1
|
Srivastava A, Kumar G, Kumar P, Srikrishna S, Chandra P, Singh VP. Thiazole-Based Silver Ion Sensor for Sequential Colorimetric Visualization of Epinephrine in the Brain Tissues of an Alzheimer's Disease Model of Mouse. ACS APPLIED BIO MATERIALS 2024; 7:3271-3282. [PMID: 38654595 DOI: 10.1021/acsabm.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A thiazole-based probe, N'-((2-aminothiazol-5-yl)methylene)benzohydrazide (TBH), has been efficiently synthesized and characterized for the selective and sensitive detection of the neurotransmitter epinephrine (EP). The sensing strategy is based on the use of TBH for sequential colorimetric sensing of Ag+ and EP via in situ formation of Ag nanoparticles (Ag NPs) from the TBH-Ag+ complex. The generated Ag NPs lead to a bathochromic shift in absorption maximum and a change in color of the solution from light brown to reddish brown. TBH-Ag+ shows remarkable selectivity toward EP versus other drugs, common cations, anions, and some biomolecules. Moreover, TBH-Ag+ has a low detection limit for EP at 1.2 nM. The coordination of TBH-Ag+ has been proposed based on Job's plot, Fourier transform infrared spectroscopy (FT-IR), high-resolution mass spectrometry (HRMS), 1H NMR titration, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDAX), and density functional theory (DFT) studies. The composition and morphology of the generated Ag NPs have been analyzed by XPS, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The proposed sensing mechanism for EP has been supported by XPS of Ag after the reaction. Further, the sensitivity of TBH-Ag+ toward EP in brain tissues of an Alzheimer's disease model of mouse has been evaluated. A thorough comparison was done for evaluation of the proposed method.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Billings JL, Hilton JBW, Liddell JR, Hare DJ, Crouch PJ. Fundamental Neurochemistry Review: Copper availability as a potential therapeutic target in progressive supranuclear palsy: Insight from other neurodegenerative diseases. J Neurochem 2023; 167:337-346. [PMID: 37800457 DOI: 10.1111/jnc.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.
Collapse
Affiliation(s)
- Jessica L Billings
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James B W Hilton
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J Hare
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, New South Wales, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
The Role of Copper Homeostasis in Brain Disease. Int J Mol Sci 2022; 23:ijms232213850. [PMID: 36430330 PMCID: PMC9698384 DOI: 10.3390/ijms232213850] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the human body, copper is an important trace element and is a cofactor for several important enzymes involved in energy production, iron metabolism, neuropeptide activation, connective tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons, and efficient synaptic transmission in the central nervous system. Copper is naturally present in some foods and is available as a dietary supplement. Only small amounts of copper are typically stored in the body and a large amount of copper is excreted through bile and urine. Given the critical role of copper in a breadth of cellular processes, local concentrations of copper and the cellular distribution of copper transporter proteins in the brain are important to maintain the steady state of the internal environment. The dysfunction of copper metabolism or regulatory pathways results in an imbalance in copper homeostasis in the brain, which can lead to a myriad of acute and chronic pathological effects on neurological function. It suggests a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the relationship between impaired copper homeostasis and neuropathophysiological progress in brain diseases.
Collapse
|
4
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
5
|
Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid. INORGANICS 2022. [DOI: 10.3390/inorganics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia.
Collapse
|
6
|
Ogra Y, Tanaka YK, Suzuki N. Recent advances in copper analyses by inorganic mass spectrometry. J Clin Biochem Nutr 2022; 71:2-6. [PMID: 35903601 PMCID: PMC9309087 DOI: 10.3164/jcbn.21-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Copper (Cu) participates in the biological redox reaction in the body, and its deficiency is fatal to the body. At the same time, Cu is extremely toxic when it exists in excess. Thus, the body has to tightly and spatiotemporally regulate the concentration of Cu within a physiological range by several groups of Cu-regulating proteins. However, entire mechanisms underlying the maintenance of Cu homeostasis in body and cells have not fully understood. It is necessary to analyze Cu itself in a body and in a cell to reveal the Cu homeostasis. In this review, recent advances in the analytical techniques to understand the Cu metabolism such as speciation, imaging and single-cell analysis of Cu were highlighted.
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yu-ki Tanaka
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
7
|
Ellison G, Hollings AL, Hackett MJ. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA ADVANCES 2022; 2:100038. [PMID: 37082604 PMCID: PMC10074908 DOI: 10.1016/j.bbadva.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
It is now well established that transition metals, such as Iron (Fe), Copper (Cu), and Zinc (Zn) are necessary for healthy brain function. Although Fe, Cu, and Zn are essential to the brain, imbalances in the amount, distribution, or chemical form ("metallome") of these metals is linked to the pathology of numerous brain diseases or disorders. Despite the known importance of metal ions for both brain health and disease, the metallome that exists within specific types of brain cells is yet to be fully characterised. The aim of this mini-review is to present an overview of the current knowledge of the metallome found within specific brain cells (oligodendrocytes, astrocytes, microglia, and neurons), as revealed by direct elemental mapping techniques. It is hoped this review will foster continued research using direct elemental mapping techniques to fully characterise the brain cell metallome.
Collapse
Affiliation(s)
- Gaewyn Ellison
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ashley L. Hollings
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Corresponding author.
| |
Collapse
|
8
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
9
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Lei C, Liao J, Li Q, Shi J, Zhang H, Guo J, Han Q, Hu L, Li Y, Pan J, Tang Z. Copper induces mitochondria-mediated apoptosis via AMPK-mTOR pathway in hypothalamus of Pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112395. [PMID: 34102394 DOI: 10.1016/j.ecoenv.2021.112395] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.
Collapse
Affiliation(s)
- Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
11
|
Gao X, Pan H, Han Y, Feng L, Xiong J, Luo S, Li H. Quantitative imaging of amyloid beta peptide (Aβ) in Alzheimer's brain tissue by laser ablation ICP-MS using gold nanoparticles as labels. Anal Chim Acta 2021; 1148:238197. [PMID: 33516374 DOI: 10.1016/j.aca.2020.12.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Quantitative imaging of amyloid beta (Aβ) in brain is of great significance for pathological study and follow-up drug development of Alzheimer's disease (AD). In this work, a method using antibody-conjugated gold nanoparticles (AuNPs) was established for quantitative imaging of Aβ peptide in the brain of AD mouse by Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Aβ antibody (Anti-Aβ) was labeled with AuNPs to form the conjugate AuNPs-Anti-Aβ which was immunoreactive with Aβ in the brain slice of mouse. Quantitative imaging of Au was acquired with homogenized brain slice matrix-matched standards as external calibrants which were made by immersing in gold standard solution with different concentrations. Furthermore, the stoichiometric ratios between metal conjugates and Aβ were optimized, and the immunoreaction efficiency after labeling was also investigated. According to the molar relationship between AuNPs and Anti-Aβ (1:4.3) and the ratio of Anti-Aβ to Aβ (1:1), quantitative imaging of Aβ in brain was accomplished. The method intuitively displayed the location and concentration of Aβ aggregation, which was consistent with traditional immunohistochemical staining. Since the numerous gold atoms contained in AuNPs can enhance the signal of Aβ, the method is more intuitive and sensitive. The proposed methodology is potential in investigating the quantitative imaging of biomarker heterogeneity, and is useful to understand such complex brain mechanisms in the future.
Collapse
Affiliation(s)
- Xue Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Huijie Pan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China; Beijing University of Chemical Technology, Beijing, China
| | - Yachen Han
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China; Beijing University of Chemical Technology, Beijing, China
| | - Liuxing Feng
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China.
| | - Jinping Xiong
- Beijing University of Chemical Technology, Beijing, China
| | - Shizhong Luo
- Beijing University of Chemical Technology, Beijing, China
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China.
| |
Collapse
|
12
|
de Jesus JR, Arruda MAZ. Unravelling neurological disorders through metallomics-based approaches. Metallomics 2020; 12:1878-1896. [PMID: 33237082 DOI: 10.1039/d0mt00234h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the biological process involving metals and biomolecules in the brain is essential for establishing the origin of neurological disorders, such as neurodegenerative and psychiatric diseases. From this perspective, this critical review presents recent advances in this topic, showing possible mechanisms involving the disruption of metal homeostasis and the pathogenesis of neurological disorders. We also discuss the main challenges observed in metallomics studies associated with neurological disorders, including those related to sample preparation and analyte quantification.
Collapse
|
13
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020; 21:ijms21072341. [PMID: 32231018 PMCID: PMC7178132 DOI: 10.3390/ijms21072341] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- Correspondence: ; Tel.: +49-3320-088-5241
| | - Dirk Schaumlöffel
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, 64000 Pau, France;
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam-Berlin-Jena, Germany
| |
Collapse
|
15
|
Ashraf A, Michaelides C, Walker TA, Ekonomou A, Suessmilch M, Sriskanthanathan A, Abraha S, Parkes A, Parkes HG, Geraki K, So PW. Regional Distributions of Iron, Copper and Zinc and Their Relationships With Glia in a Normal Aging Mouse Model. Front Aging Neurosci 2019; 11:351. [PMID: 31920630 PMCID: PMC6930884 DOI: 10.3389/fnagi.2019.00351] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p < 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p < 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R2 = 0.57, p = 0.0008), copper (R2 = 0.43, p = 0.0057), and zinc (R2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R2 = 0.49, p = 0.0025) and zinc (R2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Christos Michaelides
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A Walker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Antigoni Ekonomou
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Maria Suessmilch
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Achvini Sriskanthanathan
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Semhar Abraha
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Adam Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Copper and the brain noradrenergic system. J Biol Inorg Chem 2019; 24:1179-1188. [PMID: 31691104 DOI: 10.1007/s00775-019-01737-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Copper (Cu) plays an essential role in the development and function of the brain. In humans, genetic disorders of Cu metabolism may cause either severe Cu deficiency (Menkes disease) or excessive Cu accumulation (Wilson disease) in the brain tissue. In either case, the loss of Cu homeostasis results in catecholamine misbalance, abnormal myelination of neurons, loss of normal brain architecture, and a spectrum of neurologic and/or psychiatric manifestations. Several metabolic processes have been identified as particularly sensitive to Cu dis-homeostasis. This review focuses on the role of Cu in noradrenergic neurons and summarizes the current knowledge of mechanisms that maintain Cu homeostasis in these cells. The impact of Cu misbalance on catecholamine metabolism and functioning of noradrenergic system is discussed.
Collapse
|
17
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
18
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
19
|
Wang Z, Zhang YH, Zhang W, Gao HL, Zhong ML, Huang TT, Guo RF, Liu NN, Li DD, Li Y, Wang ZY, Zhao P. Copper chelators promote nonamyloidogenic processing of AβPP via MT 1/2 /CREB-dependent signaling pathways in AβPP/PS1 transgenic mice. J Pineal Res 2018; 65:e12502. [PMID: 29710396 DOI: 10.1111/jpi.12502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022]
Abstract
Copper is essential for the generation of reactive oxygen species (ROS), which are induced by amyloid-β (Aβ) aggregation; thus, the homeostasis of copper is believed to be a therapeutic target for Alzheimer's disease (AD). Although clinical trials of copper chelators show promise when applied in AD, the underlying mechanism is not fully understood. Here, we reported that copper chelators promoted nonamyloidogenic processing of AβPP through MT1/2 /CREB-dependent signaling pathways. First, we found that the formation of Aβ plaques in the cortex was significantly reduced, and learning deficits were significantly improved in AβPP/PS1 transgenic mice by copper chelator tetrathiomolybdate (TM) administration. Second, TM and another copper chelator, bathocuproine sulfonate (BCS), promoted nonamyloidogenic processing of AβPP via inducing the expression of ADAM10 and the secretion of sAβPPα. Third, the inducible ADAM10 production caused by copper chelators can be blocked by a melatonin receptor (MT1/2 ) antagonist (luzindole) and a MT2 inhibitor (4-P-PDOT), suggesting that the expression of ADAM10 depends on the activation of MT1/2 signaling pathways. Fourth, three of the MT1/2 -downstream signaling pathways, Gq/PLC/MEK/ERK/CREB, Gs/cAMP/PKA/ERK/CREB and Gs/cAMP/PKA/CREB, were responsible for copper chelator-induced ADAM10 production. Based on these results, we conclude that copper chelators regulate the balance between amyloidogenic and nonamyloidogenic processing of AβPP via promoting ADAM10 expression through MT1/2 /CREB-dependent signaling pathways.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Ya-Hong Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China
| | - Hui-Ling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Man-Li Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui-Fang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na-Na Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Dan-Dan Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yin Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
20
|
Sauzéat L, Laurençon A, Balter V. Metallome evolution in ageing C. elegans and a copper stable isotope perspective. Metallomics 2018. [DOI: 10.1039/c7mt00318h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ageing is accompanied by important chemical deregulations that could serve as biomarkers of premature ageing conditions.
Collapse
Affiliation(s)
| | - Anne Laurençon
- UMR 5534
- Institut de Génomique Fonctionelle de Lyon (IGFL)
- CNRS
- Université Claude Bernard (Lyon 1)
- France
| | | |
Collapse
|
21
|
Andreozzi EM, Torres JB, Sunassee K, Dunn J, Walker-Samuel S, Szanda I, Blower PJ. Studies of copper trafficking in a mouse model of Alzheimer's disease by positron emission tomography: comparison of 64Cu acetate and 64CuGTSM. Metallomics 2017; 9:1622-1633. [PMID: 29063080 PMCID: PMC6205627 DOI: 10.1039/c7mt00227k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease can involve brain copper dyshomeostasis. We aimed to determine the effect of AD-like pathology on 64Cu trafficking in mice, using positron emission tomography (PET imaging), during 24 hours after intravenous administration of ionic 64Cu (Cu(ii) acetate) and 64Cu-GTSM (GTSMH2 = glyoxalbis(thiosemicarbazone)). Copper trafficking was evaluated in 6-8-month-old and 13-15 month-old TASTPM transgenic and wild-type mice, by imaging 0-30 min and 24-25 h after intravenous administration of 64Cu tracer. Regional 64Cu distribution in brains was compared by ex vivo autoradiography to that of amyloid-β plaque. 64Cu-acetate showed uptake in, and excretion through, liver and kidneys. There was minimal uptake in other tissues by 30 minutes, and little further change after 24 h. Radioactivity within brain was focussed in and around the ventricles and was significantly greater in younger mice. 64CuGTSM was taken up in all tissues by 30 min, remaining high in brain but clearing substantially from other tissues by 24 h. Distribution in brain was not localised to specific regions. TASTPM mice showed no major changes in global or regional 64Cu brain uptake compared to wildtype after administration of 64Cu acetate (unlike 64Cu-GTSM) but efflux of 64Cu from brain by 24 h was slightly greater in 6-8 month-old TASTPM mice than in wildtype controls. Changes in copper trafficking associated with Alzheimer's-like pathology after administration of ionic 64Cu are minor compared to those observed after administration of 64Cu-GTSM. PET imaging with 64Cu could help understand changes in brain copper dynamics in AD and underpin new clinical diagnostic imaging methods.
Collapse
Affiliation(s)
- Erica M Andreozzi
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Julia Baguña Torres
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Kavitha Sunassee
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Joel Dunn
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Istvan Szanda
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Philip J Blower
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| |
Collapse
|
22
|
Xie F, Xi Y, Pascual JM, Muzik O, Peng F. Age-dependent changes of cerebral copper metabolism in Atp7b -/- knockout mouse model of Wilson's disease by [ 64Cu]CuCl 2-PET/CT. Metab Brain Dis 2017; 32:717-726. [PMID: 28130615 PMCID: PMC5573586 DOI: 10.1007/s11011-017-9956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b -/- knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support clinical use of [64Cu]CuCl2-PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Otto Muzik
- Carman & Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, USA
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jugder BE, Jayasena T, Inestrosa NC, Sachdev PS. Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Front Aging Neurosci 2017; 9:66. [PMID: 28405187 PMCID: PMC5370394 DOI: 10.3389/fnagi.2017.00066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/03/2017] [Indexed: 01/18/2023] Open
Abstract
The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Mark Wainwright Analytical Centre, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Chris Marjo
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Helen Rutlidge
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Anne Rich
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Nibaldo C Inestrosa
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Centre for Ageing and Regeneration, Faculty of Biological Sciences, Pontifical Catholic University of ChileSantiago, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydney, NSW, Australia
| |
Collapse
|
24
|
Sela H, Cohen H, Karpas Z, Zeiri Y. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD. Metallomics 2017; 9:323-333. [PMID: 28252129 DOI: 10.1039/c6mt00207b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions. Taken together, these findings indicate that Zn distribution patterns play an active role in the neurobiological response to predator scent stress.
Collapse
Affiliation(s)
- Hagit Sela
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Hagit Cohen
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Zeev Karpas
- Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Yehuda Zeiri
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| |
Collapse
|
25
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
26
|
Sussulini A, Becker JS, Becker JS. Laser ablation ICP-MS: Application in biomedical research. MASS SPECTROMETRY REVIEWS 2017; 36:47-57. [PMID: 26398248 DOI: 10.1002/mas.21481] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
In the last decade, the development of diverse bioanalytical methodologies based on mass spectrometry imaging has increased, as has their application in biomedical questions. The distribution analysis of elements (metals, semimetals, and non-metals) in biological samples is a point of interest in life sciences, especially within the context of metallomics, which is the scientific field that encompasses the global analysis of the entirety of elemental species inside a cell or tissue. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been efficiently employed to generate qualitative and quantitative maps of elemental distribution in thin tissue sections of a variety of biological samples, for example, brain, cartilage, spinal cord, etc. The combination of elemental with molecular mass spectrometry allows obtaining information about the elements bound to proteins, when they are previously separated by gel electrophoresis (metalloproteomics), and also adding a new dimension to molecular mass spectrometry imaging by the correlation of molecular and elemental distribution maps in definite regions in a biological tissue. In the present review, recent biomedical applications in LA-ICP-MS imaging as a stand-alone technique and in combination with molecular mass spectrometry imaging techniques are discussed. Applications of LA-ICP-MS in the study of neurodegenerative diseases, distribution of contrast agents and metallodrugs, and metalloproteomics will be focused in this review. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:47-57, 2017.
Collapse
Affiliation(s)
- Alessandra Sussulini
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | | - Johanna Sabine Becker
- Zentralinstitut für Engineering, Elektronik und Analytik, Analytik (ZEA-3), Forschungszentrum Jülich, D-52425, Jülich, Germany
| |
Collapse
|
27
|
Jurowski K, Buszewski B, Piekoszewski W. Bioanalytics in Quantitive (Bio)imaging/Mapping of Metallic Elements in Biological Samples. Crit Rev Anal Chem 2016; 45:334-47. [PMID: 25996031 DOI: 10.1080/10408347.2014.941455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this article is to describe selected analytical techniques and their applications in the quantitative mapping/(bio)imaging of metals in biological samples. This work presents the advantages and disadvantages as well as the appropriate methods of scope for research. Distribution of metals in biological samples is currently one of the most important issues in physiology, toxicology, pharmacology, and other disciplines where functional information about the distribution of metals is essential. This issue is a subject of research in (bio)imaging/mapping studies, which use a variety of analytical techniques for the identification and determination of metallic elements. Increased interest in analytical techniques enabling the (bio)imaging of metals in a variety of biological material has been observed more recently. Measuring the distribution of trace metals in tissues after a drug dose or ingestion of poison-containing metals allows for the studying of pathomechanisms and the pathophysiology of various diseases and disorders related to the management of metals in human and animal systems.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Kraków , Kraków , Poland
| | | | | |
Collapse
|
28
|
Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 2015; 407:6593-617. [PMID: 26168964 PMCID: PMC4545187 DOI: 10.1007/s00216-015-8858-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/29/2023]
Abstract
Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS for quantification of trace elements in environmental, biological, and medical samples. The fundamental problems of LA-ICP-MS, such as sample-dependent ablation behavior and elemental fractionation, can be even more pronounced in environmental and life science applications as a result of the large variety of sample types and conditions. Besides variations in composition, the range of available sample states is highly diverse, including powders (e.g., soil samples, fly ash), hard tissues (e.g., bones, teeth), soft tissues (e.g., plants, tissue thin-cuts), or liquid samples (e.g., whole blood). Within this article, quantification approaches that have been proposed in the past are critically discussed and compared regarding the results obtained in the applications described. Although a large variety of sample types is discussed within this article, the quantification approaches used are similar for many analytical questions and have only been adapted to the specific questions. Nevertheless, none of them has proven to be a universally applicable method.
Collapse
Affiliation(s)
- Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
29
|
Peng F, Muzik O, Gatson J, Kernie SG, Diaz-Arrastia R. Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT. J Nucl Med 2015; 56:1252-7. [PMID: 26112025 DOI: 10.2967/jnumed.115.154575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Copper is a nutritional trace element required for cell proliferation and wound repair. METHODS To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and (64)Cu uptake in the injured cortex was assessed with (64)CuCl2 PET/CT. RESULTS At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). CONCLUSION Overall, the data suggest that increased (64)Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with (64)CuCl2 PET/CT.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan Department of Radiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Joshua Gatson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven G Kernie
- Department of Pediatrics and Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Ramon Diaz-Arrastia
- Center for Neurosciences and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
30
|
Fu S, Jiang W, Zheng W. Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus. Front Mol Neurosci 2015; 8:22. [PMID: 26106293 PMCID: PMC4458609 DOI: 10.3389/fnmol.2015.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022] Open
Abstract
Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone (SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP). Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significantly positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p < 0.01), respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying progenitor marker Nestin (p < 0.01). Dmt1 had significant positive correlations with age and Cu levels in the plexus (p < 0.01). These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region.
Collapse
Affiliation(s)
- Sherleen Fu
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Wendy Jiang
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
31
|
Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res 2014; 161:190-201. [PMID: 25119708 DOI: 10.1007/s12011-014-0093-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n = 42; 71 ± 12, range 50-101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the "normal" (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53 ± 5; 43-61 μg/g) was found at higher levels, followed by Cu (22 ± 5; 10-37 μg/g) and Mn (1.3 ± 0.3; 0.5-2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70 ± 10; 49-95 μg/g) and superior temporal gyrus (68 ± 10; 44-88 μg/g) and the lowest in the pons (33 ± 8; 19-51 μg/g); the highest levels of Cu and Mn were found in the putamen (36 ± 13; 21-76 μg/g and 2.5 ± 0.8; 0.7-4.5 μg/g, respectively) and the lowest in the medulla (11 ± 6; 2-30 μg/g and 0.8 ± 0.3; 0.2-1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.
Collapse
Affiliation(s)
- Patrícia Ramos
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Boaru SG, Merle U, Uerlings R, Zimmermann A, Weiskirchen S, Matusch A, Stremmel W, Weiskirchen R. Simultaneous monitoring of cerebral metal accumulation in an experimental model of Wilson's disease by laser ablation inductively coupled plasma mass spectrometry. BMC Neurosci 2014; 15:98. [PMID: 25142911 PMCID: PMC4156608 DOI: 10.1186/1471-2202-15-98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuropsychiatric affection involving extrapyramidal symptoms is a frequent component of Wilson's disease (WD). WD is caused by a genetic defect of the copper (Cu) efflux pump ATPase7B. Mouse strains with natural or engineered transgenic defects of the Atp7b gene have served as model of WD. These show a gradual accumulation and concentration of Cu in liver, kidneys, and brain. However, still little is known about the regional distribution of Cu inside the brain, its influence on other metals and subsequent pathophysiological mechanisms. We have applied laser ablation inductively coupled plasma mass spectrometry and performed comparative metal bio-imaging in brain sections of wild type and Atp7b null mice in the age range of 11-24 months. Messenger RNA and protein expression of a panel of inflammatory markers were assessed using RT-PCR and Western blots of brain homogenates. RESULTS We could confirm Cu accumulation in brain parenchyma by a factor of two in WD (5.5 μg g(-1) in the cortex) vs. controls (2.7 μg g(-1)) that was already fully established at 11 months. In the periventricular regions (PVR) known as structures of prominent Cu content, Cu was reduced in turn by a factor of 3. This corroborates the view of the PVR as efflux compartments with active transport of Cu into the cerebrospinal fluid. Furthermore, the gradient of Cu increasing downstream the PVR was relieved. Otherwise the architecture of Cu distribution was essentially maintained. Zinc (Zn) was increased by up to 40% especially in regions of high Cu but not in typical Zn accumulator regions, a side effect due to the fact that Zn is to some degree a substrate of Cu-ATPases. The concentrations of iron (Fe) and manganese (Mn) were constant throughout all regions assessed. Inflammatory markers TNF-α, TIMP-1 and the capillary proliferation marker α-SMA were increased by a factor of 2-3 in WD. CONCLUSIONS This study confirmed stable cerebral Cu accumulation in parenchyma and discovered reduced Cu in cerebrospinal fluid in Atp7b null mice underlining the diagnostic value of micro-local analytical techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Hospital Aachen, Pauwelsstr, 30, D-52074 Aachen, Germany.
| |
Collapse
|
33
|
Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: A review. Anal Chim Acta 2014; 835:1-18. [DOI: 10.1016/j.aca.2014.04.048] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/03/2023]
|
34
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
35
|
Peng F. Positron emission tomography for measurement of copper fluxes in live organisms. Ann N Y Acad Sci 2014; 1314:24-31. [PMID: 24628290 DOI: 10.1111/nyas.12383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
36
|
Hueting R. Radiocopper for the imaging of copper metabolism. J Labelled Comp Radiopharm 2014; 57:231-8. [DOI: 10.1002/jlcr.3155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Rebekka Hueting
- Division of Imaging Sciences & Biomedical Engineering; King's College London, St. Thomas' Hospital; London UK
- Chemistry Research Laboratory; University of Oxford; Oxford UK
| |
Collapse
|
37
|
Needham BE, Ciccotosto GD, Cappai R. Combined deletions of amyloid precursor protein and amyloid precursor-like protein 2 reveal different effects on mouse brain metal homeostasis. Metallomics 2014; 6:598-603. [PMID: 24448592 DOI: 10.1039/c3mt00358b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations to the expression of the Amyloid Precursor Protein (APP) and its paralogue Amyloid Precursor-Like Protein 2 (APLP2) affect metal homeostasis in vitro and in vivo. Analysis of the in vivo effects of the APP and APLP2 knockouts on metal homeostasis has been restricted to APP and APLP2 single knockout mice, and up to12 month old animals. To define the redundancy and inter-relationship between the APP and APLP2 genes as regulators of metal homeostasis, and how this is influenced by aging, we investigated copper, iron, zinc and manganese levels in APP and APLP2 single knockout mice as well as homozygous:hemizygous knockout mice at 3, 12 and 18 plus months of age. These studies identified age and genotype dependent changes in metal levels, and established differences in the relative roles played by APP and APLP2 in modulating metal homeostasis.
Collapse
Affiliation(s)
- B Elise Needham
- Department of Pathology, The University of Melbourne, VIC 3010, Australia.
| | | | | |
Collapse
|
38
|
Bonta M, Lohninger H, Marchetti-Deschmann M, Limbeck A. Application of gold thin-films for internal standardization in LA-ICP-MS imaging experiments. Analyst 2014; 139:1521-31. [DOI: 10.1039/c3an01511d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Jurowski K, Walas S, Piekoszewski W. A calibration strategy in bioimaging trace elements in rat brain tissue by LA ICP-TOF-MS method. Talanta 2013; 115:195-9. [DOI: 10.1016/j.talanta.2013.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
40
|
Sabine Becker J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): state of the art and future developments. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:255-68. [PMID: 23412982 DOI: 10.1002/jms.3168] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 05/18/2023]
Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is well established as a sensitive trace and ultratrace analytical technique with multielement capability for bioimaging of metals and studying metallomics in biological and medical tissue. Metals and metalloproteins play a key role in the metabolism and formation of metal-containing deposits in the brain but also in the liver. In various diseases, analysis of metals and metalloproteins is essential for understanding the underlying cellular processes. LA-ICP-MS imaging (LA-ICP-MSI) combined with other complementary imaging techniques is a sophisticated tool for investigating the regional and cellular distribution of metals and related metal-containing biomolecules. On the basis of successful routine techniques for the elemental bioimaging of cryosections by LA-ICP-MSI with a spatial resolution between 200 and ~10 µm, the further development used online laser microdissection ICP-MSI to study the metal distribution in small biological sample sections (at the cellular level from 10 µm to the submicrometer range). The use of mass spectrometric imaging of metals and also nonmetals is demonstrated on a series of biological specimens. This article discusses the state of the art of bioimaging of metals in thin biological tissue sections by LA-ICP-MSI with spatial resolution at the micrometer scale, future developments and prospects for quantitative imaging techniques of metals in the nanometer range. In addition, combining quantitative elemental imaging by LA/laser microdissection-ICP-MSI with biomolecular imaging by matrix-assisted laser desorption/ionization-MSI will be challenging for future life science research.
Collapse
Affiliation(s)
- J Sabine Becker
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
41
|
Abstract
Imaging MS (IMS) is generating tremendous interest in scientific communities because of its unparalleled capabilities to provide chemical analysis of intact tissue. Advances in analytical chemistry and MS are providing new insights into chemical and biological processes. This review will discuss various IMS platforms and their applications in biomedical and pharmaceutical research.
Collapse
|
42
|
Pushie MJ, Pickering IJ, Martin GR, Tsutsui S, Jirik FR, George GN. Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics 2011; 3:206-14. [PMID: 21264406 DOI: 10.1039/c0mt00037j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The central role of the prion protein (PrP) in a family of fatal neurodegenerate diseases has garnered considerable research interest over the past two decades. Moreover, the role of PrP in neuronal development, as well as its apparent role in metal homeostasis, is increasingly of interest. The host-encoded form of the prion protein (PrP(C)) binds multiple copper atoms via its N-terminal domain and can influence brain copper and iron levels. The importance of PrP(C) to the regulation of brain metal homeostasis and metal distribution, however, is not fully understood. We therefore employed synchrotron-based X-ray fluorescence imaging to map the level and distributions of several key metals in the brains of mice that express different levels of PrP(C). Brain sections from wild-type, prion gene knockout (Prnp(-/-)) and PrP(C) over-expressing mice revealed striking variation in the levels of iron, copper, and even zinc in specific brain regions as a function of PrP(C) expression. Our results indicate that one important function of PrP(C) may be to regulate the amount and distribution of specific metals within the central nervous system. This raises the possibility that PrP(C) levels, or its activity, might regulate the progression of diseases in which altered metal homeostasis is thought to play a pathogenic role such as Alzheimer's, Parkinson's and Wilson's diseases and disorders such as hemochromatosis.
Collapse
Affiliation(s)
- M Jake Pushie
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Ha Y, Tsay OG, Churchill DG. A tutorial and mini-review of the ICP-MS technique for determinations of transition metal ion and main group element concentration in the neurodegenerative and brain sciences. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-010-0438-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health and High Technology Research Center, Showa Pharmaceutical University
| |
Collapse
|