1
|
Okayama Y, Eom T, Czuczola M, Abdilla A, Blankenship JR, Albanese KR, de Alaniz JR, Bates CM, Hawker CJ. Heterotelechelic Silicones: Facile Synthesis and Functionalization Using Silane-Based Initiators. Macromolecules 2023; 56:8806-8812. [PMID: 38024157 PMCID: PMC10653272 DOI: 10.1021/acs.macromol.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The synthetic utility of heterotelechelic polydimethylsiloxane (PDMS) derivatives is limited due to challenges in preparing materials with high chain-end fidelity. In this study, anionic ring-opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) monomers using a specifically designed silyl hydride (Si-H)-based initiator provides a versatile approach toward a library of heterotelechelic PDMS polymers. A novel initiator, where the Si-H terminal group is connected to a C atom (H-Si-C) and not an O atom (H-Si-O) as in traditional systems, suppresses intermolecular transfer of the Si-H group, leading to heterotelechelic PDMS derivatives with a high degree of control over chain ends. In situ termination of the D3 propagating chain end with commercially available chlorosilanes (alkyl chlorides, methacrylates, and norbornenes) yields an array of chain-end-functionalized PDMS derivatives. This diversity can be further increased by hydrosilylation with functionalized alkenes (alcohols, esters, and epoxides) to generate a library of heterotelechelic PDMS polymers. Due to the living nature of ring-opening polymerization and efficient initiation, narrow-dispersity (Đ < 1.2) polymers spanning a wide range of molar masses (2-11 kg mol-1) were synthesized. With facile access to α-Si-H and ω-norbornene functionalized PDMS macromonomers (H-PDMS-Nb), the synthesis of well-defined supersoft (G' = 30 kPa) PDMS bottlebrush networks, which are difficult to prepare using established strategies, was demonstrated.
Collapse
Affiliation(s)
- Yoichi Okayama
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Taejun Eom
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael Czuczola
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Allison Abdilla
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Jacob R. Blankenship
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Kaitlin R. Albanese
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
3
|
Bi X, Xiong W, He J, Ma S, Zhang J, Fang Y, Wu Y. Site-Selective and Biocompatible Growth of Polymers from Glycan Moieties of Glycoproteins and Living Cells. Biomacromolecules 2021; 22:4237-4243. [PMID: 34474556 DOI: 10.1021/acs.biomac.1c00792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation of protein-polymer conjugates (PPCs) is critical for many studies in chemical biology, biomedicine, and enzymatic catalysis. Polymers with coordinated physicochemical properties confer synergistic functions to PPCs that overcome the inherent limitation of proteins. However, application of PPCs has been synthetically restricted by the limited modification sites and polymer grafting method. Here, we present a versatile strategy for site-selective PPC synthesis. The initiator was specifically tethered to the preoxidized glycan moieties through oxime chemistry. Polymer brushes were grown in situ from the glycan by atom-transfer radical polymerization to generate well-controlled PPCs. Notably, the modification is site-specific, multivalent, and alterable depending on protein glycosylation. Additionally, we demonstrated that the cytocompatible method enabled the growth of polymer chains from the surface of living yeast cells. These results verified a facile technology for surface modification of biomacromolecules by desired polymers for various biomedical applications.
Collapse
Affiliation(s)
- Xueran Bi
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Wenli Xiong
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Jian'an He
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District, 1011 Fuqiang Road, Shenzhen 518045, China
| | - Shanyun Ma
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiangsheng Zhang
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Yuan Fang
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China.,Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
4
|
Falanga A, Del Genio V, Kaufman EA, Zannella C, Franci G, Weck M, Galdiero S. Engineering of Janus-Like Dendrimers with Peptides Derived from Glycoproteins of Herpes Simplex Virus Type 1: Toward a Versatile and Novel Antiviral Platform. Int J Mol Sci 2021; 22:6488. [PMID: 34204295 PMCID: PMC8234430 DOI: 10.3390/ijms22126488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Novel antiviral nanotherapeutics, which may inactivate the virus and block it from entering host cells, represent an important challenge to face viral global health emergencies around the world. Using a combination of bioorthogonal copper-catalyzed 1,3-dipolar alkyne/azide cycloaddition (CuAAC) and photoinitiated thiol-ene coupling, monofunctional and bifunctional peptidodendrimer conjugates were obtained. The conjugates are biocompatible and demonstrate no toxicity to cells at biologically relevant concentrations. Furthermore, the orthogonal addition of multiple copies of two different antiviral peptides on the surface of a single dendrimer allowed the resulting bioconjugates to inhibit Herpes simplex virus type 1 at both the early and the late stages of the infection process. The presented work builds on further improving this attractive design to obtain a new class of therapeutics.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy;
| | - Valentina Del Genio
- Department of Pharmacy and CIRPEB, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy;
| | - Elizabeth A. Kaufman
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA; (E.A.K.); (M.W.)
| | - Carla Zannella
- Department of Experimental Medicine, Second University of Naples, Via de Crecchio 7, 80138 Naples, Italy;
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA; (E.A.K.); (M.W.)
| | - Stefania Galdiero
- Department of Pharmacy and CIRPEB, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
5
|
|
6
|
|
7
|
Sui B, Cheng C, Xu P. Pyridyl Disulfide Functionalized Polymers as Nanotherapeutic Platforms. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Binglin Sui
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| | - Chen Cheng
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| |
Collapse
|
8
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
9
|
Pohlit H, Worm M, Langhanki J, Berger-Nicoletti E, Opatz T, Frey H. Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hannah Pohlit
- Department
of Dermatology, University Medical Center Mainz, Langenbeckstr.
1, 55131 Mainz, Germany
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, 55128 Mainz, Germany
| | - Matthias Worm
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jens Langhanki
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Elena Berger-Nicoletti
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
10
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Saha A, Jana S, Mandal TK. Peptide-poly(tert-butyl methacrylate) conjugate into composite micelles in organic solventsversuspeptide-poly(methacrylic acid) conjugate into spherical and worm-like micelles in water: Synthesis and self-assembly. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupam Saha
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Somdeb Jana
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| |
Collapse
|
12
|
Lu L, Yuan L, Yan J, Tang C, Wang Q. Development of Core–Shell Nanostructures by In Situ Assembly of Pyridine-Grafted Diblock Copolymer and Transferrin for Drug Delivery Applications. Biomacromolecules 2016; 17:2321-8. [DOI: 10.1021/acs.biomac.6b00032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Lu
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Yuan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qian Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Reader PW, Pfukwa R, Jokonya S, Arnott GE, Klumperman B. Synthesis of α,ω-heterotelechelic PVP for bioconjugation, via a one-pot orthogonal end-group modification procedure. Polym Chem 2016. [DOI: 10.1039/c6py01296e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple one pot orthogonal procedure for synthesizing α-aldehyde, ω-thiol heterotelechelic poly(N-vinylpyrrolidone) (PVP) is introduced.
Collapse
Affiliation(s)
- Paul. W. Reader
- Department of Chemistry and Polymer Science
- Stellenbosch University
- Matieland 7602
- South Africa
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science
- Stellenbosch University
- Matieland 7602
- South Africa
| | - Simbarashe Jokonya
- Department of Chemistry and Polymer Science
- Stellenbosch University
- Matieland 7602
- South Africa
| | - Gareth E. Arnott
- Department of Chemistry and Polymer Science
- Stellenbosch University
- Matieland 7602
- South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science
- Stellenbosch University
- Matieland 7602
- South Africa
| |
Collapse
|
14
|
Garcia DR, Lavignac N. Poly(amidoamine)–BSA conjugates synthesised by Michael addition reaction retained enzymatic activity. Polym Chem 2016. [DOI: 10.1039/c6py01771a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A bioconjugate synthesised using a “grafted to” method and Michael addition reaction retained the activity of the native protein.
Collapse
Affiliation(s)
- D. R. Garcia
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| | - N. Lavignac
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| |
Collapse
|
15
|
Lorenzo MM, Decker CG, Kahveci MU, Paluck SJ, Maynard HD. Homodimeric Protein-Polymer Conjugates via the Tetrazine- trans-Cyclooctene Ligation. Macromolecules 2015; 49:30-37. [PMID: 26949271 DOI: 10.1021/acs.macromol.5b02323] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrazine end-functionalized telechelic polymers were synthesized by controlled radical polymerization (CRP) and employed to generate T4 Lysozyme homodimers. Mutant T4 Lysozyme (V131C), containing a single surface-exposed cysteine, was modified with a protein-reactive trans-cyclooctene (T4L-TCO). Reversible addition-fragmentation chain transfer (RAFT) polymerization yielded poly(N-isopropylacrylamide) (pNIPAAm) with a number average molecular weight (Mn by 1H-NMR) of 2.0 kDa and a dispersity (Đ by GPC) of 1.05. pNIPAAm was then modified at both ends by post-polymerization with 6-methyl tetrazine. For comparison, 2.0 kDa bis-tetrazine poly(ethylene glycol) (PEG) and 2.0 kDa bis-maleimide pNIPAAm were synthesized. Ligation of T4L-TCO to bis-tetrazine pNIPAAm or bis-tetrazine PEG resulted in protein homodimer in 38% yield and 37% yield, respectively, after only 1 hour, whereas bis-maleimide pNIPAAm resulted in only 5% yield of dimer after 24 h. This work illustrates the advantage of employing tetrazine ligation over maleimide thiol-ene chemistry for the synthesis of protein homodimer conjugates.
Collapse
Affiliation(s)
- Maltish M Lorenzo
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Caitlin G Decker
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Muhammet U Kahveci
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Samantha J Paluck
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| |
Collapse
|
16
|
The Diels–Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm 2015; 97:438-53. [DOI: 10.1016/j.ejpb.2015.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/06/2023]
|
17
|
Fairbanks BD, Gunatillake PA, Meagher L. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT). Adv Drug Deliv Rev 2015; 91:141-52. [PMID: 26050529 DOI: 10.1016/j.addr.2015.05.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
Abstract
RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- CSIRO Manufacturing Flagship, Ian Wark Laboratories, Clayton, VIC 3168, Australia; Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA 80309-0596.
| | | | - Laurence Meagher
- CSIRO Manufacturing Flagship, Ian Wark Laboratories, Clayton, VIC 3168, Australia; Monash Institute for Medical Engineering and Department of Materials Science and Engineering, Monash University, PO Box 69M, VIC, 3800, Australia.
| |
Collapse
|
18
|
Gong Y, Leroux JC, Gauthier MA. Releasable Conjugation of Polymers to Proteins. Bioconjug Chem 2015; 26:1172-81. [DOI: 10.1021/bc500611k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuhui Gong
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Centre, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
19
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Tang Z, Li D, Wang X, Gong H, Luan Y, Liu Z, Brash JL, Chen H. A t-PA/nanoparticle conjugate with fully retained enzymatic activity and prolonged circulation time. J Mater Chem B 2015; 3:977-982. [PMID: 32261976 DOI: 10.1039/c4tb01625d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major issue in the therapeutic use of tissue plasminogen activator (t-PA) for the treatment of thrombotic diseases is its very short half-life in the circulation due to the effects of inhibitors. The present study aims to resolve the issue using a t-PA/gold nanoparticle (t-PA/AuNP) conjugate prepared via bio-affinity ligation under physiological conditions. The ligation is based on the specific interactions between t-PA and ε-lysine (a ligand that has affinity to a specific domain in t-PA) immobilized on the AuNP surface through polyvinyl pyrrolidone (PVP) as a spacer. The conjugate can not only retain almost full enzymatic activity and clot dissolving efficiency, but also protect t-PA from inhibition by PAI-1 to some extent as compared with free t-PA in vitro. Moreover, the conjugate showed prolonged circulation time in vivo.
Collapse
Affiliation(s)
- Zengchao Tang
- Department of Chemical Engineering and Materials Science, College of Chemistry, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu J, Jung K, Corrigan NA, Boyer C. Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem Sci 2014. [DOI: 10.1039/c4sc01309c] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Abstract
Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications.
Collapse
|
23
|
Nuhn L, Schüll C, Frey H, Zentel R. Combining Ring-Opening Multibranching and RAFT Polymerization: Multifunctional Linear–Hyperbranched Block Copolymers via Hyperbranched Macro-Chain-Transfer Agents. Macromolecules 2013. [DOI: 10.1021/ma4002897] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lutz Nuhn
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14,
D-55128 Mainz, Germany
| | - Christoph Schüll
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14,
D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz (MAINZ), Staudingerweg 9,
D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14,
D-55128 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14,
D-55128 Mainz, Germany
| |
Collapse
|
24
|
Alconcel SNS, Kim SH, Tao L, Maynard HD. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation. Macromol Rapid Commun 2013; 34:983-9. [PMID: 23553922 DOI: 10.1002/marc.201300205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/01/2013] [Indexed: 02/04/2023]
Abstract
Biotinylated polymers with side-chain aldehydes were prepared for use as multifunctional scaffolds. Two different biotin-containing chain transfer agents (CTAs) and an aldehyde-containing monomer, 6-oxohexyl acrylate (6OHA), are synthesized. Poly(ethylene glycol) methyl ether acrylate (PEGA) and 6OHA are copolymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of the biotinylated CTAs. The resulting polymers are analyzed by GPC and(1) H NMR spectroscopy. The polymer end groups contained a disulfide bond, which could be readily reduced in solution to remove the biotin. Reactivity of the aldehyde side chains is demonstrated by oxime and hydrazone formation at the polymer side chains, and conjugate formation of fluorescently labeled polymers with streptavidin is investigated by gel electrophoresis.
Collapse
Affiliation(s)
- Steevens N S Alconcel
- Department of Chemistry & Biochemistry, California NanoSystems Institute, University of California, 607 Charles E. Young Dr East, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
25
|
Robin MP, Wilson P, Mabire AB, Kiviaho JK, Raymond JE, Haddleton DM, O’Reilly RK. Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. J Am Chem Soc 2013; 135:2875-8. [DOI: 10.1021/ja3105494] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mathew P. Robin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anne B. Mabire
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Jenny K. Kiviaho
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | | |
Collapse
|
26
|
Roy SG, Acharya R, Chatterji U, De P. RAFT polymerization of methacrylates containing a tryptophan moiety: controlled synthesis of biocompatible fluorescent cationic chiral polymers with smart pH-responsiveness. Polym Chem 2013. [DOI: 10.1039/c2py20821k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Grover GN, Lee J, Matsumoto NM, Maynard HD. Aminooxy and Pyridyl Disulfide Telechelic Poly(Polyethylene Glycol Acrylate) by RAFT Polymerization. Macromolecules 2012; 45:4858-4965. [PMID: 24648600 DOI: 10.1021/ma300575e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient method to synthesize telechelic, bio-reactive polymers is described. Homotelechelic polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization in one step by employing bifunctional chain transfer agents (CTAs). A bis-carboxylic acid CTA was coupled to N-BOC-aminooxy ethanol or pyridyl disulfide ethanol resulting in a bis-N-BOC-aminooxy CTA and a bis-pyridyl disulfide CTA, respectively. RAFT polymerization of polyethylene glycol (PEG) acrylate in the presence of both CTAs resulted in a series of polymers over a range of molecular weights (~8.4 kDa to 35.2 kDa; polydispersity indices, PDIs of 1.11 to 1.44) with retention of end-groups post-polymerization. The polymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC). Conjugations of small molecules and peptides resulted in homotelechelic polymer conjugates.
Collapse
Affiliation(s)
- Gregory N Grover
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Nicholas M Matsumoto
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Heather D Maynard
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|
28
|
Forsman J, Woodward CE. Polydisperse telechelic polymers at interfaces: analytic results and density functional theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4223-4232. [PMID: 22273547 DOI: 10.1021/la204576q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We use a recently developed continuum theory to expand on an exact treatment of the interfacial properties of telechelic polymers displaying Schulz-Flory polydispersity. Our results are remarkably compact and can be derived from the properties of equilibrium, ideal polymers at interfaces. A new surface adsorption transition is identified for ideal telechelic chains, wherein the central block is an equilibrium polymer. This transition occurs in the limit of strong end adsorption. Additionally, closed expressions are derived for the ideal continuum telechelic chain in contact with two large spheres, using the Derjaguin approximation. We analyze the interactions between colloids as a function of polydispersity and molecular weight, and the results are compared with polymer density functional theory in the dilute limit. Significant variations in polymer mediated forces are observed as a function of polydispersity, molecuar weight, and chain stiffness.
Collapse
Affiliation(s)
- Jan Forsman
- Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden.
| | | |
Collapse
|
29
|
Sumerlin BS. Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett 2012; 1:141-145. [PMID: 35578469 DOI: 10.1021/mz200176g] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many recent developments in polymer chemistry have advanced the synthesis of materials in which synthetic polymers are immobilized to biological (macro)molecules to enhance the solubility, stability, activity, or therapeutic utility of the biological entity. In particular, the versatility and robust nature of controlled radical polymerization (CRP) has enabled access to a diverse family of new polymer bioconjugates. While nitroxide-mediated, atom transfer radical (ATRP), and reversible addition-fragmentation chain transfer (RAFT) polymerizations have all proven useful for the preparation of well-defined end-functional polymers capable of being efficiently conjugated to biological molecules, ATRP and RAFT have proven especially proficient for the synthesis of conjugates by direct polymerization of vinyl monomers from biological components functionalized to contain a group capable of initiating chain growth. This Viewpoint highlights several recent advances that have relied on grafting-from by CRP, with particular attention devoted to a recent report that seeks to facilitate the process of grafting-from proteins via ATRP under biologically relevant conditions.
Collapse
Affiliation(s)
- Brent S. Sumerlin
- Department
of Chemistry and Center for
Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, Texas 75275-0314, United
States
| |
Collapse
|
30
|
Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM. Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. J Am Chem Soc 2012; 134:1847-52. [DOI: 10.1021/ja210335f] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mathew W. Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | - Stephen Caddick
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - James. R. Baker
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
31
|
Jung B, Theato P. Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. BIO-SYNTHETIC POLYMER CONJUGATES 2012. [DOI: 10.1007/12_2012_169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|
33
|
Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM. Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chem Commun (Camb) 2012; 48:4064-6. [DOI: 10.1039/c2cc30259d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hall DJ, Van Den Berghe HM, Dove AP. Synthesis and post-polymerization modification of maleimide-containing polymers by ‘thiol-ene’ click and Diels-Alder chemistries. POLYM INT 2011. [DOI: 10.1002/pi.3121] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Roth PJ, Boyer C, Lowe AB, Davis TP. RAFT Polymerization and Thiol Chemistry: A Complementary Pairing for Implementing Modern Macromolecular Design. Macromol Rapid Commun 2011; 32:1123-43. [DOI: 10.1002/marc.201100127] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/06/2011] [Indexed: 11/10/2022]
|
36
|
Das D, Scherman OA. Cucurbituril: At the Interface of Small Molecule Host-Guest Chemistry and Dynamic Aggregates. Isr J Chem 2011. [DOI: 10.1002/ijch.201100045] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Broyer RM, Grover GN, Maynard HD. Emerging synthetic approaches for protein-polymer conjugations. Chem Commun (Camb) 2011; 47:2212-26. [PMID: 21229146 PMCID: PMC3066092 DOI: 10.1039/c0cc04062b] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are important in diverse fields including drug delivery, biotechnology, and nanotechnology. This feature article highlights recent advances in the synthesis and application of protein-polymer conjugates by controlled radical polymerization techniques. Special emphasis on new applications of the materials, particularly in biomedicine, is provided.
Collapse
Affiliation(s)
| | | | - Heather D. Maynard
- Department of Chemistry & Biochemistry and the California NanoSystems Institute, University of California, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA. ; Tel: +1 310 267 5162
| |
Collapse
|
38
|
Slavin S, De Cuendias A, Ladmiral V, Haddleton DM. Biotin functionalized poly(sulfonic acid)s for bioconjugation:
In situ
binding monitoring by QCM‐D. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stacy Slavin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Anne De Cuendias
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - V. Ladmiral
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
|
41
|
Biedermann F, Rauwald U, Zayed JM, Scherman OA. A supramolecular route for reversible protein-polymer conjugation. Chem Sci 2011. [DOI: 10.1039/c0sc00435a] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Chen X, Ding K, Ayres N. Investigation into fiber formation in N-alkyl urea peptoid oligomers and the synthesis of a water-soluble PEG/N-alkyl urea peptoid oligomer conjugate. Polym Chem 2011. [DOI: 10.1039/c1py00284h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Grover GN, Maynard HD. Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr Opin Chem Biol 2010; 14:818-27. [PMID: 21071260 DOI: 10.1016/j.cbpa.2010.10.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/27/2023]
Abstract
Protein-polymer conjugates are of interest to researchers in diverse fields. Attachment of polymers to proteins results in improved pharmacokinetics, which is important in medicine. From an engineering standpoint, conjugates are exciting because they exhibit properties of both the biomolecules and synthetic polymers. This allows the activity of the protein to be altered or tuned, anchoring to surfaces, and supramolecular self-assembly. Thus, there is broad interest in straightforward synthetic methods to prepare protein-polymer conjugates. Controlled radical polymerization (CRP) techniques have emerged as excellent strategies to make conjugates because the resulting polymers have narrow molecular weight distributions, targeted molecular weights, and attach to specific sites on proteins. Herein, recent advances in the synthesis and application of protein-polymer conjugates by CRP are highlighted.
Collapse
Affiliation(s)
- Gregory N Grover
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- Zoya Zarafshani
- Research Group Nanotechnology for Life Science, Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, Potsdam-Golm 14476, Germany, and Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Toshihiro Obata
- Research Group Nanotechnology for Life Science, Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, Potsdam-Golm 14476, Germany, and Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Jean-François Lutz
- Research Group Nanotechnology for Life Science, Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, Potsdam-Golm 14476, Germany, and Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|