1
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
2
|
Kim D, Seo HD, Ryu Y, Kim HS. Functionalized gold nanoparticles with zinc finger-fused proteins as a colorimetric immunoassay platform. Anal Chim Acta 2020; 1126:154-162. [PMID: 32736719 DOI: 10.1016/j.aca.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
The quest for highly sensitive and specific detection of disease biomarkers is high, despite many advances in analysis system. Here, we present a sensitive immunoassay platform using DNA-tethered gold nanoparticles and DNA-binding zinc fingers (ZFs). Monomeric alkaline phosphatase (mAP) and human TNF-α were employed as a signal generator and a disease biomarker, respectively. Gold nanoparticles (AuNPs) were first grafted with double-stranded DNAs having specific sequences for two different types of ZFs (QNK and zif268). The alkaline phosphatase and TNF-α-specific protein binder were genetically fused to each of two different types of ZFs, respectively, followed by conjugation with the DNA-tethered AuNPs in a sequence-specific manner. The use of the functionalized AuNPs as a signal generator in a colorimetric immunoassay of TNF-α led to LOD of 120 pg/ml, showing about 161-fold higher sensitivity than a protein binder-fused mAP. The present immunoassay platform could be applied to other analytes by simply replacing a targeting moiety, allowing a versatile and reproducible colorimetric immunoassay.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hyo-Deok Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yiseul Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
3
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
5
|
Uddin MI, Kilburn TC, Yang R, McCollum GW, Wright DW, Penn JS. Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles. Mol Pharm 2018; 15:5514-5520. [PMID: 30350640 DOI: 10.1021/acs.molpharmaceut.8b00661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.
Collapse
Affiliation(s)
- Md Imam Uddin
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Tyler C Kilburn
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Rong Yang
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - David W Wright
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - John S Penn
- Department of Ophthalmology and Visual Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Molecular Physiology and Biophysics , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| |
Collapse
|
6
|
Uddin MI, Jayagopal A, Wong A, McCollum GW, Wright DW, Penn JS. Real-time imaging of VCAM-1 mRNA in TNF-α activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:63-71. [PMID: 28890107 DOI: 10.1016/j.nano.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
Vascular cell adhesion molecule 1 (VCAM-1) is an important inflammatory biomarker correlating with retinal disease progression. Thus, detection of VCAM-1 mRNA expression levels at an early disease stage could be an important predictive biomarker to assess the risk of disease progression and monitoring treatment response. We have developed VCAM-1 targeted antisense hairpin DNA-functionalized gold nanoparticles (AS-VCAM-1 hAuNP) for the real time detection of VCAM-1 mRNA expression levels in retinal endothelial cells. The AS-VCAM-1 hAuNP fluorescence enhancement clearly visualized the TNF-α induced cellular VCAM-1 mRNA levels with high signal to noise ratios compared to normal serum treated cells. The scrambled hAuNP probes were minimally detectable under same image acquisition conditions. Intracellular hAuNPs were detected using transmission electron microscopy (TEM) analysis of the intact cells. In addition, the AS-VCAM-1 hAuNP probes exhibited no acute toxicity to the retinal microvascular endothelial cells as measured by live-dead assay.
Collapse
Affiliation(s)
- Md Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA..
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexis Wong
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA..
| |
Collapse
|
7
|
Wu X, Li L, Shi W, Gong Q, Ma H. Near-Infrared Fluorescent Probe with New Recognition Moiety for Specific Detection of Tyrosinase Activity: Design, Synthesis, and Application in Living Cells and Zebrafish. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
8
|
Wu X, Li L, Shi W, Gong Q, Ma H. Near‐Infrared Fluorescent Probe with New Recognition Moiety for Specific Detection of Tyrosinase Activity: Design, Synthesis, and Application in Living Cells and Zebrafish. Angew Chem Int Ed Engl 2016; 55:14728-14732. [DOI: 10.1002/anie.201609895] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Wong AC, Wright DW. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5592-5600. [PMID: 27562251 DOI: 10.1002/smll.201601697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Indexed: 05/18/2023]
Abstract
The extensive use of gold nanoparticles (AuNPs) in nanomedicine, especially for intracellular imaging, photothermal therapy, and drug delivery, has necessitated the study of how functionalized AuNPs engage with living biological interfaces like the mammalian cell. Nanoparticle size, shape, surface charge, and surface functionality can affect the accumulation of functionalized AuNPs in cells. Confocal microscopy, flow cytometry, and inductively coupled plasma mass spectrometry demonstrate that CaSki cells, a human cervical cancer cell line, internalize AuNPs functionalized with hairpin, single stranded, and double stranded DNA differently. Surface charge and DNA conformation are shown to have no effect on the cell-nanoparticle interaction. CaSki cells accumulate small DNA-AuNPs in greater quantities than large DNA-AuNPs, demonstrating that size is the major contributor to cellular uptake properties. These data suggest that DNA-AuNPs can be easily tailored through modulation of size to design functional AuNPs with optimal cellular uptake properties and enhanced performance in nanomedicine applications.
Collapse
Affiliation(s)
- Alexis C Wong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235-1822, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235-1822, USA.
| |
Collapse
|
10
|
Wei G, Yu J, Wang J, Gu P, Birch DJS, Chen Y. Hairpin DNA-functionalized gold nanorods for mRNA detection in homogenous solution. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:97001. [PMID: 27604563 DOI: 10.1117/1.jbo.21.9.097001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
We report a fluorescent probe for mRNA detection. It consists of a gold nanorod (GNR) functionalized with fluorophore-labeled hairpin oligonucleotides (hpDNA) that are complementary to the mRNA of a target gene. This nanoprobe was found to be sensitive to a complementary oligonucleotide, as indicated by significant changes in both fluorescence intensity and lifetime. The influence of the surface density of hpDNA on the performance of this nanoprobe was investigated, suggesting that high hybridization efficiency could be achieved at a relatively low surface loading density of hpDNA. However, steady-state fluorescence spectroscopy revealed better overall performance, in terms of sensitivity and detection range, for nanoprobes with higher hairpin coverage. Time-resolved fluorescence lifetime spectroscopy revealed significant lifetime changes of the fluorophore upon hybridization of hpDNA with targets, providing further insight on the hybridization kinetics of the probe as well as the quenching efficiency of GNRs.
Collapse
Affiliation(s)
- Guoke Wei
- University of Strathclyde, Photophysics Group, Center for Molecular Nanometrology, Department of Physics, SUPA, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United KingdombBeihang University, Department of Physics, 37 Xuequan Road, Haidan, Beijing 100191, China
| | - Jun Yu
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, Glasgow G1 1XW, United Kingdom
| | - Jinliang Wang
- Beihang University, Department of Physics, 37 Xuequan Road, Haidan, Beijing 100191, China
| | - Peng Gu
- University of Strathclyde, Photophysics Group, Center for Molecular Nanometrology, Department of Physics, SUPA, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - David J S Birch
- University of Strathclyde, Photophysics Group, Center for Molecular Nanometrology, Department of Physics, SUPA, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - Yu Chen
- University of Strathclyde, Photophysics Group, Center for Molecular Nanometrology, Department of Physics, SUPA, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
11
|
Xie N, Huang J, Yang X, Yang Y, Quan K, Wang H, Ying L, Ou M, Wang K. A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells. Chem Commun (Camb) 2016; 52:2346-9. [DOI: 10.1039/c5cc09980c] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a DNA tetrahedron-based molecular beacon for tumor-related TK1 mRNA detection in living cells, where the target sequence can induce the tetrahedron from contraction to extension, resulting in fluorescence restoration.
Collapse
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Yanjing Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - He Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Le Ying
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
12
|
Liu Y, Li S, Chen D, Wang Z, Zhang J, Tian C, Ding L, Chen Y, Qian Z, Gu Y. Clinical diagnosis of EML4–ALK mutation in NSCLC by a gold nanoparticle beacon. RSC Adv 2016. [DOI: 10.1039/c6ra21230a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The existence of EML4–ALK, a mutated fusion gene in non-small-cell lung cancer (NSCLC), is an important consideration in the decision of the treatment options for NSCLC patients. Gold nanoparticle beacons could be applied in clinical detection of the fusion gene visually.
Collapse
|
13
|
Ma JL, Yin BC, Le HN, Ye BC. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12856-63. [PMID: 26024337 DOI: 10.1021/acsami.5b03837] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.
Collapse
Affiliation(s)
| | | | | | - Bang-Ce Ye
- ‡School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
14
|
Deng D, Li Y, Xue J, Wang J, Ai G, Li X, Gu Y. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen. Int J Nanomedicine 2015; 10:3231-44. [PMID: 25987838 PMCID: PMC4422291 DOI: 10.2147/ijn.s81754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.
Collapse
Affiliation(s)
- Dawei Deng
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Li
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianpeng Xue
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jie Wang
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Guanhua Ai
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xin Li
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yueqing Gu
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Zhang Y, Wei G, Yu J, Birch DJS, Chen Y. Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discuss 2015; 178:383-94. [PMID: 25778775 DOI: 10.1039/c4fd00199k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously we have demonstrated surface plasmon enhanced energy transfer between fluorophores and gold nanorods under two-photon excitation using fluorescence lifetime imaging microscopy (FLIM) in both solution and intracellular phases. These studies demonstrated that gold nanoparticle-dye energy transfer combinations are appealing, not only in Förster resonance energy transfer (FRET) imaging, but also energy transfer-based fluorescence lifetime sensing of bio-analytes. Here, we apply this approach to study the internalization of gold nanorods (GNRs) in HeLa cells using the early endosome labeling marker GFP. The observed energy transfer between GFP and the GNRs indicates the involvement of endocytosis in GNR uptake. Moreover, a novel nanoprobe based on oligonucleotide functionalized gold nanorods for nucleic acid sensing via dye-GNRs energy transfer is demonstrated, potentially opening up new possibilities in cancer diagnosis and prognosis. The influence of oligonucleotide design on such nanoprobe performance was studied for the first time using time-resolved fluorescence spectroscopy, bringing new insights to the optimization of the nanoprobe.
Collapse
Affiliation(s)
- Yinan Zhang
- Department of Physics, Strathclyde University, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK.
| | | | | | | | | |
Collapse
|
16
|
Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q. Nanocarriers in therapy of infectious and inflammatory diseases. NANOSCALE 2015; 7:4291-305. [PMID: 25680099 DOI: 10.1039/c4nr07682f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanotechnology is a growing science that has applications in various areas of medicine. The composition of nanocarriers for drug delivery is critical to guarantee high therapeutic performance when targeting specific host sites. Applications of nanotechnology are prevalent in the diagnosis and treatment of infectious and inflammatory diseases. This review summarizes recent advancements in the application of nanotechnology to the therapy of infectious and inflammatory diseases. The major focus is on the design and fabrication of various nanomaterials, characteristics and physicochemical properties of drug-loaded nanocarriers, and the use of these nanoscale drug delivery systems in treating infectious and inflammatory diseases, such as AIDS, hepatitis, tuberculosis, melanoma, and representative inflammatory diseases. Clinical trials and future perspective of the use of nanocarriers are also discussed in detail. We hope that such a review will be valuable to researchers who are exploring nanoscale drug delivery systems for the treatment of specific infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Ufuoma Ikoba
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Nanoparticle-based detection of cancer-associated RNA. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:384-97. [DOI: 10.1002/wnan.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 12/12/2022]
|
18
|
Torabi SF, Lu Y. Functional DNA nanomaterials for sensing and imaging in living cells. Curr Opin Biotechnol 2014; 28:88-95. [PMID: 24468446 DOI: 10.1016/j.copbio.2013.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/17/2013] [Accepted: 12/25/2013] [Indexed: 12/25/2022]
Abstract
Recent developments in integrating high selectivity of functional DNA, such as DNAzymes and aptamers, with efficient DNA delivery into cells by gold nanoparticles or superior near-infrared optical properties of upconversion nanoparticles are reviewed. Their applications in sensing and imaging small organic metabolites, toxins, metal ions, pH, DNA, RNA, proteins, and pathogens are summarized. The advantages and future directions of these functional DNA materials are discussed.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
19
|
Wang K, Huang J, Yang X, He X, Liu J. Recent advances in fluorescent nucleic acid probes for living cell studies. Analyst 2014; 138:62-71. [PMID: 23154215 DOI: 10.1039/c2an35254k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Living cell studies can offer tremendous opportunities for biological and disease studies. Due to their high sensitivity and selectivity, minimum interference with living biological systems, ease of design and synthesis, fluorescent nucleic acid probes (FNAPs) have been widely used in living cell studies, such as for intracellular detection, cell detection, and cell-to-cell communication. Here, we review the general requirements and the recent developments in FNAPs for living cell studies. We broadly classify these designs as hybridization probes and aptamer probes. For hybridization probes, we describe recently developed designs, such as nanomaterial-based and amplification-based hybridization probes. For aptamer probes, we discuss four general paradigms that have appeared most frequently in the literature: nanomaterial-based, nanomachine-based, cell surface-anchored and activatable aptamer probe designs in vivo. FNAPs promise to open up new and exciting opportunities in biological marks detection for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Changsha 410082, China.
| | | | | | | | | |
Collapse
|
20
|
Oligonucleotide optical switches for intracellular sensing. Anal Bioanal Chem 2013; 405:6181-96. [PMID: 23793395 DOI: 10.1007/s00216-013-7086-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fluorescence imaging coupled with nanotechnology is making possible the development of powerful tools in the biological field for applications such as cellular imaging and intracellular messenger RNA monitoring and detection. The delivery of fluorescent probes into cells and tissues is currently receiving growing interest because such molecules, often coupled to nanodimensional materials, can conveniently allow the preparation of small tools to spy on cellular mechanisms with high specificity and sensitivity. The purpose of this review is to provide an exhaustive overview of current research in oligonucleotide optical switches for intracellular sensing with a focus on the engineering methods adopted for these oligonucleotides and the more recent and fascinating techniques for their internalization into living cells. Oligonucleotide optical switches can be defined as specifically designed short nucleic acid molecules capable of turning on or modifying their light emission on molecular interaction with well-defined molecular targets. Molecular beacons, aptamer beacons, hybrid molecular probes, and simpler linear oligonucleotide switches are the most promising optical nanosensors proposed in recent years. The intracellular targets which have been considered for sensing are a plethora of messenger-RNA-expressing cellular proteins and enzymes, or, directly, proteins or small molecules in the case of sensing through aptamer-based switches. Engineering methods, including modification of the oligonucleotide itself with locked nucleic acids, peptide nucleic acids, or L-DNA nucleotides, have been proposed to enhance the stability of nucleases and to prevent false-negative and high background optical signals. Conventional delivery techniques are treated here together with more innovative methods based on the coupling of the switches with nano-objects.
Collapse
|
21
|
Bi S, Cui Y, Li L. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. Analyst 2012; 138:197-203. [PMID: 23148205 DOI: 10.1039/c2an36118c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ultrasensitive and highly selective method for polymerase chain reaction-free (PCR-free) messenger RNA (mRNA) expression profiling is developed through a novel cross-rolling circle amplification (C-RCA) process based on DNA-rotaxane nanostructures. Two species of DNA pseudorotaxane (DPR) superstructures (DPR-I and DPR-II) are assembled by threading a linear DNA rod through a double-stranded DNA (dsDNA) ring containing two single-stranded gaps. In this assay, cDNA that is specific for β-actin (ACTB) mRNA is taken as a model analyte. Upon the introduction of the target cDNA, the cDNA and the biotin-modified primer are hybridized to the single-stranded regions of the DNA rod and the gap-ring, respectively. As a result, the DPR-I dethreads into free DNA macrocycle and a dumbbell-shaped DNA nanostructure. In the presence of DNA polymerase/dNTPs, two release-DNA on the DPR-I are replaced by polymerase with strand-displacement activity, which can act as the input of the DPR-II to trigger the dethreading of DPR-II and the RCA reaction, releasing another two specified release-DNA strands those in turn serve as the "mimic cDNA" for DPR-I. The C-RCA reaction then proceeds autonomously. To overcome the high background induced by hemin itself, the biotinylated rolling circle products are captured by streptavidin-coated MNPs, achieving a detection limit as low as 0.1 zmol cDNA. The assay also exhibits an excellent selectivity due to its unique DNA nanostructure fabricated through base pairing hybridization. The ACTB mRNA expression in mammary cancer cells (MCF-7) is successfully detected.
Collapse
Affiliation(s)
- Sai Bi
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | |
Collapse
|
22
|
Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosens Bioelectron 2012; 41:71-7. [PMID: 23122230 DOI: 10.1016/j.bios.2012.06.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 01/10/2023]
Abstract
Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery.
Collapse
|
23
|
Li F, Cui H. A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles. Biosens Bioelectron 2012; 39:261-7. [PMID: 22917918 DOI: 10.1016/j.bios.2012.07.060] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/08/2012] [Accepted: 07/27/2012] [Indexed: 01/14/2023]
Abstract
In the work, a label-free electrochemiluminescence (ECL) aptasensor for the sensitive and selective detection of thrombin was constructed based on target-induced direct ECL signal change by virtue of a novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles (luminol-AuNPs). It is the first label-free ECL biosensor based on luminol and its analogs functionalized AuNPs. Streptavidin AuNPs coated with biotinylated DNA capture probe 1 (AuNPs-probe 1) were firstly assembled onto an gold electrode through 1,3-propanedithiol. Then luminol-AuNPs co-loaded with thiolated DNA capture probe 2 and thiolated thrombin binding aptamer (TBA) (luminol-AuNPs-probe 2/TBA) were assembled onto AuNPs-probe 1 modified electrode through the hybridization between capture probes 1 and 2. The luminol-AuNPs-probe 2/TBA acted as both molecule recognition probe and sensing interface. An Au/AuNPs/ds-DNA/luminol-AuNPs/TBA multilayer architecture was obtained. In the presence of target thrombin, TBA on the luminol-AuNPs could capture the thrombin onto the electrode surface, which produced a barrier for electro-transfer and influenced the electro-oxidation reaction of luminol, leading to a decrease in ECL intensity. The change of ECL intensity indirectly reflected the concentration of thrombin. Thus, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range of 0.005-50nM with a detection limit of 1.7pM. This work reveals that luminol-AuNPs are ideal platform for label-free ECL bioassays.
Collapse
Affiliation(s)
- Fang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | | |
Collapse
|
24
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
25
|
Adams NM, Jackson SR, Haselton FR, Wright DW. Design, synthesis, and characterization of nucleic-acid-functionalized gold surfaces for biomarker detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1068-82. [PMID: 21905721 PMCID: PMC4211628 DOI: 10.1021/la2028862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nucleic-acid-functionalized gold surfaces have been used extensively for the development of biological sensors. The development of an effective biomarker detection assay requires careful design, synthesis, and characterization of probe components. In this Feature Article, we describe fundamental probe development constraints and provide a critical appraisal of the current methodologies and applications in the field. We discuss critical issues and obstacles that impede the sensitivity and reliability of the sensors to underscore the challenges that must be met to advance the field of biomarker detection.
Collapse
Affiliation(s)
- Nicholas M. Adams
- VU Station B 351822, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA. VU Station B 351631, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Stephen R. Jackson
- VU Station B 351822, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Frederick R. Haselton
- VU Station B 351631, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
26
|
Briley W, Halo TL, Randeria PS, Alhasan AH, Auyeung E, Hurst SJ, Mirkin CA. Biochemistry and Biomedical Applications of Spherical Nucleic Acids (SNAs). ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1119.ch001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Will Briley
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Tiffany L. Halo
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Pratik S. Randeria
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Ali H. Alhasan
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Evelyn Auyeung
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Sarah J. Hurst
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- AuraSense LLC, 8045 Lamon Avenue, Suite 410, Skokie, Illinois 60077, United States
| |
Collapse
|
27
|
Hu R, Zhang XB, Kong RM, Zhao XH, Jiang J, Tan W. Nucleic acid-functionalized nanomaterials for bioimaging applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12588e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R. Nanoparticles in molecular diagnostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:427-88. [PMID: 22093226 DOI: 10.1016/b978-0-12-416020-0.00011-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this chapter is to provide an overview of the available and emerging molecular diagnostic methods that take advantage of the unique nanoscale properties of nanoparticles (NPs) to increase the sensitivity, detection capabilities, ease of operation, and portability of the biodetection assemblies. The focus will be on noble metal NPs, especially gold NPs, fluorescent NPs, especially quantum dots, and magnetic NPs, the three main players in the development of probes for biological sensing. The chapter is divided into four sections: a first section covering the unique physicochemical properties of NPs of relevance for their utilization in molecular diagnostics; the second section dedicated to applications of NPs in molecular diagnostics by nucleic acid detection; and the third section with major applications of NPs in the area of immunoassays. Finally, a concluding section highlights the most promising advances in the area and presents future perspectives.
Collapse
Affiliation(s)
- Pedro V Baptista
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Investigação em Genética Molecular Humana (CIGMH), Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|