1
|
Nixon CA. The Composition and Chemistry of Titan's Atmosphere. ACS EARTH & SPACE CHEMISTRY 2024; 8:406-456. [PMID: 38533193 PMCID: PMC10961852 DOI: 10.1021/acsearthspacechem.2c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 03/28/2024]
Abstract
In this review I summarize the current state of knowledge about the composition of Titan's atmosphere and our current understanding of the suggested chemistry that leads to that observed composition. I begin with our present knowledge of the atmospheric composition, garnered from a variety of measurements including Cassini-Huygens, the Atacama Large Millimeter/submillimeter Array, and other ground- and space-based telescopes. This review focuses on the typical vertical profiles of gases at low latitudes rather than global and temporal variations. The main body of the review presents a chemical description of how complex molecules are believed to arise from simpler species, considering all known "stable" molecules-those that have been uniquely identified in the neutral atmosphere. The last section of the review is devoted to the gaps in our present knowledge of Titan's chemical composition and how further work may fill those gaps.
Collapse
Affiliation(s)
- Conor A. Nixon
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, United
States
| |
Collapse
|
2
|
Millar TJ. Concluding remarks: Faraday Discussion on astrochemistry at high resolution. Faraday Discuss 2023; 245:638-650. [PMID: 37482967 DOI: 10.1039/d3fd00131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fifty years on from the first detailed chemical kinetic modelling of astronomical sources, I provide some introductory comments on the history of astrochemistry, summarise some personal views on the topics covered in this discussion meeting, and conclude with some thoughts on its future development. I have left out the jokes.
Collapse
Affiliation(s)
- T J Millar
- Astrophysics Research Centre, Queen's University Belfast, University Road, Belfast BT7 1NN, UK.
| |
Collapse
|
3
|
Thawoos S, Hall GE, Cavallotti C, Suits AG. Kinetics of CN ( v = 1) reactions with butadiene isomers at low temperature by cw-cavity ring-down in a pulsed Laval flow with theoretical modelling of rates and entrance channel branching. Faraday Discuss 2023; 245:245-260. [PMID: 37317673 DOI: 10.1039/d3fd00029j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.
Collapse
Affiliation(s)
- Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Gregory E Hall
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Carlo Cavallotti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milano 20133, Italy
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Yang Z, Galimova GR, He C, Goettl SJ, Paul D, Lu W, Ahmed M, Mebel AM, Li X, Kaiser RI. Gas-phase formation of the resonantly stabilized 1-indenyl (C 9H 7•) radical in the interstellar medium. SCIENCE ADVANCES 2023; 9:eadi5060. [PMID: 37682989 PMCID: PMC10491290 DOI: 10.1126/sciadv.adi5060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The 1-indenyl (C9H7•) radical, a prototype aromatic and resonantly stabilized free radical carrying a six- and a five-membered ring, has emerged as a fundamental molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures in deep space and combustion systems. However, the underlying formation mechanisms have remained elusive. Here, we reveal an unconventional low-temperature gas-phase formation of 1-indenyl via barrierless ring annulation involving reactions of atomic carbon [C(3P)] with styrene (C6H5C2H3) and propargyl (C3H3•) with phenyl (C6H5•). Macroscopic environments like molecular clouds act as natural low-temperature laboratories, where rapid molecular mass growth to 1-indenyl and subsequently complex PAHs involving vinyl side-chained aromatics and aryl radicals can occur. These reactions may account for the formation of PAHs and their derivatives in the interstellar medium and carbonaceous chondrites and could close the gap of timescales of their production and destruction in our carbonaceous universe.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Chao He
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Shane J. Goettl
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Dababrata Paul
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xiaohu Li
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
- Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Marchione D, Mancini L, Liang P, Vanuzzo G, Pirani F, Skouteris D, Rosi M, Casavecchia P, Balucani N. Unsaturated Dinitriles Formation Routes in Extraterrestrial Environments: A Combined Experimental and Theoretical Investigation of the Reaction between Cyano Radicals and Cyanoethene (C 2H 3CN). J Phys Chem A 2022; 126:3569-3582. [PMID: 35640168 PMCID: PMC9189926 DOI: 10.1021/acs.jpca.2c01802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The reaction between
cyano radicals (CN, X2Σ+) and cyanoethene
(C2H3CN) has been
investigated by a combined approach coupling crossed molecular beam
(CMB) experiments with mass spectrometric detection and time-of-flight
analysis at a collision energy of 44.6 kJ mol–1 and
electronic structure calculations to determine the relevant potential
energy surface. The experimental results can be interpreted by assuming
the occurrence of a dominant reaction pathway leading to the two but-2-enedinitrile
(1,2-dicyanothene) isomers (E- and Z-NC–CH=CH–CN) in a H-displacement channel and,
to a much minor extent, to 1,1-dicyanoethene, CH2C(CN)2. In order to derive the product branching ratios under the
conditions of the CMB experiments and at colder temperatures, including
those relevant to Titan and to cold interstellar clouds, we have carried
out RRKM statistical calculations using the relevant potential energy
surface of the investigated reaction. We have also estimated the rate
coefficient at very low temperatures by employing a semiempirical
method for the treatment of long-range interactions. The reaction
has been found to be barrierless and fast also under the low temperature
conditions of cold interstellar clouds and the atmosphere of Titan.
Astrophysical implications and comparison with literature data are
also presented. On the basis of the present work, 1,2-dicyanothene
and 1,1-dicyanothene are excellent candidates for the search of dinitriles
in the interstellar medium.
Collapse
Affiliation(s)
- Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | | | - Marzio Rosi
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, 06125 Perugia, Italy
| | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
6
|
Suas-David N, Thawoos S, Suits AG. A uniform flow-cavity ring-down spectrometer (UF-CRDS): A new setup for spectroscopy and kinetics at low temperature. J Chem Phys 2019; 151:244202. [PMID: 31893907 DOI: 10.1063/1.5125574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UF-CRDS (Uniform Flow-Cavity Ring Down Spectrometer) is a new setup coupling for the first time a pulsed uniform (Laval) flow with a continuous wave CRDS in the near infrared for spectroscopy and kinetics at low temperature. This high resolution and sensitive absorption spectrometer opens a new window into the phenomena occurring within UFs. The approach extends the detection range to new electronic and rovibrational transitions within Laval flows and offers the possibility to probe numerous species which have not been investigated yet. This new tool has been designed to probe radicals and reaction intermediates but also to follow the chemistry of hydrocarbon chains and PAHs which play a crucial role in the evolution of astrophysical environments. For kinetics measurements, the UF-CRDS combines the CRESU technique (French acronym meaning reaction kinetics in uniform supersonic flows) with the SKaR (Simultaneous Kinetics and Ring-Down) approach where, as indicated by its name, the entire reaction is monitored during each intensity decay within the high finesse cavity. The setup and the approach are demonstrated with the study of the reaction between CN (v = 1) and propene at low temperature. The recorded data are finally consistent with a previous study of the same reaction for CN (v = 0) relying on the CRESU technique with laser induced fluorescence detection.
Collapse
Affiliation(s)
- N Suas-David
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - S Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - A G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
7
|
Several considerations on the empirical rate formula for ion-molecule reactions and low-temperature-high-speed radical reactions. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lindén CF, Žabka J, Polášek M, Zymak I, Geppert WD. The reaction of C 5N - with acetylene as a possible intermediate step to produce large anions in Titan's ionosphere. Phys Chem Chem Phys 2018; 20:5377-5388. [PMID: 29044258 DOI: 10.1039/c7cp06302d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical and experimental investigation of the reaction C5N- + C2H2 has been carried out. This reaction is of astrophysical interest since the growth mechanism of large anions that have been detected in Titan's upper atmosphere by the Cassini plasma spectrometer are still largely unknown. The experimental studies have been performed using a tandem quadrupole mass spectrometer which allows identification of the different reaction channels and assessment of their reaction thresholds. Results of these investigations were compared with the predictions of ab initio calculations, which identified possible pathways leading to the observed products and their thermodynamical properties. These computations yielded that the majority of these products are only accessible via energy barriers situated more than 1 eV above the reactant energies. In many cases, the thresholds predicted by the ab initio calculations are in good agreement with the experimentally observed ones. For example, the chain elongation reaction leading to C7N-, although being slightly exoergic, possesses an energy barrier of 1.91 eV. Therefore, the title reaction can be regarded to be somewhat unlikely to be responsible for the formation of large anions in cold environments such as interstellar medium or planetary ionospheres.
Collapse
|
9
|
Potapov A, Canosa A, Jiménez E, Rowe B. Chemie mit Überschall: 30 Jahre astrochemische Forschung und künftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Deutschland
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex Frankreich
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spanien
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer Frankreich
| |
Collapse
|
10
|
Potapov A, Canosa A, Jiménez E, Rowe B. Uniform Supersonic Chemical Reactors: 30 Years of Astrochemical History and Future Challenges. Angew Chem Int Ed Engl 2017; 56:8618-8640. [DOI: 10.1002/anie.201611240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Germany
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spain
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer France
| |
Collapse
|
11
|
Trevitt AJ, Goulay F. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection. Phys Chem Chem Phys 2016; 18:5867-82. [DOI: 10.1039/c5cp06389b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase radical reactions of CN and CH with small hydrocarbons are overviewed with emphasis on isomer-resolved product detection.
Collapse
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| | - Fabien Goulay
- Department of Chemistry
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
12
|
Dunning GT, Preston TJ, Greaves SJ, Greetham GM, Clark IP, Orr-Ewing AJ. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution. J Phys Chem A 2015; 119:12090-101. [PMID: 26192334 PMCID: PMC4685429 DOI: 10.1021/acs.jpca.5b05624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still.
Collapse
Affiliation(s)
- Greg T Dunning
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas J Preston
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Stuart J Greaves
- School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
13
|
Abeysekera C, Joalland B, Ariyasingha N, Zack LN, Sims IR, Field RW, Suits AG. Product Branching in the Low Temperature Reaction of CN with Propyne by Chirped-Pulse Microwave Spectroscopy in a Uniform Supersonic Flow. J Phys Chem Lett 2015; 6:1599-1604. [PMID: 26263320 DOI: 10.1021/acs.jpclett.5b00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new chirped-pulse/uniform flow (CPUF) spectrometer has been developed and used to determine product branching in a multichannel reaction. With this technique, bimolecular reactions can be initiated in a cold, thermalized, high-density molecular flow and a broadband microwave spectrum acquired for all products with rotational transitions within a chosen frequency window. In this work, the CN + CH3CCH reaction was found to yield HCN via a direct H-abstraction reaction, whereas indirect addition/elimination pathways to HCCCN, CH3CCCN, and CH2CCHCN were also probed. From these observations, quantitative branching ratios were established for all products as 12(5)%, 66(4)%, 22(6)%, and 0(8)% into HCN, HCCCN, CH3CCCN, and CH2CCHCN, respectively. The values are consistent with statistical calculations based on new ab initio results at the CBS-QB3 level of theory. This work is a demonstration of CPUF as a powerful technique for quantitatively determining the branching into polyatomic products from a bimolecular reaction.
Collapse
Affiliation(s)
- Chamara Abeysekera
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Baptiste Joalland
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Nuwandi Ariyasingha
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Lindsay N Zack
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ian R Sims
- ‡Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042, Rennes CEDEX, France
| | - Robert W Field
- §Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arthur G Suits
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Cheikh Sid Ely S, Morales SB, Guillemin JC, Klippenstein SJ, Sims IR. Low Temperature Rate Coefficients for the Reaction CN + HC3N. J Phys Chem A 2013; 117:12155-64. [DOI: 10.1021/jp406842q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sidaty Cheikh Sid Ely
- Institut
de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Sébastien B. Morales
- Institut
de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jean-Claude Guillemin
- Ecole
Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée
de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ian R. Sims
- Institut
de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| |
Collapse
|
15
|
Landera A, Mebel AM. Low-Temperature Mechanisms for the Formation of Substituted Azanaphthalenes through Consecutive CN and C2H Additions to Styrene and N-Methylenebenzenamine: A Theoretical Study. J Am Chem Soc 2013; 135:7251-63. [DOI: 10.1021/ja400227q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Landera
- Department
of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street,
Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department
of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street,
Miami, Florida 33199, United States
| |
Collapse
|
16
|
Saidani G, Kalugina Y, Gardez A, Biennier L, Georges R, Lique F. High temperature reaction kinetics of CN(v = 0) with C2H4 and C2H6 and vibrational relaxation of CN(v = 1) with Ar and He. J Chem Phys 2013; 138:124308. [DOI: 10.1063/1.4795206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Jamal A, Mebel AM. Theoretical Investigation of the Mechanism and Product Branching Ratios of the Reactions of Cyano Radical with 1- and 2-Butyne and 1,2-Butadiene. J Phys Chem A 2013; 117:741-55. [DOI: 10.1021/jp3091045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adeel Jamal
- Department of Chemistry and Biochemistry, Florida International University, Florida 33199, United
States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Florida 33199, United
States
| |
Collapse
|
18
|
Gardez A, Saidani G, Biennier L, Georges R, Hugo E, Chandrasekaran V, Roussel V, Rowe B, Reddy KPJ, Arunan E. High-temperature kinetics of the reaction between CN and hydrocarbons using a novel high-enthalpy flow tube. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Gupta V, Rawat P, Singh R, Tandon P. Formation of 2-imino-malononitrile and diaminomaleonitrile in nitrile rich environments: A quantum chemical study. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Trevitt AJ, Soorkia S, Savee JD, Selby TS, Osborn DL, Taatjes CA, Leone SR. Branching Fractions of the CN + C3H6 Reaction Using Synchrotron Photoionization Mass Spectrometry: Evidence for the 3-Cyanopropene Product. J Phys Chem A 2011; 115:13467-73. [DOI: 10.1021/jp208496r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam J. Trevitt
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Satchin Soorkia
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
| | - John D. Savee
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Talitha S. Selby
- Department of Chemistry, University of Wisconsin—Washington County, West Bend, Wisconsin 53095, United States
| | - David L. Osborn
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Craig A. Taatjes
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551, United States
| | - Stephen R. Leone
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|