensity from the fluorophores. As dyes we use either perylene bisimide or boron-dipyrromethen, and as photochromic switch we use dithienylcyclopentene (DCP). Both types of triads showed high fatigue resistance allowing for up to 6000 switching cycles of a single triad corresponding to time durations in the order of 80 min without deterioration. Long-term analysis of the switching cycles reveals that the probability that an intensity change in the emission from the dyes can be assigned to an externally stimulated conversion of the DCP (rather than to stochastic blinking of the dye molecules) amounts to 0.7 ± 0.1 for both types of triads. This number is far too low for optical data storage using single triads and implications concerning the miniaturization of optical memories based on such systems will be discussed. Yet, together with the high fatigue resistance, this number is encouraging for applications in super-resolution optical microscopy on frozen biological samples.
Collapse
Affiliation(s)
- Johannes Maier
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tina Weller
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
2
|
Sowa JK, Weiss EA, Seideman T. Photoisomerization-coupled electron transfer. J Chem Phys 2020; 153:034301. [PMID: 32716166 DOI: 10.1063/5.0013468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecular structures constitute a unique platform for constructing molecular switches, sensors, and memory devices. One of their most promising applications is as light-switchable electron acceptor or donor units. Here, we investigate a previously unexplored process that we postulate may occur in such systems: an ultrafast electron transfer triggered by a simultaneous photoisomerization of the donor or the acceptor moiety. We propose a theoretical model for this phenomenon and, with the aid of density functional theory calculations, apply it to the case of a dihydropyrene-type photochromic molecular donor. By considering the wavepacket dynamics and the photoisomerization yield, we show that the two processes involved, electron transfer and photoisomerization, are in general inseparable and need to be treated in a unified manner. We finish by discussing how the efficiency of photoisomerization-coupled electron transfer can be controlled experimentally.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Xie NH, Fan C, Ye H, Xiong K, Li C, Zhu MQ. Deciphering Erasing/Writing/Reading of Near-Infrared Fluorophore for Nonvolatile Optical Memory. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23750-23756. [PMID: 31179680 DOI: 10.1021/acsami.9b05417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A near-infrared fluorescence-switchable molecule, dithienylethene-terrylenediimide (TDI-4DTE) exhibits high near-infrared fluorescence and on/off ratio, decent reversibility, and fatigue resistance upon alternating UV/vis (305/621 nm) irradiation. Photoinduced electron transfer mainly contributes to the fluorescence quenching of TDI-4DTE. As an information storage unit, single molecular TDI-4DTE in the polymer film can be written by red light (621 nm) and erased by UV light (305 nm), while nondestructive fluorescence readout (750 nm) of a single molecular memory has been obtained upon excitation with near-infrared light (720 nm). The fluorescence patterning of TDI-4DTE in the polymer film demonstrates that the erasing/writing/reading wavelengths are deciphered to minimize the signal crosstalk in nonvolatile fluorescent molecular memories.
Collapse
Affiliation(s)
- Nuo-Hua Xie
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Cheng Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Huan Ye
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Kai Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
4
|
Mutoh K, Miyashita N, Arai K, Abe J. Turn-On Mode Fluorescence Switch by Using Negative Photochromic Imidazole Dimer. J Am Chem Soc 2019; 141:5650-5654. [PMID: 30888805 DOI: 10.1021/jacs.9b01870] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of fluorescence switchable molecules in several polar and apolar environments has been required for fluorescence imaging of nanostructures. Photochromic molecules are an important class for the reversible light-triggered fluorescence switching. Although many studies of fluorescence switching by using photochromic reactions have been reported, the report of photochromic molecules reversibly showing turn-on mode fluorescence switching has been limited in spite of their importance. Herein, we report the photoactivatable fluorescence based on negative photochromism, where the absorption spectrum of the compound after irradiation is blue-shifted relative to that before irradiation. We introduced naphthalimide units as a green fluorophore to the negative photochromic binaphthyl-bridged imidazole dimer. The fluorescence of the naphthalimide unit is efficiently quenched in the initial colored isomer (fluorescence quantum yield: Φfluo. = 0.01) by Förster resonance energy transfer. In contrast, the fluorescence quantum yield increases up to 0.75 in the transient isomer formed by the negative photochromic reaction. The fluorescence intensity thermally decreases with the thermal back reaction to form the original stable colored form. These results indicate that the negative photochromic molecules are suitable for turn-on mode fluorescence switches and will give an attractive insight for the development of reversible fluorescence switching molecules.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry, School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5258 , Japan
| | - Nanae Miyashita
- Department of Chemistry, School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5258 , Japan
| | - Kaho Arai
- Department of Chemistry, School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5258 , Japan
| | - Jiro Abe
- Department of Chemistry, School of Science and Engineering , Aoyama Gakuin University , 5-10-1 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5258 , Japan
| |
Collapse
|
5
|
Morimoto M, Sumi T, Irie M. Photoswitchable Fluorescent Diarylethene Derivatives with Thiophene 1,1-Dioxide Groups: Effect of Alkyl Substituents at the Reactive Carbons. MATERIALS 2017; 10:ma10091021. [PMID: 28869489 PMCID: PMC5615676 DOI: 10.3390/ma10091021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
Abstract
Photoswitching and fluorescent properties of sulfone derivatives of 1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclopentene, 1–5, having methyl, ethyl, n-propyl, i-propyl, and i-butyl substituents at the reactive carbons (2- and 2′-positions) of the thiophene 1,1-dioxide rings were studied. Diarylethenes 1–5 underwent isomerization reactions between open-ring and closed-ring forms upon alternate irradiation with ultraviolet (UV) and visible light and showed fluorescence in the closed-ring forms. The alkyl substitution at the reactive carbons affects the fluorescent property of the closed-ring isomers. The closed-ring isomers 2b–5b with ethyl, n-propyl, i-propyl, and i-butyl substituents show higher fluorescence quantum yields than 1b with methyl substituents. In polar solvents, the fluorescence quantum yield of 1b markedly decreases, while 2b–5b maintain the relatively high fluorescence quantum yields. Although the cycloreversion quantum yields of the derivatives with methyl, ethyl, n-propyl, and i-propyl substituents are quite low and in the order of 10−5, introduction of i-butyl substituents was found to increase the yield up to the order of 10−3. These results indicate that appropriate alkyl substitution at the reactive carbons is indispensable for properly controlling the photoswitching and fluorescent properties of the photoswitchable fluorescent diarylethenes, which are potentially applicable to super-resolution fluorescence microscopies.
Collapse
Affiliation(s)
- Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Takaki Sumi
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
6
|
Takagi Y, Morimoto M, Kashihara R, Fujinami S, Ito S, Miyasaka H, Irie M. Turn-on mode fluorescent diarylethenes: Control of the cycloreversion quantum yield. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Khodko A, Khomenko V, Shynkarenko Y, Mamuta O, Kapitanchuk O, Sysoiev D, Kachalova N, Huhn T, Snegir S. Ultrafast ring-closing reaction dynamics of a photochromic furan-based difurylethene. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Maier J, Pärs M, Weller T, Thelakkat M, Köhler J. Deliberate Switching of Single Photochromic Triads. Sci Rep 2017; 7:41739. [PMID: 28139764 PMCID: PMC5282491 DOI: 10.1038/srep41739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/03/2017] [Indexed: 11/24/2022] Open
Abstract
Photochromic molecules can be reversibly converted between two bistable conformations by light, and are considered as promising building blocks in novel macromolecular structures for sensing and imaging techniques. We have studied individual molecular triads consisting of two strong fluorophores (perylene bisimide) that are covalently linked via a photochromic unit (dithienylcyclopentene) and distinguished between deliberate switching and spontaneous blinking. It was verified that the probability for observing deliberate light-induced switching of a single triad (rather than stochastic blinking) amounts to 0.8 ± 0.1. In a few exceptional cases this probability can exceed 0.95. These numbers are sufficiently large for application in sensitive biosensing, and super-resolution imaging. This opens the possibility to develop devices that can be controlled by an external optical stimulus on a truly molecular length scale.
Collapse
Affiliation(s)
- Johannes Maier
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Martti Pärs
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tina Weller
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Xu K, Zhao J, Cui X, Ma J. Switching of the Triplet–Triplet-Annihilation Upconversion with Photoresponsive Triplet Energy Acceptor: Photocontrollable Singlet/Triplet Energy Transfer and Electron Transfer. J Phys Chem A 2015; 119:468-81. [DOI: 10.1021/jp5111828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kejing Xu
- State Key Laboratory of Fine Chemicals,
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals,
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoneng Cui
- State Key Laboratory of Fine Chemicals,
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Ma
- State Key Laboratory of Fine Chemicals,
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Zhang ZX, Bai FQ, Li L, Zhang HX. Theoretical investigation on a series of novel S,S-dioxide diarylethenes with abnormal photochromic properties and design of new dyads. NEW J CHEM 2015. [DOI: 10.1039/c4nj01471e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel diarylethene shows an abnormal conjugation system switch in a photochromic reaction, according to which new dyads were designed.
Collapse
Affiliation(s)
- Zhi-Xiang Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Fu-Quan Bai
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Li Li
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| |
Collapse
|
11
|
Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem Rev 2014; 114:12174-277. [DOI: 10.1021/cr500249p] [Citation(s) in RCA: 1755] [Impact Index Per Article: 159.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Masahiro Irie
- Research
Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Tuyoshi Fukaminato
- Research
Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku,
Sapporo 001-0020, Japan
| | - Kenji Matsuda
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Seiya Kobatake
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Zhang Y, Wang G, Zhang J. Study on fluorescent switching of naphthopyran with carbazole and pyrene dyad immobilized on SBA-15. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kovaliov M, Wachtel C, Yavin E, Fischer B. Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes. Org Biomol Chem 2014; 12:7844-58. [PMID: 25177827 DOI: 10.1039/c4ob01185f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.
Collapse
Affiliation(s)
- Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
14
|
Budyka MF, Lee VM, Gavrishova TN. Proton-driven “one-way” photoisomerization due to energy transfer switching in styrylquinoline–merocyanine dyad. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Shirinian VZ, Lonshakov DV, Lvov AG, Krayushkin MM. Fluorescent photochromes of diarylethene series: synthesis and properties. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n06abeh004339] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Berberich M, Würthner F. Tuning the Redox Properties of Photochromic Diarylethenes by Introducing Electron-Withdrawing Substituents. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201200179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Abstract
Photoactivatable fluorophores switch from a nonemissive to an emissive state upon illumination at an activating wavelength and then emit after irradiation at an exciting wavelength. The interplay of such activation and excitation events can be exploited to switch fluorescence on in a defined region of space at a given interval of time. In turn, the spatiotemporal control of fluorescence translates into the opportunity to implement imaging and spectroscopic schemes that are not possible with conventional fluorophores. Specifically, photoactivatable fluorophores permit the monitoring of dynamic processes in real time as well as the reconstruction of images with subdiffraction resolution. These promising applications can have a significant impact on the characterization of the structures and functions of biomolecular systems. As a result, strategies to implement mechanisms for fluorescence photoactivation with synthetic fluorophores are particularly valuable. In fact, a number of versatile operating principles have already been identified to activate the fluorescence of numerous members of the main families of synthetic dyes. These methods are based on either the irreversible cleavage of covalent bonds or the reversible opening and closing of rings. This paper overviews the fundamental mechanisms that govern the behavior of these photoresponsive systems, illustrates structural designs for fluorescence photoactivation, and provides representative examples of photoactivatable fluorophores in actions.
Collapse
Affiliation(s)
- Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| |
Collapse
|
18
|
Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Würthner F. Nondestructive Photoluminescence Read-Out by Intramolecular Electron Transfer in a Perylene Bisimide-Diarylethene Dyad. Chemistry 2012; 18:13651-64. [DOI: 10.1002/chem.201201484] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Indexed: 11/11/2022]
|
19
|
Budyka MF, Sadykova KF, Gavrishova TN. Energy transfer, fluorescence and photoisomerization of styrylquinoline–naphthol dyads with dioxypolymethylene bridges. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Cusido J, Battal M, Deniz E, Yildiz I, Sortino S, Raymo FM. Fast Fluorescence Switching within Hydrophilic Supramolecular Assemblies. Chemistry 2012; 18:10399-407. [DOI: 10.1002/chem.201201184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Indexed: 11/07/2022]
|
21
|
He B, Wenger OS. Ruthenium-Phenothiazine Electron Transfer Dyad with a Photoswitchable Dithienylethene Bridge: Flash-Quench Studies with Methylviologen. Inorg Chem 2012; 51:4335-42. [DOI: 10.1021/ic300048r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bice He
- Georg-August-Universität, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077
Göttingen, Germany
| | - Oliver S. Wenger
- Georg-August-Universität, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077
Göttingen, Germany
| |
Collapse
|
22
|
Deniz E, Battal M, Cusido J, Sortino S, Raymo FM. Insights into the isomerization of photochromic oxazines from the excitation dynamics of BODIPY–oxazine dyads. Phys Chem Chem Phys 2012; 14:10300-7. [DOI: 10.1039/c2cp41089c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|
24
|
Ortica F, Cipolloni M, Heynderickx A, Siri O, Favaro G. Light and pH tunable luminescence in a photochromic bisdiarylethene. Photochem Photobiol Sci 2012; 11:785-93. [DOI: 10.1039/c2pp05372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Fukaminato T. Single-molecule fluorescence photoswitching: Design and synthesis of photoswitchable fluorescent molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2011. [DOI: 10.1016/j.jphotochemrev.2011.08.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Pärs M, Hofmann CC, Willinger K, Bauer P, Thelakkat M, Köhler J. An Organic Optical Transistor Operated under Ambient Conditions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Pärs M, Hofmann CC, Willinger K, Bauer P, Thelakkat M, Köhler J. An organic optical transistor operated under ambient conditions. Angew Chem Int Ed Engl 2011; 50:11405-8. [PMID: 22113798 DOI: 10.1002/anie.201104193] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Martti Pärs
- Experimental Physics IV, University of Bayreuth, Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. Single-Molecule Fluorescence Photoswitching of a Diarylethene−Perylenebisimide Dyad: Non-destructive Fluorescence Readout. J Am Chem Soc 2011; 133:4984-90. [DOI: 10.1021/ja110686t] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuyoshi Fukaminato
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- PREST, Japan Science and Technology Agency (JST)
| | - Takao Doi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Katsuki Okuno
- Division of Frontier Materials Science, Graduate School of Engineering Science, and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yukihide Ishibashi
- Division of Frontier Materials Science, Graduate School of Engineering Science, and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science, Graduate School of Engineering Science, and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
29
|
Tosic O, Mattay J. New Photochromic Dithienylethenes through a Click Chemistry Approach. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|