1
|
Abdulhussain N, Nawada S, Currivan S, Schoenmakers P. Fabrication of monolithic frits and columns for chip‐based multidimensional separation devices. J Sep Sci 2022; 45:1400-1410. [DOI: 10.1002/jssc.202100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Noor Abdulhussain
- Van ’t Hoff Institute for Molecular Science (HIMS) University of Amsterdam Amsterdam the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA) University of Amsterdam 1098 HX Amsterdam the Netherlands
| | - Suhas Nawada
- Van ’t Hoff Institute for Molecular Science (HIMS) University of Amsterdam Amsterdam the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA) University of Amsterdam 1098 HX Amsterdam the Netherlands
| | - Sinéad Currivan
- Department of Applied Science Technological University Dublin Tallaght D24 FKT9 Ireland
- MiCRA Biodiagnostics Technological University Dublin Tallaght D24 FKT9 Ireland
- Centre of Applied Science for Health (CASH) Technological University Dublin Tallaght D24 FKT9 Ireland
| | - Peter Schoenmakers
- Van ’t Hoff Institute for Molecular Science (HIMS) University of Amsterdam Amsterdam the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA) University of Amsterdam 1098 HX Amsterdam the Netherlands
| |
Collapse
|
2
|
Badiye A, Kapoor N, Shukla RK. Detection and separation of proteins using micro/nanofluidics devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:59-84. [PMID: 35033290 DOI: 10.1016/bs.pmbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microfluidics is the technology or system wherein the behavior of fluids' is studied onto a miniaturized device composed of chambers and tunnels. In biological and biomedical sciences, microfluidic technology/system or device serves as an ultra-high-output approach capable of detecting and separating the biomolecules present even in trace quantities. Given the essential role of protein, the identification and quantification of proteins help understand the various living systems' biological function regulation. Microfluidics has enormous potential to enable biological investigation at the cellular and molecular level and maybe a fair substitution of the sophisticated instruments/equipment used for proteomics, genomics, and metabolomics analysis. The current advancement in microfluidic systems' development is achieving momentum and opening new avenues in developing innovative and hybrid methodologies/technologies. This chapter attempts to expound the micro/nanofluidic systems/devices for their wide-ranging application to detect and separate protein. It covers microfluidic chip electrophoresis, microchip gel electrophoresis, and nanofluidic systems as protein separation systems, while methods such as spectrophotometric, mass spectrometry, electrochemical detection, magneto-resistive sensors and dynamic light scattering (DLS) are discussed as proteins' detection system.
Collapse
Affiliation(s)
- Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Themelis T, Amini A, De Vos J, Eeltink S. Towards spatial comprehensive three-dimensional liquid chromatography: A tutorial review. Anal Chim Acta 2021; 1148:238157. [DOI: 10.1016/j.aca.2020.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023]
|
4
|
Piendl SK, Geissler D, Weigelt L, Belder D. Multiple Heart-Cutting Two-Dimensional Chip-HPLC Combined with Deep-UV Fluorescence and Mass Spectrometric Detection. Anal Chem 2020; 92:3795-3803. [DOI: 10.1021/acs.analchem.9b05206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Adamopoulou T, Deridder S, Bos TS, Nawada S, Desmet G, Schoenmakers PJ. Optimizing design and employing permeability differences to achieve flow confinement in devices for spatial multidimensional liquid chromatography. J Chromatogr A 2020; 1612:460665. [PMID: 31727357 DOI: 10.1016/j.chroma.2019.460665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
|
6
|
Adamopoulou T, Nawada S, Deridder S, Wouters B, Desmet G, Schoenmakers PJ. Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing. J Chromatogr A 2019; 1598:77-84. [PMID: 30929867 DOI: 10.1016/j.chroma.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Conventional one-dimensional column-based liquid chromatographic (LC) systems do not offer sufficient separation power for the analysis of complex mixtures. Column-based comprehensive two-dimensional liquid chromatography offers a higher separation power, yet suffers from instrumental complexity and long analysis times. Spatial two-dimensional liquid chromatography can be considered as an alternative to column-based approaches. The peak capacity of the system is ideally the product of the peak capacities of the two dimensions, yet the analysis time remains relatively short due to parallel second-dimension separations. Aspects affecting the separation efficiency of this type of systems include flow distribution to homogeneously distribute the mobile phase for the second-dimension (2D) separation, flow confinement during the first-dimension (1D) separation, and band-broadening effects during analyte transfer from the 1D separation channel to the 2D separation area. In this study, the synergy between computational fluid dynamics (CFD) simulations and rapid prototyping was exploited to address band broadening during the 2D development and analyte transfer from 1D to 2D. Microfluidic devices for spatial two-dimensional liquid chromatography were designed, simulated, 3D-printed and tested. The effects of presence and thickness of spacers in the 2D separation area were addressed and leaving these out proved to be the most efficient solution regarding band broadening reduction. The presence of a stationary-phase material in the 1D channel had a great effect on the analyte transfer from the 1D to the 2D and the resulting band broadening. Finally, pressure limit of the fabricated devices and printability are discussed.
Collapse
Affiliation(s)
- Theodora Adamopoulou
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Suhas Nawada
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Sander Deridder
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Bert Wouters
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Peter J Schoenmakers
- Universiteit van Amsterdam, Van' t Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Adamopoulou T, Deridder S, Desmet G, Schoenmakers PJ. Two-dimensional insertable separation tool (TWIST) for flow confinement in spatial separations. J Chromatogr A 2018; 1577:120-123. [PMID: 30316614 DOI: 10.1016/j.chroma.2018.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022]
Abstract
Spatial comprehensive two-dimensional liquid chromatography (xLC×xLC) may be an efficient approach to achieve high peak capacities in relatively short analysis times, thanks to parallel second-dimension separations [1,2]. A key issue to reach the potential of xLC×xLC is to achieve adequate flow control and confinement of the analytes to the desired regions, i.e. confinement in the first-dimension direction and subsequently homogeneous flow in the second dimension. To achieve these goals we propose the TWIST concept (TWo-dimensional Insertable Separation Tool), a modular device that includes an internal first-dimension (1D) part that is cylindrical and rotatable. This internal part features a series of through-holes, each of which is perpendicular to the direction of the 1D flow. The internal part is inserted in the cylindrical casing of the external part. The internal diameter of the casing is marginally larger than the external diameter of the internal part. The external part also comprises a flow distributor and second-dimension (2D) channels. During the 1D injection and development, the channel is placed in a position where the through-holes are facing the wall of the external part, such that the liquid remains confined within the 1D channel. Thereafter, to realize the transfer to the second dimension (2D injection), the 1D channel is rotated, so that the holes of the internal part are aligned with the holes on the external part, allowing a transversal flow of the 2D mobile phase from the distributor through the 1D channel and eventually into the 2D area.
Collapse
Affiliation(s)
- Theodora Adamopoulou
- Van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| | - Sander Deridder
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
10
|
Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis – A review. Anal Chim Acta 2017; 950:7-31. [DOI: 10.1016/j.aca.2016.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
|
11
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
12
|
Chung M, Kim D, Herr AE. Polymer sieving matrices in microanalytical electrophoresis. Analyst 2014; 139:5635-54. [DOI: 10.1039/c4an01179a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Xiao Z, Wang L, Liu Y, Wang Q, Zhang B. A “plug-and-use” approach towards facile fabrication of capillary columns for high performance nanoflow liquid chromatography. J Chromatogr A 2014; 1325:109-14. [DOI: 10.1016/j.chroma.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/28/2013] [Accepted: 12/01/2013] [Indexed: 11/27/2022]
|
14
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|
15
|
Tentori AM, Hughes AJ, Herr AE. Microchamber integration unifies distinct separation modes for two-dimensional electrophoresis. Anal Chem 2013; 85:4538-45. [PMID: 23565932 PMCID: PMC3714212 DOI: 10.1021/ac4001767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By combining isoelectric focusing (IEF) with subsequent gel electrophoresis, two-dimensional electrophoresis (2DE) affords more specific characterization of proteins than each constituent unit separation. In a new approach to integrating the two assay dimensions in a microscope slide-sized glass device, we introduce microfluidic 2DE using photopatterned polyacrylamide (PA) gel elements housed in a millimeter-scale, 20-μm-deep chamber. The microchamber minimizes information loss inherent to channel network architectures commonly used for microfluidic 2DE. To define the IEF axis along a "lane" at the top of the chamber, we used free solution carrier ampholytes and immobilized acrylamido buffers in the PA gels. This approach yielded high-resolution (0.1 pH unit) and rapid (<20 min) IEF. Next, protein transfer to the second dimension was accomplished by chemical mobilization perpendicular to the IEF axis. Mobilization drove focused proteins off the IEF lane and into a region for protein gel electrophoresis. Using fluorescently labeled proteins, we observed transfer-induced band broadening factors ~7.5-fold lower than those observed in microchannel networks. Both native polyacrylamide gel electrophoresis (PAGE) and pore-limit electrophoresis (PLE) were studied as the second assay dimension and completed in <15 min. PLE yields protein molecular mass information without the need for ionic surfactant or reducing agents, simplifying device design and operation. Microchamber-based 2DE unifies two independent separation dimensions in a single device with minimal transfer-associated information losses. Peak capacities for the total assay ranged from 256 to 35 with <1 h assay duration. The rapid microchamber 2DE assay has the potential to bridge an existing gap in targeted proteomics for protein biomarker validation and systems biology that may complement recent innovation in mass spectrometry.
Collapse
Affiliation(s)
- Augusto M. Tentori
- The UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Alex J. Hughes
- The UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Amy E. Herr
- The UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, CA, USA
| |
Collapse
|
16
|
|
17
|
Duša F, Křenková J, Moravcová D, Kahle V, Šlais K. Divergent-flow isoelectric focusing for separation and preparative analysis of peptides. Electrophoresis 2012; 33:1687-94. [DOI: 10.1002/elps.201100587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jana Křenková
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v. v. i.; Brno; Czech Republic
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v. v. i.; Brno; Czech Republic
| | - Vladislav Kahle
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v. v. i.; Brno; Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v. v. i.; Brno; Czech Republic
| |
Collapse
|
18
|
Abstract
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues.
Collapse
Affiliation(s)
- Xin Xu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
19
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
20
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
21
|
Daghighi Y, Li D. Micro-valve using induced-charge electrokinetic motion of Janus particle. LAB ON A CHIP 2011; 11:2929-2940. [PMID: 21769339 DOI: 10.1039/c1lc20229d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new micro-valve using the electrokinetic motion of a Janus particle is introduced in this paper. A Janus particle with a conducting hemisphere and a non-conducting hemisphere is placed in a junction of several microchannels. Under an applied electric field, the induced-charge electrokinetic flow around the conducting side of the Janus particle forms vortices. The vortices push the particle moving forwards to block the entrance of a microchannel. By switching the direction of the applied electric field, the motion of the Janus particle can be changed to block different microchannels. This paper develops a theoretical model and conducts numerical simulations of the three-dimensional transient motion of the Janus particle. The results show that this Janus particle-based micro-valve is feasible for switching and controlling the flow rate in a microfluidic chip. This method is simple in comparison with other types of micro-valve methods. It is easy for fabrication, for operation control, and has a fast response time. To better understand the micro-valve functions, comparisons with a non-conducting particle and a fully conducting particle were made. Results proved that only a Janus particle can fulfill the requirements of such a micro-valve.
Collapse
Affiliation(s)
- Yasaman Daghighi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
22
|
Tentori AM, Herr AE. Photopatterned materials in bioanalytical microfluidic technology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2011; 21:54001. [PMID: 21857772 PMCID: PMC3156436 DOI: 10.1088/0960-1317/21/5/054001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays.
Collapse
|
23
|
Liu K, Fan ZH. Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst 2011; 136:1288-97. [PMID: 21274478 DOI: 10.1039/c0an00969e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microfluidics is a platform technology that has been used for genomics, proteomics, chemical synthesis, environment monitoring, cellular studies, and other applications. The fabrication materials of microfluidic devices have traditionally included silicon and glass, but plastics have gained increasing attention in the past few years. We focus this review on thermoplastic microfluidic devices and their applications in protein and DNA analysis. We outline the device design and fabrication methods, followed by discussion on the strategies of surface treatment. We then concentrate on several significant advancements in applying thermoplastic microfluidic devices to protein separation, immunoassays, and DNA analysis. Comparison among numerous efforts, as well as the discussion on the challenges and innovation associated with detection, is presented.
Collapse
Affiliation(s)
- Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, USA
| | | |
Collapse
|