1
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
2
|
Mok JH, Niu Y, Yousef A, Zhao Y, Sastry SK. A microfluidic approach for studying microcolonization of Escherichia coli O157:H7 on leaf trichome-mimicking surfaces under fluid shear stress. Biotechnol Bioeng 2022; 119:1556-1566. [PMID: 35141878 DOI: 10.1002/bit.28057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 have previously been associated with disease outbreaks associated with leafy green vegetables. However, the physical mechanisms that determine the spatial organization of bacteria onto leafy greens are still not clear. Microfluidics with embedded trichome-mimicking microposts were employed to investigate the role of shear flow and configuration of trichomes on E. coli O157:H7 microcolonization. We characterized the three-dimensional microcolonization of green fluorescent protein (GFP)-tagged E. coli O157:H7 using multiphoton fluorescence microscopy and compared their differences under static (no flow; incubated for 36 h at 37°C) and fluid shear conditions (750 nl/min for 36 h at 37°C). For micropatterned trichome arrays, we demonstrated that natural wax-mixed polydimethylsiloxane retains similar topographies and contact angles to the surface of trichome-bearing leafy greens. Our results showed that E. coli O157:H7 under fluid shear stress aligned their colonization parallel to the direction of flow. In a static condition, their colonization had no preferential alignment, with statistically similar angular distributions in all directions. In addition, depending on dimensions of the trichome arrays and flow conditions, different bacterial microcolonization patterns grew radially from initial attachment; they formed into filamentous structures and developed into bridges by surface hydrophobicity and flow-induced shear with a nutrient-rich medium. Collectively, these results demonstrate how the consequences of bacterial colonization in response to shear flow can affect pathogenic bacterial contamination of leafy greens and biofilm architectures.
Collapse
Affiliation(s)
- Jin Hong Mok
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Xie S, Qin L, Li G, Jiao N. Robotized algal cells and their multiple functions. SOFT MATTER 2021; 17:3047-3054. [PMID: 33725085 DOI: 10.1039/d0sm02096f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
From an engineering perspective, algal cells with the abilities of perception and driving can be considered as microrobots. Site-specific, quantitative assembly of algal robots and the manipulated objects and collaborative task performance by algal robots would benefit biomedicine, environmental monitoring, and micro-nano manufacturing. Herein, site-specific, quantitative assembly and drive of algal cells are investigated. The mechanism of cell movement is analyzed, and cell motility is evaluated with or without light control. To robotize algal cells, an algae-guiding system is built, through which a swarm of algal cells is controlled to follow trajectories. By the cell adhesion method, adhesion and release between algal cells and microstructures are achieved. Algal cells successfully transport microspheres and release them at a destination. The cells are continuously operated for 60 min while carrying microspheres and they travel up to 270 mm. An optical guiding method is then developed for controlled assembly of algal robots onto fabricated micro-objects. The rotational movement of the microstructures is realized through cooperative driving by algal cells. This research provides a new biological driving method based on algal cells, which swim and behave as microrobots and are expected to benefit microassembly, microcargo traverse/delivery, and biological collaboration.
Collapse
Affiliation(s)
- Shuangxi Xie
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 10016, China.
| | | | | | | |
Collapse
|
5
|
Plutnar J, Pumera M. Chemotactic Micro‐ and Nanodevices. Angew Chem Int Ed Engl 2019; 58:2190-2196. [DOI: 10.1002/anie.201809101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Plutnar
- Department of Inorganic ChemistryUniversity of Chemistry and Technology in Prague Technická 5 Prague 166 28 Czech Republic
| | - Martin Pumera
- Department of Inorganic ChemistryUniversity of Chemistry and Technology in Prague Technická 5 Prague 166 28 Czech Republic
| |
Collapse
|
6
|
Affiliation(s)
- Jan Plutnar
- Department of Inorganic Chemistry; University of Chemistry and Technology in Prague; Technická 5 Prague 166 28 Tschechische Republik
| | - Martin Pumera
- Department of Inorganic Chemistry; University of Chemistry and Technology in Prague; Technická 5 Prague 166 28 Tschechische Republik
| |
Collapse
|
7
|
Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active Therapeutic Delivery. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800064] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pelin Erkoc
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Immihan C. Yasa
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Hakan Ceylan
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Oncay Yasa
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Yunus Alapan
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| | - Metin Sitti
- Physical Intelligence Department; Max Planck Institute for Intelligent; Systems 70569 Stuttgart Germany
| |
Collapse
|
8
|
Bastos-Arrieta J, Revilla-Guarinos A, Uspal WE, Simmchen J. Bacterial Biohybrid Microswimmers. Front Robot AI 2018; 5:97. [PMID: 33500976 PMCID: PMC7805739 DOI: 10.3389/frobt.2018.00097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Over millions of years, Nature has optimized the motion of biological systems at the micro and nanoscales. Motor proteins to motile single cells have managed to overcome Brownian motion and solve several challenges that arise at low Reynolds numbers. In this review, we will briefly describe naturally motile systems and their strategies to move, starting with a general introduction that surveys a broad range of developments, followed by an overview about the physical laws and parameters that govern and limit motion at the microscale. We characterize some of the classes of biological microswimmers that have arisen in the course of evolution, as well as the hybrid structures that have been constructed based on these, ranging from Montemagno's ATPase motor to the SpermBot. Thereafter, we maintain our focus on bacteria and their biohybrids. We introduce the inherent properties of bacteria as a natural microswimmer and explain the different principles bacteria use for their motion. We then elucidate different strategies that have been employed for the coupling of a variety of artificial microobjects to the bacterial surface, and evaluate the different effects the coupled objects have on the motion of the "biohybrid." Concluding, we give a short overview and a realistic evaluation of proposed applications in the field.
Collapse
Affiliation(s)
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - William E Uspal
- Department of Theory of Inhomogeneous Condensed Matter, Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.,IV. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Juliane Simmchen
- Physikalische Chemie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Hydrodynamic Impedance of Bacteria and Bacteria-Inspired Micro-Swimmers: A New Strategy to Predict Power Consumption of Swimming Micro-Robots for Real-Time Applications. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201700013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Zhuang J, Park B, Sitti M. Propulsion and Chemotaxis in Bacteria-Driven Microswimmers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700109. [PMID: 28932674 PMCID: PMC5604384 DOI: 10.1002/advs.201700109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 05/21/2023]
Abstract
Despite the large body of experimental work recently on biohybrid microsystems, few studies have focused on theoretical modeling of such systems, which is essential to understand their underlying functioning mechanisms and hence design them optimally for a given application task. Therefore, this study focuses on developing a mathematical model to describe the 3D motion and chemotaxis of a type of widely studied biohybrid microswimmer, where spherical microbeads are driven by multiple attached bacteria. The model is developed based on the biophysical observations of the experimental system and is validated by comparing the model simulation with experimental 3D swimming trajectories and other motility characteristics, including mean squared displacement, speed, diffusivity, and turn angle. The chemotaxis modeling results of the microswimmers also agree well with the experiments, where a collective chemotactic behavior among multiple bacteria is observed. The simulation result implies that such collective chemotaxis behavior is due to a synchronized signaling pathway across the bacteria attached to the same microswimmer. Furthermore, the dependencies of the motility and chemotaxis of the microswimmers on certain system parameters, such as the chemoattractant concentration gradient, swimmer body size, and number of attached bacteria, toward an optimized design of such biohybrid system are studied. The optimized microswimmers would be used in targeted cargo, e.g., drug, imaging agent, gene, and RNA, transport and delivery inside the stagnant or low-velocity fluids of the human body as one of their potential biomedical applications.
Collapse
Affiliation(s)
- Jiang Zhuang
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Byung‐Wook Park
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
11
|
Vizsnyiczai G, Frangipane G, Maggi C, Saglimbeni F, Bianchi S, Di Leonardo R. Light controlled 3D micromotors powered by bacteria. Nat Commun 2017; 8:15974. [PMID: 28656975 PMCID: PMC5493761 DOI: 10.1038/ncomms15974] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/17/2017] [Indexed: 01/22/2023] Open
Abstract
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.
Collapse
Affiliation(s)
| | - Giacomo Frangipane
- Dipartimento di Fisica, Università di Roma 'Sapienza', Roma I-00185, Italy
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma I-00185, Italy
| | - Filippo Saglimbeni
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma I-00185, Italy
| | - Silvio Bianchi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma I-00185, Italy
| | - Roberto Di Leonardo
- Dipartimento di Fisica, Università di Roma 'Sapienza', Roma I-00185, Italy.,NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Roma I-00185, Italy
| |
Collapse
|
12
|
Stanton MM, Park BW, Miguel-López A, Ma X, Sitti M, Sánchez S. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603679. [PMID: 28299891 DOI: 10.1002/smll.201603679] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with "smart" material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing "length of protrusion" of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.
Collapse
Affiliation(s)
- Morgan M Stanton
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Albert Miguel-López
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
| | - Xing Ma
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, 518055, Shenzhen, China
| | - Metin Sitti
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Samuel Sánchez
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
- Institució Catalana de Recerca i EstudisAvancats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
13
|
Abstract
![]()
Self-propelled
colloids have emerged as a new class of active matter
over the past decade. These are micrometer sized colloidal objects
that transduce free energy from their surroundings and convert it
to directed motion. The self-propelled colloids are in many ways,
the synthetic analogues of biological self-propelled units such as
algae or bacteria. Although they are propelled by very different mechanisms,
biological swimmers are typically powered by flagellar motion and
synthetic swimmers are driven by local chemical reactions, they share
a number of common features with respect to swimming behavior. They
exhibit run-and-tumble like behavior, are responsive to environmental
stimuli, and can even chemically interact with nearby swimmers. An
understanding of self-propelled colloids could help us in understanding
the complex behaviors that emerge in populations of natural microswimmers.
Self-propelled colloids also offer some advantages over natural microswimmers,
since the surface properties, propulsion mechanisms, and particle
geometry can all be easily modified to meet specific needs. From a more practical perspective, a number of applications, ranging
from environmental remediation to targeted drug delivery, have been
envisioned for these systems. These applications rely on the basic
functionalities of self-propelled colloids: directional motion, sensing
of the local environment, and the ability to respond to external signals.
Owing to the vastly different nature of each of these applications,
it becomes necessary to optimize the design choices in these colloids.
There has been a significant effort to develop a range of synthetic
self-propelled colloids to meet the specific conditions required for
different processes. Tubular self-propelled colloids, for example,
are ideal for decontamination processes, owing to their bubble propulsion
mechanism, which enhances mixing in systems, but are incompatible
with biological systems due to the toxic propulsion fuel and the generation
of oxygen bubbles. Spherical swimmers serve as model systems to understand
the fundamental aspects of the propulsion mechanism, collective behavior,
response to external stimuli, etc. They are also typically the choice
of shape at the nanoscale due to their ease of fabrication. More recently
biohybrid swimmers have also been developed which attempt to retain
the advantages of synthetic colloids while deriving their propulsion
from biological swimmers such as sperm and bacteria, offering the
means for biocompatible swimming. In this Account, we will summarize
our effort and those of other groups, in the design and development
of self-propelled colloids of different structural properties and
powered by different propulsion mechanisms. We will also briefly address
the applications that have been proposed and, to some extent, demonstrated
for these swimmer designs.
Collapse
Affiliation(s)
- Jaideep Katuri
- Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Xing Ma
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- School
of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, 518055 Shenzhen, China
| | - Morgan M. Stanton
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
15
|
Xie S, Jiao N, Tung S, Liu L. Controlled regular locomotion of algae cell microrobots. Biomed Microdevices 2016; 18:47. [DOI: 10.1007/s10544-016-0074-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Alves D, Sileika T, Messersmith PB, Pereira MO. Polydopamine-Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion. Macromol Biosci 2016; 16:1301-10. [PMID: 27198822 DOI: 10.1002/mabi.201600077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/18/2016] [Indexed: 11/06/2022]
Abstract
Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Tadas Sileika
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Phillip B Messersmith
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Bioengineering and Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720-1760, USA
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Huh K, Oh D, Son SY, Yoo HJ, Song B, Cho DID, Seo JM, Kim SJ. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle. MICRO AND NANO SYSTEMS LETTERS 2016. [DOI: 10.1186/s40486-016-0026-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Gao Z, Li H, Chen X, Zhang HP. Using confined bacteria as building blocks to generate fluid flow. LAB ON A CHIP 2015; 15:4555-62. [PMID: 26496967 DOI: 10.1039/c5lc01093d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In many technological applications, materials are transported by fluid flow at micro/nanometer scales. Conventionally, macroscopic apparatuses, such as syringe pumps, are used to drive the flow. This work explores the possibility of utilizing motile bacteria as microscopic pumps. We used micro-fabricated structures to confine smooth-swimming bacteria in a prescribed configuration. The flagella of confined bacteria rotate to collectively generate flow that can transport materials along designed trajectories. Different structures are combined to realize complex functions, such as collection or dispersion of particles. Experimental findings are reproduced in numerical simulations. Our method opens new ways to generate transport flow at the micrometer scale and to drive bio-hybrid devices.
Collapse
Affiliation(s)
- Zhiyong Gao
- Department of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Hong Wang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
20
|
Sahari A, Traore MA, Scharf BE, Behkam B. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed Microdevices 2015; 16:717-25. [PMID: 24907051 DOI: 10.1007/s10544-014-9876-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).
Collapse
Affiliation(s)
- Ali Sahari
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
21
|
Park SJ, Lee YK, Cho S, Uthaman S, Park IK, Min JJ, Ko SY, Park JO, Park S. Effect of chitosan coating on a bacteria-based alginate microrobot. Biotechnol Bioeng 2014; 112:769-76. [PMID: 25312282 DOI: 10.1002/bit.25476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 11/11/2022]
Abstract
To develop an efficient bacteria-based microrobot, first, therapeutic bacteria should be encapsulated into microbeads using biodegradable and biocompatible materials; second, the releasing rate of the encapsulated bacteria for theragnostic function should be regulated; and finally, flagellated bacteria should be attached on the microbeads to ensure the motility of the microrobot. For the therapeutic bacteria encapsulation, an alginate can be a promising candidate as a biodegradable and biocompatible material. Owing to the non-regulated releasing rate of the encapsulated bacteria in alginate microbeads and the weak attachment of flagellated bacteria on the surface of alginate microbeads, however, the alginate microbeads cannot be used as effective cargo for a bacteria-based microrobot. In this paper, to enhance the stability of the bacteria encapsulation and the adhesion of flagellated bacteria in alginate microbeads, we performed a surface modification of alginate microbeads using chitosan coating. The bacteria-encapsulated alginate microbeads with 1% chitosan coating maintained their structural integrity up to 72 h, whereas the control alginate microbead group without chitosan coating showed severe degradations after 24 h. The chitosan coating in alginate microbeads shows the enhanced attachment of flagellated bacteria on the surface of alginate microbeads. The bacteria-actuated microrobot with the enhanced flagellated bacteria attachment could show approximately 4.2 times higher average velocities than the control bacteria-actuated microrobot without chitosan coating. Consequently, the surface modification using chitosan coating enhanced the structural stability and the motility of the bacteria-based alginate microrobots.
Collapse
Affiliation(s)
- Sung Jun Park
- School of Mechanical Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Ed Engl 2014; 54:1414-44. [PMID: 25504117 DOI: 10.1002/anie.201406096] [Citation(s) in RCA: 602] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/08/2022]
Abstract
Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.
Collapse
Affiliation(s)
- Samuel Sánchez
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany) http://www.is.mpg.de/sanchez; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain).
| | | | | |
Collapse
|
23
|
|
24
|
Motility Control of Bacteria-Actuated Biodegradable Polymeric Microstructures by Selective Adhesion Methods. MICROMACHINES 2014. [DOI: 10.3390/mi5041287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3831-51. [PMID: 24895215 DOI: 10.1002/smll.201400384] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Indexed: 05/25/2023]
Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
26
|
Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M. Magnetic steering control of multi-cellular bio-hybrid microswimmers. LAB ON A CHIP 2014; 14:3850-3859. [PMID: 25120224 DOI: 10.1039/c4lc00707g] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
27
|
Zhuang J, Wei G, Wright Carlsen R, Edwards MR, Marculescu R, Bogdan P, Sitti M. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052704. [PMID: 25353826 DOI: 10.1103/physreve.89.052704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 06/04/2023]
Abstract
This paper presents a modeling and experimental framework to characterize the chemotaxis of Serratia marcescens (S. marcescens) relying on two-dimensional and three-dimensional tracking of individual bacteria. Previous studies mainly characterized bacterial chemotaxis based on population density analysis. Instead, this study focuses on single-cell tracking and measuring the chemotactic drift velocity V(C) from the biased tumble rate of individual bacteria on exposure to a concentration gradient of l-aspartate. The chemotactic response of S. marcescens is quantified over a range of concentration gradients (10^{-3} to 5 mM/mm) and average concentrations (0.5 × 10(-3) to 2.5 mM). Through the analysis of a large number of bacterial swimming trajectories, the tumble rate is found to have a significant bias with respect to the swimming direction. We also verify the relative gradient sensing mechanism in the chemotaxis of S. marcescens by measuring the change of V(C) with the average concentration and the gradient. The applied full pathway model with fitted parameters matches the experimental data. Finally, we show that our measurements based on individual bacteria lead to the determination of the motility coefficient μ (7.25 × 10(-6) cm(2)/s) of a population. The experimental characterization and simulation results for the chemotaxis of this bacterial species contribute towards using S. marcescens in chemically controlled biohybrid systems.
Collapse
Affiliation(s)
- Jiang Zhuang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Guopeng Wei
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Matthew R Edwards
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Radu Marculescu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Metin Sitti
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA and Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics. JOURNAL OF MICRO-BIO ROBOTICS 2014. [DOI: 10.1007/s12213-014-0072-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Park SJ, Park SH, Cho S, Kim DM, Lee Y, Ko SY, Hong Y, Choy HE, Min JJ, Park JO, Park S. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep 2013; 3:3394. [PMID: 24292152 PMCID: PMC3844944 DOI: 10.1038/srep03394] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
We propose a bacteria-based microrobot (bacteriobot) based on a new fusion paradigm for theranostic activities against solid tumors. We develop a bacteriobot using the strong attachment of bacteria to Cy5.5-coated polystyrene microbeads due to the high-affinity interaction between biotin and streptavidin. The chemotactic responses of the bacteria and the bacteriobots to the concentration gradients of lysates or spheroids of solid tumors can be detected as the migration of the bacteria and/or the bacteriobots out of the central region toward the side regions in a chemotactic microfluidic chamber. The bacteriobots showed higher migration velocity toward tumor cell lysates or spheroids than toward normal cells. In addition, when only the bacteriobots were injected to the CT-26 tumor mouse model, Cy5.5 signal was detected from the tumor site of the mouse model. In-vitro and in-vivo tests verified that the bacteriobots had chemotactic motility and tumor targeting ability. The new microrobot paradigm in which bacteria act as microactuators and microsensors to deliver microstructures to tumors can be considered a new theranostic methodology for targeting and treating solid tumors.
Collapse
Affiliation(s)
- Sung Jun Park
- School of Mechanical Systems Engineering, Chonnam National University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Park D, Park SJ, Cho S, Lee Y, Lee YK, Min JJ, Park BJ, Ko SY, Park JO, Park S. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng 2013; 111:134-43. [DOI: 10.1002/bit.25007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Daechul Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Sung Jun Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Sunghoon Cho
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Yeonkyung Lee
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Yu Kyung Lee
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine; Chonnam National University Medical School; Gwangju Korea
| | - Bang Ju Park
- College of BioNano Technology; Gachon University; Gyeonggi-do Korea
| | - Seong Young Ko
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Jong-Oh Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| | - Sukho Park
- School of Mechanical Systems Engineering; Chonnam National University; Gwangju 500-757 Korea
| |
Collapse
|
31
|
Park SJ, Bae H, Ko SY, Min JJ, Park JO, Park S. Selective bacterial patterning using the submerged properties of microbeads on agarose gel. Biomed Microdevices 2013; 15:793-9. [DOI: 10.1007/s10544-013-9765-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng 2013; 115:115-21. [DOI: 10.1016/j.jbiosc.2012.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022]
|
33
|
Cho S, Park SJ, Ko SY, Park JO, Park S. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices 2012; 14:1019-25. [DOI: 10.1007/s10544-012-9704-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Fernandes R, Zuniga M, Sassine FR, Karakoy M, Gracias DH. Enabling cargo-carrying bacteria via surface attachment and triggered release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:588-92. [PMID: 21370460 PMCID: PMC3099305 DOI: 10.1002/smll.201002036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Indexed: 05/25/2023]
Affiliation(s)
- Rohan Fernandes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Mary Zuniga
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Fritz R. Sassine
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Mert Karakoy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|